Advertisement

Influence of Calcination Temperature in the Pozzolanic Reactivity of a Low Grade Kaolinitic Clay

  • Adrián AlujasEmail author
  • J. Fernando Martirena
Conference paper
Part of the RILEM Bookseries book series (RILEM, volume 10)

Abstract

The influence of thermal activation temperature in the pozzolanic reactivity of low grade kaolinitic clay is assessed in this paper. The raw material, with approximately 40 % kaolinite and 40 % of 2:1 clay minerals, was calcined to temperatures ranging between 500–1000 °C. Mortars with a 30 % replacement of OPC by the clay calcined at 800 °C, a temperature representing the best compromise between structural disorder of the clay fraction and its specific surface, show values of compressive strength from seven days on similar or higher than the reference 100 % OPC mortars. Pozzolanic reactivity assessed by cumulative heat of lime-pozzolan pastes are in correspondence with these results. The increase in compressive strength with calcination temperature up to 800 °C could be associated to a more complete thermal activation of the multicomponent clay fraction. The experimental results indicate that low grade kaolinitic clay deposits with moderate contents of kaolinite constitute a potential source of high reactivity pozzolanic materials.

Keywords

Compressive Strength Clay Mineral Calcination Temperature Clay Fraction Structural Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    He, C., Makovicky, E., Osbæck, B.: Thermal stability and pozzolanic activity of raw and calcined mixed-layer mica / smectite. Appl. Clay Sci. 17, 141–161 (2000)CrossRefGoogle Scholar
  2. 2.
    He, C., Osbaeck, B., Makovicky, E.: Pozzolanic reactions of six principal clay minerals: activation, reactivity assessments and technological effects. Cem. Concr. Res. 25(8), 1691–1702 (1995)CrossRefGoogle Scholar
  3. 3.
    Fernández López, R., Martirena Fernández, J.F., Scrivener, K.: The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonita. Cem. Concr. Res. 41, 113–122 (2011)Google Scholar
  4. 4.
    Murray, H.H.: Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Appl. Clay Sci. 17(5–6), 207–221 (2000)CrossRefGoogle Scholar
  5. 5.
    Madejová, J.: FTIR techniques in clay mineral studies. Vib. Spectrosc. 31, 1–10, 2003Google Scholar
  6. 6.
    Todor, D.N.: Thermal Analysis of Minerals. Abacuss Press, Kent, p. 256 (1976)Google Scholar
  7. 7.
    He, C., Makovicky, E., Osbaeck, B.: Thermal stability and pozzolanic activity of calcined illite. Appl. Clay Sci. 9(5), 337–354 (1995)CrossRefGoogle Scholar
  8. 8.
    He, C., Makovicky, E., Osbaeck, B.: Thermal stability and pozzolanic activity of calcined kaolin. Appl. Clay Sci. 9(3), 165–187 (1994)CrossRefGoogle Scholar
  9. 9.
    He, C., Makovicky, E., Osbaeck, B.: Thermal treatment and pozzolanic activity of Na- and Ca-montmorillonite. Appl. Clay Sci. 10, 351–368 (1996)CrossRefGoogle Scholar
  10. 10.
    Lee, V.-G., Yeh, T.-H.: Sintering effects on the development of mechanical properties of fired clay ceramics. Mater. Sci. Eng., A 485(1–2), 5–13 (2008)CrossRefGoogle Scholar
  11. 11.
    Cyr, M., Lawrence, P., Ringot, E.: Efficiency of mineral admixtures in mortars: quantification of the physical and chemical effects of fine admixtures in relation with compressive strength. Cem. Concr. Res. 36(2), 264–277 (2006)CrossRefGoogle Scholar

Copyright information

© RILEM 2015

Authors and Affiliations

  1. 1.Centro de Estudios de Química AplicadaUniversidad Central de Las VillasSanta ClaraCuba
  2. 2.Centro de Investigación y Desarrollo de Estructuras y MaterialesUniversidad Central de Las VillasSanta ClaraCuba

Personalised recommendations