Evaluation of the Permeation Properties of Concrete Added with a Petrochemical Industry Waste

  • Nancy Torres Castellanos
  • Janneth Torres AgredoEmail author
  • Ruby Mejía de Gutiérrez
Conference paper
Part of the RILEM Bookseries book series (RILEM, volume 10)


In this work, the evaluation of the performance of concrete added with a petrochemical industry waste called Fluid Catalytic Cracking Catalyst residue (FCC) from a Colombian petroleum company is presented. Results of this concrete are compared, with the results of concrete added with a pozzolan with similar characteristics such as the Metakaolin (MK). The analysis of the pozzolanic materials included the determination of the particle size, the pozzolanic activity, and the chemical and mineralogical composition. Different percentages of FCC were used as Portland cement replacement in proportions of 0, 10, 20 and 30 %; similarly concrete added with 20 % of MK as replacement was elaborated. The curing time was 28, 56, 90 and 180 days. These concretes were evaluated through the permeation properties such as: total absorption, porosity, surface absorption and capillary absorption. Results showed that concrete with FCC and MK had similar behavior, and slightly superior than the control sample. The total absorption and porosity were less than 3 % and 10 % respectively for the all of the samples; it means that these concretes had good quality and compactness. The results of surface absorption and capillary absorption showed that these concretes had low permeability too. This behavior is enhanced with the curing age.


Portland Cement Silica Fume Ordinary Portland Cement Calcium Silicate Hydrate Pozzolanic Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful towards the Universidad Nacional de Colombia, Escuela Colombiana de Ingeniería and Universidad del Valle, for the support given during the development of this research.


  1. 1.
    Fernández, A., Palomo, A.: Propiedades y aplicaciones de los cementos alcalinos. Revista Ingeniería de Construcción 24, 15–213 (2009)Google Scholar
  2. 2.
    Delagrave, A.: Influence of chloride ions and pH level on the durability of high performance cement pastes (part II). Cem. Concr. Res. 26, 749–760 (1996)CrossRefGoogle Scholar
  3. 3.
    Mehta, K. and P. Monteiro, Concreto: Estructura, Propiedades y Materiales. Instituto Mexicano del Cemento y del Concreto A.C., México, D.F., 1, 8–33 (1998)Google Scholar
  4. 4.
    Detwiler, R., Mehta, P.: Chemical and physical effects of silica fume on the mechanical behavior of concrete. ACI Mater. J. 86, 609–614 (1989)Google Scholar
  5. 5.
    Schieltz, N.C.: The interpretation of X-ray patterns of pozzolans. Symp. UsePozz. Mater. Mort. Concr. ASTM Special Tech 99, 4–127 (1950)Google Scholar
  6. 6.
    Talero, R.: Contribución al estudio analí y físico-químico del sistema: cementos puzolánicos-yeso-agua, in Ftad de C. Químicas. Universidad Complutense de Madrid, Madrid (1986)Google Scholar
  7. 7.
    Mehta, K., Monteiro, P.: Concrete, Microstructure, Properties, and Materials. ed. McGraw-Hill, United States (2006)Google Scholar
  8. 8.
    Taylor, H.F.W.: Enciclopedia de la Química Industrial: La Química de los Cementos. Ediciones URMO ed. Escuela de Ingenieros Industriales de Bilbao, Universidad de Deusto. Bilbao, España (1967)Google Scholar
  9. 9.
    Caldarone: High-reactivity metakaolin: a new generation mineral mixture. Concrete International: Design and Construction, pp. 37–41 (1994)Google Scholar
  10. 10.
    Balogh, A.: High reactivity metakaolin. Concr. Constr. 40(7), 1–3 (1995)Google Scholar
  11. 11.
    Kakali, G., et al.: Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Appl. Clay Sci. 20(1–2), 73–80 (2001)Google Scholar
  12. 12.
    Razak, H.A., Wong, H.S.: Strength estimation model for high-strength concrete incorporating metakaolin and silica fume. Cem. Concr. Res. 35(4), 688–695 (2005)Google Scholar
  13. 13.
    Torres, J., Mejía de Gutiérrez, R., Puertas, F.: Effect of Kaolin treatment temperature on mortar cloride permeability. Materiales de Construcción 57(285), 9 (2007)Google Scholar
  14. 14.
    Mejía de Gutiérrez, R., et al.: Análisis del Proceso Térmico de producción de una puzolana. Materiales de Construcción 54, 65–72 (2004)Google Scholar
  15. 15.
    Asbridge, A.H., Chadbourn, G.A., Page, C.L.: Effects of Metakaolin and the Interfacial Zone on the Diffusion on chloride ions through Cement Mortars. Cem. Concr. Res. 31(11), 1567–1572 (2001)Google Scholar
  16. 16.
    Paya, J., Monzo, J., Borrachero, M.: Fluid Catalytic Cracking Residue (FC3R) as a New Pozzolanic Material: Thermal Analysis Monitoring of FC3R/Portland Cement Reactions, Seventh CANMET/ACI. In: International Conference on Fly Ash, Silica Fume Slag and Natural Pozzolans in Concrete, pp. 5–22 (2001)Google Scholar
  17. 17.
    Borrachero, M., et al.: El Catalizador Gastado de Craqueo Catalítico Adicionado al Cemento Pórtland: Las Primeras 48 Horas de Curado y la Evolución de la Resistencia Mecánica. In: VIII Congreso Nacional de Propiedades Mecánicas de Sólidos. Gandia (2002)Google Scholar
  18. 18.
    Soriano, M.L.: Nuevas Aportaciones en el Desarrollo de Materiales Cementantes con Residuo de Catalizador de Craqueo Catalítico (FCC). Universidad Politécnica de Valencia (2008)Google Scholar
  19. 19.
    Trochez, J., Torres, J., Mejía de Gutiérrez, R.: Estudio de la hidratación de pastas de cemento adicionadas con catalizador de craqueo catalıtico usado (FCC) de una refinería colombiana. Revista Facultad de Ingeniería Universidad de Antioquia 55, 26–34 (2010)Google Scholar
  20. 20.
    Torres, N., Torres, J., Mejía de Gutiérrez, R.: Performance under sulfate attack of concrete additioned with fluid catalytic cracking catalyst residue (FCC) and metakaolin (MK). Revista Ingeniería e Investigación 33(1), 18–22 (2013)Google Scholar
  21. 21.
    Mejia de Gutiérrez, R., et al.: Concreto adicionado con metacaolín: Comportamiento a carbonatación y cloruros. Revista Facultad de Ingeniería Universidad de Antioquia 48, 55–64 (2009)Google Scholar
  22. 22.
    Pacewska, B., et al.: Modification of Properties of Concrete by a New Pozzolan a Waste Catalyst from the Catalytic Process in a Fluidized Bed. Cem. Concr. Res. 32(1), 145–152 (2002)Google Scholar
  23. 23.
    Richardson, I.G.: The natura of CSH in hardened cements. Cem. Concr. Res. 29, 1131–1147 (1999)Google Scholar
  24. 24.
    Dhir, R., Jones, M.R.: Use of the unfamiliar cement to ENV 197-1. In: Ravindra Dhir, M.R.J. (ed.) Concrete. London (2002)Google Scholar

Copyright information

© RILEM 2015

Authors and Affiliations

  • Nancy Torres Castellanos
    • 1
  • Janneth Torres Agredo
    • 2
    Email author
  • Ruby Mejía de Gutiérrez
    • 3
  1. 1.Universidad Nacional de ColombiaBogotáColombia
  2. 2.Universidad Nacional de ColombiaPalmiraColombia
  3. 3.Universidad del ValleCaliColombia

Personalised recommendations