Thermodynamic Modeling of Portland Cement—Metakaolin—Limestone Blends

  • Wolfgang KuntherEmail author
  • Zhuo Dai
  • Jørgen Skibsted
Conference paper
Part of the RILEM Bookseries book series (RILEM, volume 10)


The partial replacement of Portland cement by different supplementary cementitious materials (SCM´s) has been investigated extensively in recent years with the aim of reducing the embodied CO2 of blended Portland cements. In this work, we have utilized the maximum cement substitution of 35 wt%, according to the standard EN 197-1, and investigated the effect of changing the metakaolin/limestone ratio on the hydrating phase assemblages. Paste samples of the hydrated cement blends have been characterized by XRD, 27Al and 29Si MAS NMR spectroscopy and the results are compared with thermodynamic modeling. 29Si MAS NMR is a very valuable technique for studies of hydrated cement blends, since it allows detection of amorphous and crystalline phases in an equal manner. The determined degrees of hydration have been implemented into thermodynamic modeling to improve the modeling approach and thereby the agreement between predicted and observed phase assemblages. A simple equation has been established for implementation of the hydration kinetics which employs only one mass and one dissolution-rate parameter to describe the hydration successfully. The agreement between the experimental and modeled phase assemblages improves significantly when the hydration kinetics for the anhydrous alite, belite, and amorphous MK phases are implemented. The phase assemblages of the hydrated blends change only for very high MK contents from a C(-A)-S-H, calcite, portlandite, monocarbonate and ettringite system to a phase assemblage that in addition contains strätlingite and other AFm phases.


Portland Cement Thermodynamic Modeling Phase Assemblage Supplementary Cementitious Material Hydration Kinetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The Danish National Advanced Technology Foundation is acknowledged for financial support to the SCM project.


  1. 1.
    Nehdi, M., Mindess, S., Aïtcin, P.-C.: Optimization of high strength limestone filler cement mortars. Cem. Conc. Res. 26, 883–893 (1996)CrossRefGoogle Scholar
  2. 2.
    Tsivilis, S., Chaniotakis, E., Kakali, G., Batis, G.: An analysis of the properties of Portland limestone cements and concrete. Cem. Conc. Comp. 24, 371–378 (2002)CrossRefGoogle Scholar
  3. 3.
    De Weerdt, K., Ben Haha, M., Le Saout, G., Kjellsen, K.O., Justnes, H., Lothenbach, B.: Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem. Conc. Res 41, 279–291 (2001)CrossRefGoogle Scholar
  4. 4.
    Steenberg, M., Herfort, D., Poulsen, S.L., Skibsted, J., Damtoft, J. S.: Composite cement based on Portland cement clinker, limestone and calcined clay. In: 13th International Congress of the Chemistry of Cement, p. 97 (7 pages) (Madrid, Spain) (2011)Google Scholar
  5. 5.
    Damidot, D., Lothenbach, B., Herfort, D., Glasser, F.P.: Thermodynamics and cement science. Cem. Conc. Res. 41, 679–695 (2011)CrossRefGoogle Scholar
  6. 6.
    Dai, Z., Kunther, W., Garzón, S. F., Herfort, D., Skibsted, J.: Investigation of blended systems of supplementary cementitious materials with white Portland cement and limestone (in preparation)Google Scholar
  7. 7.
    Kunther, W., Dai, Z., Skibsted, J.: Modeling the hydration of metakaolin blended cements based on hydration kinetics obtained by 29Si MAS NMR spectroscopy (in preparation)Google Scholar
  8. 8.
    Taylor, H.F.W.: Cement Chemistry. Thomas Telford (1997)Google Scholar
  9. 9.
    Parrot, L., Killoh, D.: Prediction of cement hydration. In: Proceedings of British Ceramic Social pp 41–53(1984)Google Scholar
  10. 10.
    Dai, Z., Tran, T.T., Skibsted, J.: Aluminum Incorporation in the C-S–H phase of white Portland cement-metakaolin blends studied by 27Al and 29Si MAS NMR spectroscopy. J. Am. Ceram. Soc. 97, 2662–2671 (2014)CrossRefGoogle Scholar

Copyright information

© RILEM 2015

Authors and Affiliations

  1. 1.Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark

Personalised recommendations