Columnar Organization of the Motor Cortex: Direction of Movement


The discovery by Vernon B. Mountcastle of the columnar organization of the cerebral cortex (Mountcastle VB, J Neurophysiol 20:408–434, 1957, Brain 120:701–722, 1997) was the single most important discovery of the twentieth century in cortical physiology. Not only did it serve as the framework for the orderly arrangement of knowledge concerning cortical organization and function (Edelman and Mountcastle, The mindful brain. MIT Press, Cambridge, MA, 1978) but also as a framework for exploring and investigating new ideas and for revisiting old ones about the organization of particular cortical areas. Here I review the history of facts and ideas about the organization of the motor cortex and discuss the evidence that the direction of movement is the principle governing motor cortical columnar organization.


Columnar organization Motor activity Motor cortex Directional tuning 



This work was supported by the American Legion Brain Sciences Chair and the US Department of Veterans Affairs.


  1. Abend W, Bizzi E, Morasso P (1982) Human arm trajectory formation. Brain 105:331–348PubMedCrossRefGoogle Scholar
  2. Amirikian B, Georgopoulos AP (2003) Modular organization of directionally tuned cells in the motor cortex: is there a short-range order? Proc Natl Acad Sci U S A 100:12474–12479. doi: 10.1073/pnas.2037719100 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Anderson CT, Sheets PL, Kiritani T, Shepherd GM (2010) Sublayer-specific microcircuits of corticospinal and corticostriatal neurons in motor cortex. Nat Neurosci 13:739–744. doi: 10.1038/nn.2538 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Apicella AJ, Wickersham IR, Seung HS, Shepherd GM (2012) Laminarly orthogonal excitation of fast-spiking and low-threshold-spiking interneurons in mouse motor cortex. J Neurosci 32:7021–7033. doi: 10.1523/JNEUROSCI.0011-12.2012 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Asanuma H, Rosén I (1972) Topographical organization of cortical efferent zones projecting to distal forelimb muscles in the monkey. Exp Brain Res 14:243–256PubMedCrossRefGoogle Scholar
  6. Asanuma H, Sakata H (1967) Functional organization of a cortical efferent system examined with focal depth stimulation in cats. J Neurophysiol 30:35–54Google Scholar
  7. Caminiti R, Zeger S, Johnson PB, Urbano A, Georgopoulos AP (1985) Cortico-cortical efferent systems in the monkey: a quantitative spatial analysis of the tangential distribution of cells of origin. J Comp Neurol 241:405–419PubMedCrossRefGoogle Scholar
  8. Caminiti R, Johnson PB, Urbano A, Georgopoulos AP, Zeger S (1988) Callosal and association neurons in the cortical space: a spectral analysis approach. Behav Brain Res 30:193–201PubMedCrossRefGoogle Scholar
  9. Caminiti R, Johnson PB, Urbano A (1990) Making arm movements within different parts of space: dynamic aspects in the primate motor cortex. J Neurosci 10:2039–2058PubMedGoogle Scholar
  10. Casanova MF (2007) The neuropathology of autism. Brain Pathol 17:422–433. doi:BPA100 [pii]Google Scholar
  11. Chadderdon GL, Mohan A, Suter BA, Neymotin SA, Kerr CC, Francis JT, Shepherd GM, Lytton WW (2014) Motor cortex microcircuit simulation based on brain activity mapping. Neural Comput 26:1239–1262. doi: 10.1162/NECO_a_00602 PubMedCrossRefGoogle Scholar
  12. Christova P, Lewis SM, Jerde TA, Lynch JK, Georgopoulos AP (2011) True associations between resting fMRI time series based on innovations. J Neural Eng 8:046025. doi: 10.1088/1741-2560/8/4/046025 PubMedCrossRefGoogle Scholar
  13. Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJ, Velliste M, Boninger ML, Schwartz AB (2013) High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381:557–564. doi: 10.1016/S0140-6736(12)61816-9 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Courtine G, Micera S, DiGiovanna J, Millan Jdel R (2013) Brain-machine interface: closer to therapeutic reality? Lancet 381:515–517. doi: 10.1016/S0140-6736(12)62164-3 PubMedCrossRefGoogle Scholar
  15. Critchley J (1969) The parietal lobes. Hafner, New YorkGoogle Scholar
  16. Dow BM, Bauer R, Snyder AZ, Vautin RG (1984) Receptive fields and orientation shifts in foveal striate cortex of the awake macaque monkey. In: Edelman GM, Cowan WM, Gall WE (eds) Dynamic aspects of neocortical function. Wiley, New York, pp 41–65Google Scholar
  17. Edelman GM, Mountcastle VB (1978) The mindful brain. MIT Press, Cambridge, MAGoogle Scholar
  18. Fetz E (1984) The representation of movement direction in the motor cortex: single cell and population studies. In: Edelman GM, Cowan WM, Gall WE (eds) Dynamic aspects of neocortical function. Wiley, New York, pp 453–473Google Scholar
  19. Fitts PM, Deininger RL (1954) S-R compatibility: correspondence among paired elements within stimulus and response codes. J Exp Psychol 48:483–492PubMedCrossRefGoogle Scholar
  20. Gatter KC, Powell TPS (1978) The intrinsic connections of the cortex of area 4 of the monkey. Brain 101:513–541PubMedCrossRefGoogle Scholar
  21. Georgopoulos AP (1996) On the translation of directional motor cortical commands to activation of muscles via spinal interneuronal systems. Cogn Brain Res 3:151–155CrossRefGoogle Scholar
  22. Georgopoulos AP (2014) Cell directional spread determines accuracy, precision, and length of the neuronal population vector. Exp Brain Res 232:2391–2405. doi: 10.1007/s00221-014-396-7 PubMedCrossRefGoogle Scholar
  23. Georgopoulos AP, Grillner S (1989) Visuomotor coordination in reaching and locomotion. Science 245:1209–1210PubMedCrossRefGoogle Scholar
  24. Georgopoulos AP, Massey JT (1991) Biomedical program research: the primate motor system. Johns Hopkins APL Tech Dig 12:105–114Google Scholar
  25. Georgopoulos AP, Stefanis C (2010) The motor cortical circuit. In: Shepherd G, Grillner S (eds) Brain microcircuits. Oxford University Press, New York, pp 39–45CrossRefGoogle Scholar
  26. Georgopoulos AP, Kalaska JF, Massey JT (1980) Cortical mechanisms of two-dimensional aiming arm movements. I. Aiming at different target locations. Soc Neurosci Abstr 6:156Google Scholar
  27. Georgopoulos AP, Kalaska JF, Massey JT (1981) Spatial trajectories and reaction times of aimed movements: effects of practice, uncertainty, and change in target location. J Neurophysiol 46:725–743PubMedGoogle Scholar
  28. Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2:1527–1537PubMedGoogle Scholar
  29. Georgopoulos AP, Caminiti R, Kalaska JF, Massey JT (1983) Spatial coding of movement: a hypothesis concerning the coding of movement direction by motor cortical populations. Exp Brain Res Suppl 7:327–336Google Scholar
  30. Georgopoulos AP, Kalaska JF, Crutcher MD, Caminiti R, Massey JT (1984) The representation of movement direction in the motor cortex: single cell and population studies. In: Edelman GM, Cowan WM, Gall WE (eds) Dynamic aspects of neocortical function. Wiley, New York, pp 501–524Google Scholar
  31. Georgopoulos AP, Merchant H, Naselaris N, Amirikian B (2007) Mapping of the preferred direction in the motor cortex. Proc Natl Acad Sci U S A 104:11068–11072PubMedCentralPubMedCrossRefGoogle Scholar
  32. Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416–1419PubMedCrossRefGoogle Scholar
  33. Georgopoulos AP, Kettner RE, Schwartz AB (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. J Neurosci 8:2928–2937PubMedGoogle Scholar
  34. Georgopoulos AP, Taira M, Lukashin A (1993) Cognitive neurophysiology of the motor cortex. Science 260:47–52PubMedCrossRefGoogle Scholar
  35. Graziano MS, Taylor CS, Moore T (2002) Complex movements evoked by microstimulation of precentral cortex. Neuron 34:841–851. doi:S0896627302006980PubMedCrossRefGoogle Scholar
  36. Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New YorkGoogle Scholar
  37. Jackson JH (1882) On some implications of dissolution of the nervous system. Medical Press and Circular, vol ii, p 411 (Reprinted in: Taylor J, Selected writings of John Hughlings Jackson, Stapes, London, UK, 1958, p. 29)Google Scholar
  38. Jankowska E (1975) Cortical motor representation in view of recent experiments on cortico-spinal relations. Acta Neurobiol Exp (Wars) 35:699–706Google Scholar
  39. Jankowska E, Padel Y, Tanaka R (1975) The mode of activation of pyramidal tract cells by intracortical stimuli. J Physiol Lond 249:617–636PubMedCentralPubMedCrossRefGoogle Scholar
  40. Jones EG (2001) The thalamic matrix and thalamocortical synchrony. Trends Neurosci 24:595–601PubMedCrossRefGoogle Scholar
  41. Jones EG, Powell TP (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:793–820PubMedCrossRefGoogle Scholar
  42. Kalaska JF, Caminiti R, Georgopoulos AP (1983) Cortical mechanisms related to the direction of two-dimensional arm movements: relations in parietal area 5 and comparison with motor cortex. Exp Brain Res 51:247–260PubMedCrossRefGoogle Scholar
  43. Kwan HC, MacKay WA, Murphy JT, Wong YC (1978) Spatial organization of precentral cortex in awake primates. II. Motor outputs. J Neurophysiol 41:1120–1131PubMedGoogle Scholar
  44. Langheim FJ, Leuthold AC, Georgopoulos AP (2006) Synchronous dynamic brain networks revealed by magnetoencephalography. Proc Natl Acad Sci U S A 103:455–459. doi: 10.1073/pnas.0509623102 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Lashley KS (1933) Integrative functions of the cerebral cortex. Physiol Rev 13:1–42Google Scholar
  46. Lee SH, Kwan AC, Zhang S, Phoumthipphavong V, Flannery JG, Masmanidis SC, Taniguchi H, Huang ZJ, Zhang F, Boyden ES, Deisseroth K, Dan Y (2012) Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488:379–383. doi: 10.1038/nature11312 PubMedCentralPubMedCrossRefGoogle Scholar
  47. Leuthold AC, Langheim FJ, Lewis SM, Georgopoulos AP (2005) Time series analysis of magnetoencephalographic data during copying. Exp Brain Res 164:411–422. doi: 10.1007/s00221-005-2259-0 PubMedCrossRefGoogle Scholar
  48. Mahan MY, Georgopoulos AP (2013) Motor directional tuning across brain areas: directional resonance and the role of inhibition for directional accuracy. Front Neural Circ 7:92. doi: 10.3389/fncir.2013.00092 Google Scholar
  49. Mardia KV (1972) Statistics of directional data. Academic, New YorkGoogle Scholar
  50. Merchant H, Crowe DA, Fortes AF, Georgopoulos AP (2014) Cognitive modulation of local and callosal neural interactions in decision making. Front Neurosci 8:245. doi: 10.3389/fnins.2014.00245 PubMedCentralPubMedCrossRefGoogle Scholar
  51. Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434PubMedGoogle Scholar
  52. Mountcastle VB (1967) The problem of sensing and the neural coding of sensory events. In: Schmitt FO, Quarton G, Melnuchuk T (eds) The neurosciences: an intensive study program. Rockefeller University Press, New York, pp 393–407Google Scholar
  53. Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120:701–722PubMedCrossRefGoogle Scholar
  54. Mountcastle VB, Lynch JC, Georgopoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol 38:871–908PubMedGoogle Scholar
  55. Mountcastle VB, Motter BC, Andersen RA (1980) Some further observations of the functional properties of neurons in the parietal lobe of the waking monkey. Behav Brain Sci 3:485–534CrossRefGoogle Scholar
  56. Murphy JT, Kwan HC, MacKay WA, Wong YC (1982) Precentral unit activity correlated with angular components of a compound arm movement. Brain Res 246:141–145. doi: 10.1016/0006-8993(82)90152-4 PubMedCrossRefGoogle Scholar
  57. Naselaris T, Merchant H, Amirikian B, Georgopoulos AP (2005) Spatial reconstruction of trajectories of an array of recording microelectrodes. J Neurophysiol 93:2318–2330. doi: 10.1152/jn.00581.2004 PubMedCrossRefGoogle Scholar
  58. Naselaris T, Merchant H, Amirikian B, Georgopoulos AP (2006a) Large-scale organization of preferred directions in the motor cortex. I. Motor cortical hyperacuity for forward reaching. J Neurophysiol 96:3231–3236. doi: 10.1152/jn.00487.2006 PubMedCrossRefGoogle Scholar
  59. Naselaris T, Merchant H, Amirikian B, Georgopoulos AP (2006b) Large-scale organization of preferred directions in the motor cortex. II. Analysis of local distributions. J Neurophysiol 96:3237–3247. doi: 10.1152/jn.00488.2006 PubMedCrossRefGoogle Scholar
  60. Opris I, Casanova MF (2014) Prefrontal cortical minicolumn: from executive control to disrupted cognitive processing. Brain 137:1863–1875. doi: 10.1093/brain/awt359 PubMedCrossRefGoogle Scholar
  61. Opris I, Hampson RE, Stanford TR, Gerhardt GA, Deadwyler SA (2011) Neural activity in frontal cortical cell layers: evidence for columnar sensorimotor processing. J Cogn Neurosci 23:1507–1521. doi: 10.1162/jocn.2010.21534 PubMedCentralPubMedCrossRefGoogle Scholar
  62. Pellionisz A, Llinás R (1979) Brain modeling by tensor network theory and computer simulation. The cerebellum: distributed processor for predictive coordination. Neurosci 4:323–348. doi: 10.1016/0306-4522(79)90097-6 CrossRefGoogle Scholar
  63. Pellizzer G, Sargent P, Georgopoulos AP (1995) Motor cortical activity in a context-recall task. Science 269:702–705PubMedCrossRefGoogle Scholar
  64. Pitts W, McCulloch WS (1947) How we know universals; the perception of auditory and visual forms. Bull Math Biophys 9:127–147PubMedCrossRefGoogle Scholar
  65. Powell TP, Mountcastle VB (1959) Some aspects of the functional organization of the cortex of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull Johns Hopkins Hosp 105:133–162PubMedGoogle Scholar
  66. Schwartz AB, Kettner RE, Georgopoulos AP (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement. J Neurosci 8:2913–2927PubMedGoogle Scholar
  67. Sherrington CS (1906) The integrative action of the nervous system. Yale University Press, New HavenGoogle Scholar
  68. Sherrington CS (1940) Man on his nature. Cambridge University Press, LondonGoogle Scholar
  69. Stefanis C, Jasper H (1964a) Intracellular microelectrode studies of antidromic responses in cortical pyramidal tract neurons. J Neurophysiol 27:828–854PubMedGoogle Scholar
  70. Stefanis C, Jasper H (1964b) Recurrent collateral inhibition in pyramidal tract neurons. J Neurophysiol 27:855–877PubMedGoogle Scholar
  71. Viviani P, Terzuolo C (1982) Trajectory determines movement dynamics. Neurosci 7:431–437. doi: 10.1016/0306-4522(82)90277-9 CrossRefGoogle Scholar
  72. Woolsey CN, Settlage PH, Meyer DR, Sencer W, Pinto Hamuy T, Travis AM (1952) Patterns of localization in precentral and “supplementary” motor areas and their relation to the concept of a premotor area. Res Publ Assoc Res Nerv Ment Dis 30:238–264PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Brain Sciences Center, Minneapolis Veterans Affairs Health Care System; and Department of NeuroscienceUniversity of Minnesota Medical SchoolMinneapolisUSA

Personalised recommendations