Skip to main content

Axisymmetric Flows and Slender Body Theories

  • Chapter
  • First Online:
Theoretical and Applied Aerodynamics
  • 5245 Accesses

Abstract

Axisymmetric flows are needed to analyze flow over bodies of revolution. Extensions to bodies of revolution with fins (missiles) or slender wings (low aspect ratio) are also possible, using perturbations of axisymmetric flows. In this chapter, it is natural to use cylindrical coordinates. After the derivation of the governing equations at different Mach number regimes (subsonic, supersonic, transonic), lift and drag are calculated for standard shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashley, H., Landhal, M.: Aerodynamics of Wings and Bodies. Addison Wesley Longman, Reading (1965)

    MATH  Google Scholar 

  2. Oswatitsch, K., Keune, F.: Ein \(\ddot{{{\rm A}}}\)quivalenzsatz f\(\ddot{{{\rm u}}}\)r nicht-Angestellte Fl\(\ddot{{{\rm u}}}\)gel Kleiner Spannweite in Schallnaher Str\(\ddot{{{\rm o}}}\)mung, Zeischrift Flugwiss., vol. 3(2), pp. 29–46. Also, The Flow around Bodies of Revolution at Mach Number 1, Proceedings Conference on High Speed Aeronautics, Polytechnic Institute of Brooklyn, New York (1995)

    Google Scholar 

  3. von Karman, Th., Moore, N.: Resistance of slender bodies moving with supersonic velocities, with special reference to projectiles. Trans. ASME 54, 303–310 (1932)

    Google Scholar 

  4. von Karman, Th.: The problem of resistance in compressible fluids. In: Proceedings of the Fifth Volta Congress, Rome, Italy (1936)

    Google Scholar 

  5. Sears, W.R.: On projectiles of minimum drag. Q. Appl. Math. 4(4), 361–366 (1947)

    MathSciNet  MATH  Google Scholar 

  6. Liepmann, H., Roshko, A.: Elements of Gas Dynamics. Wiley, New York (1957)

    Google Scholar 

  7. Viviand, H.: Ailes et Corps Elanc\(\acute{{{\rm e}}}\)s en Th\(\acute{{{\rm e}}}\)orie des Petites Perturbations, Ecole National Sup\(\acute{{{\rm e}}}\)rieure de l’A\(\acute{{{\rm e}}}\)ronautique et de l’Espace, Premi\(\grave{{{\rm e}}}\)re Partie, Class Notes (1972)

    Google Scholar 

  8. Katz, J., Plotkin, A.: Low-Speed Aerodynamics, 2nd edn. Cambridge University Press, New York (2001)

    Book  MATH  Google Scholar 

  9. Duncan, W.J., Thom, A.S., Young, A.D.: The Mechanics of Fluids. Arnold, London (1960)

    Google Scholar 

  10. Weissinger, J.: The Lift Distribution of Swept-Back Wings. NACA TM 1120 (1947)

    Google Scholar 

  11. Jones, R.T.: Collected Works of R.T. Jones. NASA Publication (1976)

    Google Scholar 

  12. Jones, R.T., Cohen, D.: Aerodynamic Components of Aircraft at High Speeds, Eds. Donovan, Lawrence, Princeton University Press, New Jersey (1990)

    Google Scholar 

  13. Kogan, N.M.: On bodies of minimum drag in a supersonic gas stream. Prikl. Mat. Mekhan XXI(2), 207–212 (1957)

    Google Scholar 

  14. Spreiter, J.R.: The Aerodynamic Forces on Slender Plane- and Cruciform-Wing and Body Combination. NACA Report 962 (1950)

    Google Scholar 

  15. Mangler, K.W.: Improper integrals in theoretical aerodynamics. British A.R.C., R&M No. 2424 (1951)

    Google Scholar 

  16. Brandao, M.P.: Improper integrals in theoretical aerodynamics. AIAA J. 25(9), 1258–1260 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  17. Lighthill, M.J.: Supersonic flow past slender bodies of revolution, the slope of whose meridian section is discontinuous. Q. J. Mech. Appl. Math. 1, 90–102 (1947)

    Article  MathSciNet  Google Scholar 

  18. Ward, G.N.: Supersonic flow past slender pointed bodies. Q. J. Mech. Appl. Math. 2, Part I, 75–97 (1949)

    Google Scholar 

  19. Ward, G.N.: On the minimum drag of thin lifting bodies in steady supersonic flows. British A.R.C., Report No. 18 (1949)

    Google Scholar 

  20. Ward, G.N.: Linearized Theory of Steady High-Speed Flow. Cambridge University Press, London (1955)

    MATH  Google Scholar 

  21. Harder, K.C., Klunker, E.B.: On Slender-Body Theory and the Area Rule at Transonic Speeds. NACA Report 1315 (1957)

    Google Scholar 

  22. Guderley, K.G.: Theory of Transonic Flow. Pergamon Press, London (1962)

    MATH  Google Scholar 

  23. Cole, J.D., Cook, P.: Transonic Aerodynamics. Elsevier Science Publishing Company, Amsterdam (1986)

    Google Scholar 

  24. Whitcomb, R.: A Study of the Zero-Lift Drag Rise Characteristics of Wing-Body Combinations Near the Speed of Sound. NACA Report 1273 (1956)

    Google Scholar 

  25. Cheng, H.K., Hafez, M.M.: Transonic equivalence rule: a nonlinear problem involving lift. J. Fluid Mech. 72, 161–187 (1975)

    Article  ADS  MATH  Google Scholar 

  26. Cheng, H.K.: Lift corrections to transonic equivalence rule: examples. AIAA J. 15(3), 366 (1977)

    Article  ADS  MATH  Google Scholar 

  27. Hayes, W.: Linearized supersonic flow. North American Aviation Report No., A.L. 222 (1947)

    Google Scholar 

  28. Lomax, H., Heaslet, M.: Recent developments in the theory of wing-body wave drag. J. Aeronaut. Sci. 23(12), 1061–1074 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ferri, A., Clarke, J., Ting, L.: Favorable interference in lifting systems in supersonic flow. J. Aeronaut. Sci. 24(11), 791–804 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  30. Taylor, G.I., Maccoll, J.W.: The air pressure on a cone moving at high speed. Proc. R. Soc. (A) 139, 278 (1933)

    Article  ADS  MATH  Google Scholar 

  31. Shapiro, A.: The Dynamics and Thermodynamics of Compressible Fluid Flow, vol. I and II. Arnold, New York (1953)

    Google Scholar 

  32. Stewart, A.J.: The lift of a delta wing at supersonic speeds. Q. Appl. Math. 4, 246–254 (1946)

    MATH  Google Scholar 

  33. Powell, K.G.: Vortical Solutions of the Conical Euler Equations. Notes on Numerical Fluid Mechanics, vol. 28. Vieweg, Braunschweig (1990)

    Google Scholar 

  34. Powell, K.G., Murman, E.M.: Trajectory integration in vortical flows. AIAA J. 7, 982–984 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Chattot .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chattot, J.J., Hafez, M.M. (2015). Axisymmetric Flows and Slender Body Theories. In: Theoretical and Applied Aerodynamics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9825-9_7

Download citation

Publish with us

Policies and ethics