Skip to main content

Application to Decision Making Theory and Cognitive Science

  • Chapter
  • First Online:
  • 1386 Accesses

Abstract

In this chapter the formalism of quantum probability and quantum information theory (in its generalized form based on theory of lifting) is applied to construct the QL-representations for cognitive processes, especially decision making in games of the prisoner’s dilemma type. Our modeling is based on the results of extended studies in the domain of cognitive psychology demonstrated that in some mental contexts players behave irrationally, i.e., they select mixed strategies which are different from the Nash equilibrium predicted by classical game theory. The simplest model of such irrational behavior is based on theory of open quantum systems and quantum master equation. More complex cognitive situations are modelled with aid quantum adaptive dynamics generalizing theory of open quantum systems. We also construct the QL-representation for bistable perception. We are able to construct quantum operators providing the adequate operational description of know statistical data. To check nonclassicality of these data we use a Bell-type inequality, namely, the Leggett-Garg inequality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Some of these problems were also studied by Cheon and Takahashi [20, 21], Khrennikov [22, 23], Fichtner et al. [24], Franco [25], Khrennikov and Haven [26], Pothos and Busemeyer [27, 28], Lambert-Mogiliansky et al. [29], Dzhafarov and Kujala [30, 31], and Wang et al. [32, 33], see also the special section on cognition, decision making and finances in the conference proceedings [34].

  2. 2.

    Of course, every probability in this case is subjective, so that we do not need to use classical probability theory in order to estimate this posterior probability. Instead of Bayes’ formulae, humans often use more heuristic inference, and there are many reports in psychology.

  3. 3.

    Similar interpretation for the Bell inequality was presented in the paper [50], the first paper which demonstrated that the Bell-type inequalities can be violated outside of physics, for the data collected from recognition of ambiguous figures; see also [51]; see [49] for the detailed presentation of the contextual viewpoint on quantum theory in general and on the Bell-type inequalities in particular.

References

  1. Fox, C., Rogers, B., Tversky, A.: Option traders exhibit subadditive decision weights. J. Risk Uncertain. 13, 5–17 (1996)

    Article  Google Scholar 

  2. Rottenstreich, Y., Tversky, A.: Unpacking, repacking and anchoring: advances in support theory. Psychol. Rev. 104, 406–415 (1997)

    Article  CAS  PubMed  Google Scholar 

  3. Bearden, J.N., Wallsten, T., Fox, C.: Error and subadditivity: a stochastic model of subadditivity. University of Arizona—Departmentt Management and Policy, preprint (2005)

    Google Scholar 

  4. Tversky, A., Koehler, D.: Support theory: a nonextential representation of subjective probability. Psychol. Rev. 101, 547–567 (1994)

    Article  Google Scholar 

  5. Khrennikov, A., Haven, E.: The importance of probability interference in social science: rationale and experiment (2007). arXiv:0709.2802v1 [physics.gen-ph]

  6. Khrennikova, P., Khrennikov, A., Haven, E.: The quantum-like description of the dynamics of party governance in the US political system (2012). arXiv:1206.2888 [physics.gen-ph]

  7. Khrennikova, P.: Evolution of quantum-like modeling in decision making processes. AIP Conf. Proc. 1508, 108–112 (2012)

    Article  Google Scholar 

  8. Conte, E., Todarello, O., Federici, A., Vitiello, F., Lopane, M., Khrennikov, A.: A preliminary evidence of quantum-like behaviour in measurements of mental states. Quantum Theory: Reconsideration of Foundations. Series Mathematical Model in Physics, Engineering and Cognitive Science, vol. 10, pp. 679–702. Växjö University Press, Växjö (2004)

    Google Scholar 

  9. Conte, E., Khrennikov, A., Todarello, O., Federici, A., Zbilut, J.P.: Mental states follow quantum mechanics during perception and cognition of ambiguous figures. Open Syst. Inf. Dyn. 16, 1–17 (2009)

    Article  Google Scholar 

  10. Khrennikov, A.: Classical and quantum mechanics on information spaces with applications to cognitive, psychological, social and anomalous phenomena. Found. Phys. 29, 1065–1098 (1999)

    Article  Google Scholar 

  11. Khrennikov, A.: On quantum-like probabilistic structure of mental information. Open Syst. Inf. Dyn. 11, 267–275 (2004)

    Article  Google Scholar 

  12. Khrennikov, A.: Quantum-like brain: interference of minds. BioSystems 84, 225–241 (2006)

    Article  PubMed  Google Scholar 

  13. Busemeyer, J.B., Wang, Z., Townsend, J.T.: Quantum dynamics of human decision making. J. Math. Psychol. 50, 220–241 (2006)

    Article  Google Scholar 

  14. Busemeyer, J., Bruza, P.D.: Quantum Cognition and Decision. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  15. Hofstader, D. R.: Dilemmas for superrational thinkers, leading up to a luring lottery. Sci. Am. 6 (1983)

    Google Scholar 

  16. Hofstader, D.R.: Metamagical Themes: Questing for the Essence of Mind and Pattern. Basic Books, New York (1985)

    Google Scholar 

  17. Shafir, E., Tversky, A.: Thinking through uncertainty: nonconsequential reasoning and choice. Cogn. Psychol. 24, 449–474 (1992)

    Article  CAS  PubMed  Google Scholar 

  18. Tversky, A., Shafir, E.: The disjunction effect in choice under uncertainty. Psychol. Sci. 3, 305–309 (1992)

    Article  Google Scholar 

  19. Croson, R.: The disjunction effect and reasoning-based choice in games. Organ. Behav. Hum. Dec. Process. 80, 118–133 (1999)

    Article  Google Scholar 

  20. Cheon, T., Takahashi, T.: Interference and inequality in quantum decision theory. Phys. Lett. A 375, 100–104 (2010)

    Article  CAS  Google Scholar 

  21. Cheon, T., Tsutsui, I.: Classical and quantum contents of solvable game theory on Hilbert space. Phys. Lett. A 348, 147–152 (2006)

    Article  CAS  Google Scholar 

  22. Khrennikov, A.: Quantum-like model of cognitive decision making and information processing. Biosystems 95, 179–187 (2009)

    Article  PubMed  Google Scholar 

  23. Khrennikov, A.: Ubiquitous Quantum Structure: From Psychology to Finance. Springer, Heidelberg (2010)

    Book  Google Scholar 

  24. Fichtner, K.-H., Fichtner, L., Freudenberg, W., Ohya, M.: On a quantum model of the recognition process. In: QP-PQ: Probability and White Noise Analysis, vol. 21, pp. 64–84 (2008)

    Google Scholar 

  25. Franco, F.: The conjunction fallacy and interference effects. J. Math. Psychol. 53, 415–422 (2009)

    Article  Google Scholar 

  26. Khrennikov, A., Haven, E.: Quantum mechanics and violations of the sure-thing principle: the use of probability interference and other concepts. J. Math. Psychol. 53, 378–388 (2009)

    Article  Google Scholar 

  27. Pothos, E.M., Busemeyer, J.R.: Can quantum probability provide a new direction for cognitive modeling? Behav. Brain Sci. 36, 255–274 (2013)

    Article  PubMed  Google Scholar 

  28. Pothos, E. M., Busemeyer, J. R., Trueblood, J. S.: A quantum geometric model of similarity. Psychol. Rev. (in press)

    Google Scholar 

  29. Lambert-Mogiliansky, A., Busemeyer, J.R.: Emergence and instability of individual identity. In: Busemeyer, J.R., Dubois, F., Lambert-Mogiliansky, A., Melucci, M. (eds.) Quantum Interaction 6th International Symposium, QI 2012. Lecture Notes in Computer Science, vol. 7620, pp. 102–113 (2012)

    Google Scholar 

  30. Dzhafarov, E.N., Kujala, J.V.: Selectivity in probabilistic causality: where psychology runs into quantum physics. J. Math. Psychol. 56, 54–63 (2012)

    Article  Google Scholar 

  31. Dzhafarov, E.N., Kujala, J.V.: Random variables recorded under mutually exclusive conditions: contextuality-by-default, to appear in the Advances in Cognitive Neurodynamics. In: Proceedings of the 4th International Conference on Cognitive Neurodynamics (2013).  arXiv:1309.0962 [quant-ph]

  32. Wang, Z., Busemeyer, J.R.: A quantum question order model supported by empirical tests of an a priori and precise prediction. Top. Cogn. Sci. (2013) (to be published)

    Google Scholar 

  33. Wang, Zh, Busemeyer, J.R.: A quantum question order model supported by empirical tests of an a priori and precise prediction. Top. Cogn. Sci. 5, 689–710 (2013)

    PubMed  Google Scholar 

  34. D’Ariano, M., Fei, S.M., Haven, E., Hiesmayr, B., Jaeger, G., Khrennikov, A., Larsson, J.A.: Foundations of Probability and Physics-6. Series Conference Proceedings, vol. 1424. American Institute of Physics, Melville (2012)

    Google Scholar 

  35. Pothos, E.M., Busemeyer, J.R.: A quantum probability explanation for violation of rational decision theory. Proc. R. Soc. B 276(1165), 2171–2178 (2009)

    Article  PubMed Central  PubMed  Google Scholar 

  36. Asano, M., Ohya, M., Khrennikov, A.: Quantum-like model for decision making process in two players game. Found. Phys. 41(3), 538–548 (2010)

    Article  Google Scholar 

  37. Asano, M., Ohya, M., Tanaka, Y., Basieva, I., Khrennikov, A.: Quantum-like model of brain’s functioning: decision making from decoherence. J. Theor. Biol. 281(1), 56–64 (2011)

    Article  PubMed  Google Scholar 

  38. Asano, M., Basieva, I., Khrennikov, A., Ohya, M., Tanaka, Y.: Quantum-like generalization of the Bayesian updating scheme for objective and subjective mental uncertainties. J. Math. Psychol. 56(3), 168–175 (2012)

    Article  Google Scholar 

  39. Asano, M., Basieva, I., Khrennikov, A., Ohya, M., Tanaka, Y.: Quantum-like representation of irrational inference. In: Busemeyer, J.R., Dubois, F., Lambert-Mogiliansky, A., Melucci, M. (eds.) Quantum Interaction 6th International Symposium (QI-2012). Lecture Notes in Computer Science, vol. 7620, pp. 138–147 (2012)

    Google Scholar 

  40. Asano, M., Basieva, I., Khrennikov, A., Ohya, M., Tanaka, Y., Yamato, I.: Adaptive dynamics and its application to context dependent systems breaking the classical probability law. In: Busemeyer, J.R., Dubois, F., Lambert-Mogiliansky, A., Melucci, M. (eds.) Quantum Interaction 6th International Symposium (QI-2012). Lecture Notes in Computer Science, vol. 7620, pp. 160–171 (2012)

    Google Scholar 

  41. Asano, M., Basieva, I., Khrennikov, A., Ohya, M., Yamato, I.: Non-Kolmogorovian approach to the context-dependent systems breaking the classical probability law. Found. Phys. 43(7), 895–911 (2013)

    Article  Google Scholar 

  42. Accardi, L., Ohya, M.: Compound channels, transition expectations, and liftings. Appl. Math. Optim. 39, 33–59 (1999)

    Article  Google Scholar 

  43. Asano, M., Ohya, M., Tanaka, Y., Khrennikov, A., Basieva, I.: Quantum-like representation of Bayesian updating. In: Proceedings of the International Conference Advances in Quantum Theory, vol. 1327, pp. 57–62. American Institute of Physics (2011)

    Google Scholar 

  44. Smith, R.A.: A Compleat System of Opticks. Cambridge, Published by the author (1738)

    Google Scholar 

  45. Schröder, H.: Ueber eine optische Inversion bei Betrachtung verkehrter, durch optische Vorrichtung entworfener physischer Bilder. Annalen der Physik 181(10), 298–311 (1858)

    Article  Google Scholar 

  46. Atmanspacher, H., Filk, T., Röme, H.: Complementarity in Bistable Perception, Recasting Reality, pp. 135–150. Springer, Berlin (2009)

    Book  Google Scholar 

  47. Leggett, A., Garg, A.: Quantum mechanics versus macroscopic realism: is the flux there when nobody looks? Phys. Rev. Lett. 54, 857–860 (1985)

    Article  PubMed  Google Scholar 

  48. Bell, J.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  49. Khrennikov, A.: Contextual Approach to Quantum Formalism. Springer, Berlin (2009)

    Book  Google Scholar 

  50. Conte, E., Khrennikov, A., Todarello, O., Federici, A., Zbilut, J.P.: A preliminary experimental verification on the possibility of Bell inequality violation in mental states. Neuroquantology 6, 214–221 (2008)

    Google Scholar 

  51. Dzhafarov, E.N., Kujala, J.V.: Quantum entanglement and the issue of selective influences in psychology: an overview. Lect. Notes Comput. Sci. 7620, 184–195 (2012)

    Article  Google Scholar 

  52. Atmanspacher, H., Filk, T.: Temporal nonlocality in bistable perception. In: Khrennikov, A., Atmanspacher, H., Migdall, A., Polyakov, S. (eds.) Quantum Theory: Reconsiderations of Foundations-6. Special Section: Quantum-like Decision Making: From Biology to Behavioral Economics, AIP Conference Proceedings, vol. 1508, pp. 79–88 (2012)

    Google Scholar 

  53. Atmanspacher, H., Filk, T., Römer, H.: Weak quantum theory: formal framework and selected applications. In: Adenier, G., Khrennikov, A., Nieuwenhuizen, T.M. (eds.) Quantum Theory: Reconsideration of Foundations, vol. 3, pp. 34–46. American Institute of Physics, New York (2006)

    Google Scholar 

  54. Kolmogoroff, A. N.: Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin (1933). English translation: Kolmogorov, A.N.: Foundations of Theory of Probability. Chelsea Publishing Company, New York (1956)

    Google Scholar 

  55. Acacio de Barros, J.: Joint probabilities and quantum cognition. In: Proceedings of the International Conference on Quantum Theory: Reconsiderations of Foundations-6, Växjö, Sweden, 11–14 June (2012)

    Google Scholar 

  56. Goggin, M.E., Almeida, M.P., Barbieri, M., Lanyon, B.P., O’Briend, J.L., White, A.G., Pryde, G.J.: Violation of the Leggett-Garg inequality with weak measurements of photons. Proc. Natl. Acad. Sci. 108(4), 1256–1261 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanari Asano .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Asano, M., Khrennikov, A., Ohya, M., Tanaka, Y., Yamato, I. (2015). Application to Decision Making Theory and Cognitive Science. In: Quantum Adaptivity in Biology: From Genetics to Cognition. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9819-8_6

Download citation

Publish with us

Policies and ethics