Skip to main content

Fundamentals of Molecular Biology

  • Chapter
  • First Online:
Quantum Adaptivity in Biology: From Genetics to Cognition

Abstract

In this chapter, we briefly introduce the basic concept of molecular biology and also biological information processing in general. As a detailed example of the information processing phenomena (signal recognition, transformation, and biological response) in a living system, we explain the diauxie (two phase) growth of Escherichia coli in glucose and lactose mixed medium and show the mechanistic simulation of the system according to the systems biology approach. In addition, we introduce epigenetic mutation as another example for the information processing in a living system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamato, I.: From structure and function of proteins toward in silico biology. Quantum Bio-Informatics V. (From Quantum Information to Bio-Informatics). In: Accardi, L., Freudenberg, W., Ohya, M. (eds.) Proceedings of the International Symposium of Quantum Bio-Informatics Research Center 2011, Chiba, pp. 473–485. World Scientific, Singapore (2013)

    Google Scholar 

  2. Bassham, J., Benson, A., Calvin, M.: The path of carbon in photosynthesis. J. Biol. Chem. 185, 781–787 (1950)

    CAS  PubMed  Google Scholar 

  3. Krebs, H.A., Johnson, W.A.: Metabolism of ketonic acids in animal tissues. Biochem. J. 31, 645–660 (1937)

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Fiske, C.H., Subbarow, Y.: Phosphorus compounds of muscle and liver. Science 70, 381–382 (1929)

    Article  CAS  PubMed  Google Scholar 

  5. Szent-Györgyi, A., Banga, I.: Adenosinetriphosphatase. Science 93, 158 (1941)

    Article  PubMed  Google Scholar 

  6. Huxley, H., Hanson, J.: Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173, 973–976 (1954)

    Article  CAS  PubMed  Google Scholar 

  7. Watson, J.D., Crick, F.H.C.: Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953)

    Article  CAS  PubMed  Google Scholar 

  8. Crick, F.: Central dogma of molecular biology. Nature 227, 561–563 (1970)

    Article  CAS  PubMed  Google Scholar 

  9. Yamato, I., Ando, T., Suzuki, A., Harada, K., Itoh, S., Miyazaki, S., Kobayashi, N., Takeda, M.: Toward in silico biology (from sequences to systems). Quantum Bio-Informatics (From Quantum Information to Bio-Informatics). In: Accardi, L., Freudenberg, W., Ohya, M. (eds.) Proceedings of the International Symposium of Quantum Bio-Informatics Research Center 2007, Chiba, pp. 440–455. World Scientific, Singapore (2008)

    Google Scholar 

  10. Gilbert, W.: The RNA world. Nature 319, 618 (1986)

    Article  Google Scholar 

  11. Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181, 223–230 (1973)

    Article  CAS  PubMed  Google Scholar 

  12. Gibson, D.G., Benders, G.A., Andrews-Pfannkoch, C., Denisove, E.A., Baden-Tillson, H., Zaveri, J., Stockwell, T.B., Brownley, A., Thomas, D.W., Algire, M.A., Merryman, C., Young, L., Noskov, V.N., Glass, J.I., Venter, J.C., Hutchison 3rd, C.A., Smith, H.O.: Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220 (2010)

    Google Scholar 

  13. Levinthal, C.: How to fold graciously. Mossbauer Spectroscopy in Biological Systems: Proceedings of a Meeting Held at Allerton House, pp. 22–24. Monticello, Illinois (1969)

    Google Scholar 

  14. Bryngelson, J.D., Wolynes, P.G.: Spin glasses and the statistical mechanics of protein folding. Proc. Natl. Acad. Sci. USA 84, 7524–7528 (1987)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Bryngelson, J.D., Onuchic, J.N., Socci, N.D., Wolynes, P.G.: Funnels, pathways, and the energy landscape of protein folding. Proteins: Struct., Funct., Bioinform. 21, 167–195 (1995)

    Article  CAS  Google Scholar 

  16. Shaw, D.E., Maragakis, P., Lindorff-Larsen, K., Piana, S., Dror, R.O., Eastwood, M.P., Bank, J.A., Jumper, J.M., Salmon, J.K., Shan, Y., Wriggers, W.: Atomic-level characterization of the structural dynamics of proteins. Science 15, 341–346 (2010)

    Article  Google Scholar 

  17. Basieva, I., Khrennikov, A., Ohya, M., Yamato, I.: Quantum-like interference effect in gene expression: glucose-lactose destructive interference. Syst. Synth. Biol. 5, 59–68 (2011)

    Article  PubMed Central  PubMed  Google Scholar 

  18. Jacob, F., Monod, J.: Genetic regulatory mechanism in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961)

    Article  CAS  PubMed  Google Scholar 

  19. Asano, M., Basieva, I., Khrennikov, A., Ohya, M., Tanaka, Y., Yamato, I.: Quantum-like model of diauxie in Escherichia coli: operational description of precultivation effect. J. Theor. Biol. 314, 130–137 (2012)

    Google Scholar 

  20. Khrennikov, A.: Classical and quantum mechanics on information spaces with applications to cognitive, psychological, social and anomalous phenomena. Found. Phys. 29, 1065–1098 (1999)

    Article  Google Scholar 

  21. Ohya, M.: Adaptive dynamics and its applications to chaos and NPC problem. QP-PQ: quantum probability and white noise analysis. Quantum Bio-Inform. 21, 181–216 (2007)

    Google Scholar 

  22. Beckwith, J.R., Zipser, D.: The Lactose Operon. University of Tokyo Press, Tokyo (1971)

    Google Scholar 

  23. Beckwith, J.R.: The lactose operon in Escherichia coli and Salmonella typhimurium. In: Neidhardt, F.C., Ingraham, J.L., Low, K.B., Magasanik, B., Schaechter, M., Umbarger, H.E. (eds.), pp. 1444–1452. ASM, Washington (1987)

    Google Scholar 

  24. Loomis Jr., W.F., Magasanik, B.: Glucose-lactose diauxie in Escherichia coli. J. Bacteriol. 93, 1397–1401 (1967)

    Google Scholar 

  25. Inada, T., Kimata, K., Aiba, H.: Mechanism responsible for glucose-lactose diauxie in Escherichia coli challenge to the cAMP model. Genes Cells 1, 293–301 (1996)

    Google Scholar 

  26. Postma, P.W.: Phosphotransferase system for glucose and other sugars in Escherichia coli and Salmonella typhimurium. In: Neidhardt, F.C., Ingraham, J.L., Low, K.B., Magasanik, B., Schaechter, M., Umbarger, H.E. (eds.), pp. 127–141. ASM, Washington (1987)

    Google Scholar 

  27. Kitano, H.: Systems biology: a brief overview. Science 295, 1662–1664 (2002)

    Article  CAS  PubMed  Google Scholar 

  28. Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T.S., Matsuzaki, Y., Miyoshi, F., Saito, K., Tanida, S., Yugi, K., Venter, J.C., Hutchison 3rd, C.A.: E-CELL: software environment for whole-cell simulation. Bioinformatics 15, 72–84 (1999)

    Article  CAS  PubMed  Google Scholar 

  29. Mendes, P.: GEPASI: a software for modeling the dynamics, steady states and control of biochemical and other systems. Comput. Appl. Biosci. 9, 563–571 (1993)

    CAS  PubMed  Google Scholar 

  30. Albert, J., Rooman, M.: Dynamic modeling of gene expression in prokaryotes: application to glucose-lactose diauxie in Escherichia coli. Syst. Synth. Biol. 5, 33–43 (2011)

    Article  PubMed Central  PubMed  Google Scholar 

  31. Asano, M., Basieva, I., Khrennikov, A., Ohya, M., Yamato, I.: A model of epigenetic evolution based on theory of open quantum systems. Syst. Synth. Biol. (2013). doi:10.1007/s11693-013-9109-2

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanari Asano .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Asano, M., Khrennikov, A., Ohya, M., Tanaka, Y., Yamato, I. (2015). Fundamentals of Molecular Biology. In: Quantum Adaptivity in Biology: From Genetics to Cognition. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9819-8_3

Download citation

Publish with us

Policies and ethics