Advertisement

Glaciological Studies at Pasterze Glacier (Austria) Based on Aerial Photographs

  • Viktor Kaufmann
  • Andreas Kellerer-Pirklbauer
  • Gerhard Karl Lieb
  • Heinz Slupetzky
  • Michael Avian
Part of the Springer Remote Sensing/Photogrammetry book series (SPRINGERREMO)

Abstract

This chapter describes and analyses glacier recession observed at Pasterze Glacier, Hohe Tauern Range, Austria, for the time period 2003–2009. Pasterze Glacier is the largest glacier of the entire Eastern Alps, and it is highly indicative of ongoing glacier melt in the Alps. We evaluated three glacier stages (2003, 2006 and 2009) and the glaciological changes between them. The quantitative analysis is based on aerial surveys carried out during the summer of these years. The photogrammetric workflow provided high resolution datasets, such as digital elevation models and orthophotos of each stage. We evaluated the extent, surface elevation, flow velocity field, supraglacial debris cover, and geomorphological changes at the glacier surface and the adjacent paraglacial environment. The main numerical results can be summarized as follows: the glacier covered 17.3 ± 0.1 km2 in 2009, the mean surface elevation change was −1.31 ± 0.07 m a−1 for the period 2003–2009, the glacier surface flow velocity in two test areas at the glacier tongue decelerated from 2003–2006 to 2006–2009 (−4 % and −31 %), and the debris cover of the glacier tongue increased from 63 % (2003) to 72 % (2009). We conclude that Pasterze Glacier is far from equilibrium and that its glacier tongue will turn into a large dead ice body in the near future.

Keywords

Pasterze Glacier Glacier change Glacier recession Photogrammetric mapping Geomorphological mapping 

Notes

Acknowledgments

The aerial photographs of 2003 were made available by Heinz Slupetzky and the Hydrological Service of the Regional Government of Salzburg. Photogrammetric work was financially supported by the Austrian Federal Ministry of Science and Research and the Salzburg Hydrological Service. The aerial photographs of 2009 were provided free of charge by the Department of Geoinformation of the Regional Government of Tyrol (TIRIS). Field campaigns at Pasterze Glacier were supported by the project ‘ALPCHANGE – Climate change and impacts in southern Austrian alpine regions’ funded by the Austrian Science Fund (FWF) through project FWF P18304-N10 and by the Austrian Alpine Club (OeAV) within the framework of the annual glaciological surveys. VERBUND-Austrian Hydro Power provided meteorological data from the automatic weather station AWS-MA. An anonymous reviewer is very much thanked for his constructive criticism on an earlier version of this paper.

References

  1. Abermann J, Lambrecht A, Fischer A, Kuhn M (2009) Quantifying changes and trends in glacier area and volume in the Austrian Ötztal Alps (1969–1997–2006). Cryosphere 3(2):205–215CrossRefGoogle Scholar
  2. Abermann J, Fischer A, Lambrecht A, Geist T (2010) On the potential of very high-resolution repeat DEMs in glacial and periglacial environments. Cryosphere 4(1):53–65CrossRefGoogle Scholar
  3. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones PD, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J-M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP – historical instrumental climatological surface time series of the greater Alpine region 1760–2003. Int J Climatol 27:17–46CrossRefGoogle Scholar
  4. Avian M, Lieb GK, Kellerer-Pirklbauer A, Bauer A (2007) Variations of Pasterze Glacier (Austria) between 1994 and 2006 – combination of different data sets for spatial analysis. In: Proceedings of the 9th international symposium on high mountain remote sensing cartography, Graz, 2006. Grazer Schriften der Geographie und Raumforschung 43:79–88Google Scholar
  5. Ballantyne CK (2002) Paraglacial geomorphology. Quat Sci Rev 21:1935–2017CrossRefGoogle Scholar
  6. Baltsavias EP, Favey E, Bauder A, Bösch H, Pateraki M (2001) Digital surface modelling by airborne laser scanning and digital Photogrammetry for glacier monitoring. Photogramm Rec 17(98):243–273CrossRefGoogle Scholar
  7. Barry R, Gan TY (2011) The global cryosphere: past, present and future. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  8. Beniston M, Diaz HF (2004) The 2003 heat wave as an example of summers in a greenhouse climate? Observations and climate model simulations for Basel, Switzerland. Global Planet Change 44(1–4):73–81CrossRefGoogle Scholar
  9. Benn DI, Evans DJA (2010) Glaciers and glaciation, 2nd edn. Hodder Arnold Publication, LondonGoogle Scholar
  10. Benn DI, Lehmkuhl F (2000) Mass balance and equilibrium-line altitudes of glaciers in high mountain environments. Quat Int 65–66:15–29CrossRefGoogle Scholar
  11. Bolch T, Buchroithner MF, Kunert A, Kamp U (2007) Automated delineation of debris-covered glaciers based on ASTER data. In: Gomarasca (ed) Geoinformation in Europe, Proceedings of the 27th Symposium of the EARSel. Millpress Science Publishers, pp 403–410Google Scholar
  12. Bollmann E, Klug C, Sailer R, Stötter J, Abermann J (2012) Quantifying rock glacier creep using airborne laser scanning: a case study from two rock glaciers in the Austrian Alps. In: Hinkel KM (ed) 10th International Conference on Permafrost. The Northern Publisher, Salekhard, Russia, pp 49–54Google Scholar
  13. Eder K, Würländer R, Rentsch H (2000) Digital photogrammetry for the new glacier inventory of Austria. In: International archives of photogrammetry and remote sensing, vol XXXIII, Part B4, Amsterdam, pp 254–261Google Scholar
  14. Fischer A (2011) Comparison of direct and geodetic mass balances on a multi-annual time scale. Cryosphere 5(1):107–124CrossRefGoogle Scholar
  15. Geilhausen M, Otto JC, Schrott L (2011) Geomorphic system analysis and paraglacial landform adjustment in two glacier forefields (Pasterze & Obersulzbachkees, Hohe Tauern, Austria). Geophys Res Abstr 13:EGU2011–EGU10496Google Scholar
  16. Goshtasby AA (2012) Image registration – principles, tools and methods. Advances in computer vision and pattern recognition. Springer, London, p 441Google Scholar
  17. Haeberli W, Hoelzle M, Paul F, Zemp M (2007) Integrated monitoring of mountain glaciers as key indicators of global climate change: the European Alps. Ann Glaciol 46(1):150–160CrossRefGoogle Scholar
  18. Haeberli W, Huggel C, Paul F, Zemp M (2013a) Glacial responses to climate change. In: Treatise on geomorphology, vol 13. Academic, San Diego, pp 152–175Google Scholar
  19. Haeberli W, Paul F, Zemp M (2013b) Vanishing glaciers in the European Alps. In: Fate of Mountain glaciers in the anthropocene. Pontifical Academy of Sciences, Scripta Varia, 118:1–9Google Scholar
  20. Heid T, Kääb A (2012) Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds. Cryosphere 6(2):467–478CrossRefGoogle Scholar
  21. Höck V, Pestal G (1994) Geological map of Austria 1:50.000, GK sheet 153 “Grossglockner”. Geological Survey of Austria, ViennaGoogle Scholar
  22. Huss M (2013) Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 7(3):877–887CrossRefGoogle Scholar
  23. Inoue J (1977) Mass budget of the Khumbu Glacier. Seppyo 39:15–19Google Scholar
  24. Kääb A (2005) Remote sensing of mountain glaciers and permafrost creep, vol 48, Schriftenreihe Physische Geographie. Geographisches Institut der Universität Zürich, SwitzerlandGoogle Scholar
  25. Karimi N, Farokhnia A, Karimi L, Eftekhari M, Ghalkhani H (2012) Combining optical and thermal remote sensing data for mapping debris-covered glaciers (Alamkouh Glaciers, Iran). Cold Reg Sci Technol 71:73–83CrossRefGoogle Scholar
  26. Kaufmann V, Ladstädter R (2003) Quantitative analysis of rock glacier creep by means of digital photogrammetry using multi-temporal aerial photographs: two case studies in the Austrian Alps. In: Permafrost. Proceedings of the 8th international conference on permafrost, Zurich, vol 1. A.A. Balkema Publishers, pp 525–530Google Scholar
  27. Kaufmann V, Plösch R (2000) Mapping and visualization of the retreat of two cirque glaciers in the Austrian Hohe Tauern National Park. In: International archives of photogrammetry and remote sensing, vol XXXIII, Part B4, Amsterdam, pp 446–453Google Scholar
  28. Kaufmann V, Kellerer-Pirklbauer A, Kenyi LW (2008) Gletscherbewegungsmessung mittels Satellitengestützter Radar-Interferometrie: Die Pasterze (Glocknergruppe, Hohe Tauern, Kärnten). Z Gletscherk Glazialgeol 42(1):85–104Google Scholar
  29. Kellerer-Pirklbauer A (2008) The supraglacial debris system at the Pasterze Glacier, Austria: spatial distribution, characteristics and transport of debris. Z Gemorphol, Supplementar Issue 52(1):3–25Google Scholar
  30. Kellerer-Pirklbauer A (2009) The use of GPS and DGPS for glacier monitoring at the tongue of Pasterze Glacier between 2003 and 2008. In: Proceedings of the 4th symposium of the Hohe Tauern National Park for research in protected areas, Kaprun, Austria, Sept 2009, pp 163–167Google Scholar
  31. Kellerer-Pirklbauer A, Lieb GK, Avian M, Gspurning J (2008) The response of partially debris-covered valley glaciers to climate change: the example of the Pasterze Glacier (Austria) in the period 1964 to 2006. Geogr Ann Ser A Phys Geogr 90(A/4):269–285CrossRefGoogle Scholar
  32. Kellerer-Pirklbauer A, Lieb GK, Avian M, Carrivick J (2012) Climate change and rock fall events in high mountain areas: numerous and extensive rock falls in 2007 at Mittlerer Burgstall, central Austria. Geogr Ann Ser A Phys Geogr 94(1):59–78CrossRefGoogle Scholar
  33. Lambrecht A, Kuhn M (2007) Glacier changes in the Austrian Alps during the last three decades, derived from the new Austrian glacier inventory. Ann Glaciol 46(1):177–184CrossRefGoogle Scholar
  34. Lieb GK (2007) Southeastern and Central Austria Field Guide of the HMRSC-IX (2006) post-symposium excursion. In: Proceedings of the 9th international symposium on high mountain remote sensing cartography, Graz, 2006. Grazer Schriften der Geographie und Raumforschung 43:257–292Google Scholar
  35. Mattson LE, Gardner JS, Young GJ (1993) Ablation on debris covered glaciers: an example from the Rakhiot Glacier, Panjab, Himalaya. IAHS Publ 218:289–269Google Scholar
  36. Oerlemans J (2001) Glaciers and climate change. Swets & Zeitlinger BV, LisseGoogle Scholar
  37. Østrem G (1959) Ice melting under a thin layer of moraine and the existence of ice cores in moraine ridges. Geogr Ann 41A:228–230Google Scholar
  38. Paschinger H (1969) Die Pasterze in den Jahren 1924 bis 1968. Wiss Alpenvereinshefte 21:267–290Google Scholar
  39. Patzelt G (1985) Glacier advances in the Alps 1965 to 1980. Z Gletscherk Glazialgeol 21(1–2):403–407Google Scholar
  40. Paul F, Huggel C, Kääb A (2004) Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sens Environ 89:510–518CrossRefGoogle Scholar
  41. Schöner W, Auer I, Böhm R (2000) Klimaänderung und Gletscherverhalten in den Hohen Tauern. Salzburger Geogr Arb 36:97–113Google Scholar
  42. Slupetzky H, Wiesenegger H (2005) Glazialhydrologische Aspekte des Jahres 2003 im “Hohe Tauern Einzugsgebiet”der Salzach. Mitteilungsblatt Hydrographischen Dienstes Österr 83:61–81Google Scholar
  43. Span N, Fischer A, Kuhn M, Massimo M, Butschek M (2005) Radarmessungen der Eisdicke Österreichischer Gletscher. Band 1: Messungen 1995 bis 1998, Österreichische Beiträge zu Meteorologie und Geophysik 33Google Scholar
  44. Vaughan DG, Comiso JC, Allison I, Carrasco J, Kaser G, Kwok R, Mote P, Murray T, Paul F, Ren J, Rignot E, Solomina O, Steffen K, Zhang T (2013) Observations: cryosphere. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UKGoogle Scholar
  45. Wakonigg H, Lieb GK (1996) Die Pasterze und ihre Erforschung im Rahmen der Gletschermessungen. Wiss Nationalpark Hohe Tauern Kärnten Kärntner Nationalpark-Schriften 8:99–115Google Scholar
  46. Würländer R, Eder K, Geist T (2004) High quality DEMs for glacier monitoring – image matching versus laser scanning. In: ISPRS archives, vol XXXV, Part B7, Istanbul, pp 753–758Google Scholar
  47. Zemp M (2006) Glaciers and climate change – spatio-temporal analysis of glacier fluctuations in the European Alps after 1850. PhD thesis, University of Zurich, 201 pGoogle Scholar
  48. Zemp M, Haeberli W, Hoelzle M, Paul F (2006) Alpine glaciers to disappear within decades? Geophys Res Lett 33(13):L13504. doi: 10.1029/2006GL026319 CrossRefGoogle Scholar
  49. Zemp M, Thibert E, Huss M, Stumm D, Rolstad Denby C, Nuth C, Nussbaumer SU, Moholdt G, Mercer A, Mayer C, Joerg PC, Jansson P, Hynek B, Fischer A, Escher-Vetter H, Elvehøy H, Andreassen LM (2013) Reanalysing glacier mass balance measurement series. Cryosphere 7(2):1227–1245CrossRefGoogle Scholar
  50. Zuo Z, Oerlemans J (1997) Numerical modelling of the historic front variation and the future behavior of the Pasterze glacier, Austria. Ann Glaciol 24:234–241Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Viktor Kaufmann
    • 1
  • Andreas Kellerer-Pirklbauer
    • 2
  • Gerhard Karl Lieb
    • 2
  • Heinz Slupetzky
    • 3
  • Michael Avian
    • 4
  1. 1.Institute of Remote Sensing and PhotogrammetryGraz University of TechnologyGrazAustria
  2. 2.Department of Geography and Regional ScienceUniversity of GrazGrazAustria
  3. 3.Department of Geography and GeologyUniversity of SalzburgBergheimAustria
  4. 4.Institute of Earth SciencesUniversity of GrazGrazAustria

Personalised recommendations