H Control of Commensurate Fractional Order Models

  • J. SabatierEmail author
  • C. Farges
  • L. Fadiga
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 77)


A commensurate fractional order model can be represented by a pseudo state space representation similar to the state space representation of an integer order model as shown in Chap.  1. This similarity can be used to extend H synthesis methods developed for integer order models represented by a state space representation to the case of fractional order models.


  1. Apkarian P, Gahinet P, Biannic JM (1994) Synthèse H∞ des Systèmes Linéaires à Paramètres Variants, in La Robustesse, analyse et synthèse de commandes Robustes, Traité des Nouvelles Technologies, Série Automatique, Hermes, ParisGoogle Scholar
  2. Balas G, Chiang R, Packard A, Safonov M (2007) Robust control toolbox 3 user’s guide, Natick. doc/robust/robust.pdf
  3. Benner P, Mehrmann V, Sima V, Van Huffel S, Varga A (1997) Slicot – a subroutine library in systems and control theory. Applied and Computational Control, Signals, and Circuits, pp 499–539. BirkhäuserGoogle Scholar
  4. Boyd S, Balakrishnan V, Kabamba P (1989) A bisection method for computing the H∞ norm of a transfer matrix and related problems. Math Control Signals Syst 2(3):207–219CrossRefzbMATHMathSciNetGoogle Scholar
  5. Desoer CA, Vidyasagar M (1975) Feedback systems: input-output properties. Academic, New YorkzbMATHGoogle Scholar
  6. Dinzart F, Lipiński P (2009) Improved five-parameter fractional derivative model for elastomers. Arch Mech 61(6):459–474zbMATHMathSciNetGoogle Scholar
  7. Fadiga L, Farges C, Sabatier J (2013) H∞ output feedback control of commensurate fractional order systems. In: 2013 European Control Conference (ECC 2013), Proceedings of a meeting held 17–19 July 2013, Institute of Electrical and Electronics Engineers (IEEE), Zurich, SwitzerlandGoogle Scholar
  8. Farges C, Fadiga L, Sabatier J (2013) H∞ analysis and control of commensurate fractional order systems. Mechatronics 23(7):772–780CrossRefGoogle Scholar
  9. Green M, Limebeer DJN (1995) Linear robust control. Prentice-Hall, Upper Saddle RiverzbMATHGoogle Scholar
  10. Iwasaki T, Hara S (2005) Generalized KYP lemma: unified frequency domain inequalities with design applications. IEEE Trans Autom Control 50(1):41–59CrossRefMathSciNetGoogle Scholar
  11. Liang S, Peng C, Liao C, Wang Y (2015) Improved bounded real lemmas for fractional systems. Accepted for publication in International Journal of Automation and Computing 2015, 12(2):192–198Google Scholar
  12. Matignon D (1996) Stability results on fractional differential equations with applications to control processing. Comp Eng Syst Appl 2:963–968Google Scholar
  13. Moze M, Sabatier J, Oustaloup A (2005) LMI tools for stability analysis of fractional systems. 20th ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (ASME IDETC/CIE’05), biennial conference on mechanical vibration and noise (VIB), 2nd symposium on fractional derivatives and their applications, Long Beach, California, USA, 26–28 Sept 2005Google Scholar
  14. Oustaloup A, Moreau X, Nouillant M (1996) The crone suspension. Control Eng Pract 4(8): 1101–1108CrossRefGoogle Scholar
  15. Padula F, Alcantara S, Vilanova R, Visioli A (2013) H∞ control of fractional linear systems. Automatica 49(7):2276–2280CrossRefMathSciNetGoogle Scholar
  16. Sabatier J, Moze M, Oustaloup A (2005) On H∞ fractional systems norm computation. IEEE CDC-ECC’05 conference – Sevilla, Spain, 15–20 Dec.Google Scholar
  17. Sabatier J, Melchior P, Oustaloup A (2008) A testing bench for fractional order systems education. J Eur des Syst Autom 42(6,7,8): 830–860Google Scholar
  18. Sabatier J, Farges C, Merveillaut M, Feneteau L (2012) On observability and pseudo state estimation of fractional order systems. Eur J Control 18(3):260–271CrossRefzbMATHMathSciNetGoogle Scholar
  19. Sasso M, Palmieri G, Amodio D (2011) Application of fractional derivative models in linear viscoelastic problems. Mech Time-Depend Mater 15:367–387CrossRefGoogle Scholar
  20. Scherer C, Weiland S (2005) Linear matrix inequalities in control. Rapport technique, Delft University of TechnologyGoogle Scholar
  21. Scherer C, Gahinet P, Chilali M (1997) Multiobjective output-feedback control via LMI optimization. IEEE Trans Autom Control 42(7):869–911CrossRefMathSciNetGoogle Scholar
  22. Symans MD, Kelly WS (1999) Fuzzy logic control of bridge structures using intelligent semi-active seismic isolation systems. Earthq Eng Struct Dyn 28:37–60CrossRefGoogle Scholar
  23. Toh KC, Todd MJ, Tütüncü RH (1998) SDPT3, A matlab software package for semidefinite programming. Optim Meth Softw 11:545–581CrossRefGoogle Scholar
  24. Tsopelas P, Constantinou MC, Okamoto SF, Ozaki D (1996) Experimental study of bridge seismic sliding isolation systems. Eng Struct 18(4):301–310CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.IMS Laboratory - CNRS UMR 5218 – Bordeaux INP - Bordeaux University Bat A31 – 351 cours de la LibérationCedex TalenceFrance

Personalised recommendations