Advertisement

Fractional Order PID and First Generation CRONE Control System Design

  • P. LanusseEmail author
  • J. Sabatier
  • A. Oustaloup
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 77)

Abstract

This chapter presents the design of controllers for Single Input/Single Output (SISO) systems, that is to say only one signal to control only one measured output. The fractional order controller is presented as a generalization of the common PID controller. Then, it is shown how the first generation of the CRONE methodology is able to design robust controllers for a class of gain-like perturbed systems.

Keywords

Fractional Order Phase Margin Quantitative Feedback Theory Fractional Order Controller Fractional Order Integrator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Cervera J, Baños A (2006) Tuning of fractional PID controllers by using QFT. In: Proceedings of IECON’06 – 32nd annual conference of the IEEE industrial electronics society, ParisGoogle Scholar
  2. Chen YQ, Moore KL, Vinagre B, Podlubny I (2004) Robust PID controller auto tuning with a phase shaper. In: Proceedings of The first IFAC symposium on fractional differentiation and its applications (FDA04), BordeauxGoogle Scholar
  3. D’Azzo JJ, Houpis CH (1988) Linear control system analysis and design, conventional and modern. McGraw Hill, New YorkGoogle Scholar
  4. Francis BA, Zames G (1984) On H∞ optimal sensitivity theory for SISO feedback systems. IEEE Trans Autom Control 29:9–16CrossRefzbMATHMathSciNetGoogle Scholar
  5. Goodwin GC, Graebe SF, Salgado ME (2001) Control system design. Prentice Hall, New JerseyGoogle Scholar
  6. Horowitz IM, Sidi M (1972) Synthesis of feedback systems with large plant ignorance for prescribed time-domain tolerances. Int J Control 16:287–309CrossRefzbMATHGoogle Scholar
  7. Horowitz IM (1991) Survey of quantitative feedback theory (QFT). Int J Control 53:255–291CrossRefzbMATHMathSciNetGoogle Scholar
  8. Horowitz IM (1993) Quantitative feedback design theory – QFT. QFT Publications, BoulderGoogle Scholar
  9. Kochenburger RJ (1950) A frequency response method for analyzing and synthesizing contactor servomechanisms. Trans AIEE (Am Inst Electr Eng) 69(1):270–284CrossRefGoogle Scholar
  10. Krylov NM, Bogoliubov N (1943) Introduction to nonlinear mechanics. Princeton University Press, Princeton. ISBN 0691079854Google Scholar
  11. Landau ID, Rey D, Karimi A, Voda A, Franco A (1995) A flexible transmission system as a benchmark for digital control. Eur J Control 1(2):77–96CrossRefGoogle Scholar
  12. Lanusse P (1994) De la commande CRONE de 1ère generation à la commande CRONE de 3ème generation. Ph.D. thesis, Université Bordeaux 1Google Scholar
  13. Lanusse P (2010) CRONE control system design, a CRONE toolbox for Matlab. http://www.ims-bordeaux.fr/CRONE/toolbox
  14. Lanusse P, Oustaloup A (2005) Anti-windup system for 1st generation crone controller. In: Ubooks (ed) Fractional differentiation and its applications, vol 3, Systems analysis, implementation and simulation, systems identification and control. Ubooks, Neusäss, pp 191–204Google Scholar
  15. Lanusse P, Oustaloup A, Sabatier J (2007) Robust design of an anti-windup compensated 3rd generation CRONE controller. In: Sabatier J, Agrawal OP, Tenreiro Machado JA (eds) Advances in fractional calculus: theoretical developments and applications in physics and engineering. Springer, Dordrecht, pp 527–542CrossRefGoogle Scholar
  16. Lanusse P, SabatierJ, Oustaloup A (2010) Design of controllers using damping contours defined from closed loop systems based on fractional complex order integrators. In: ASME/IEEE international conference on mechatronic and embedded systems and applications (MESA10), QingDaoGoogle Scholar
  17. Lanusse P, Malti R, Melchior P (2011) CRONE control-system design toolbox for the control engineering community. In: ASME/IEEE international conference on mechatronic and embedded systems and applications, Washington, DCGoogle Scholar
  18. Lanusse P, Oustaloup A, Pommier-Budinger V (2012) Stability of closed-loop fractional-order systems and definition of damping contours for the design of controllers. Int J Bifurcat Chaos 22(4). doi:  10.1142/S0218127412300133
  19. Lanusse P, Malti R, Melchior P (2013) Crone control system design toolbox for the control engineering community: tutorial and a case study. Philos Trans Royal Soc A, 371(1990):20120149. doi:  10.1098/rsta.2012.0149
  20. Maamri N, Trigeassou JC, Tenoutit M (2010) On fractional PI and PID controllers. In: Proceedings of the FDA 2010 IFAC Workshop, BadajozGoogle Scholar
  21. Manabe S (1960) The non-integer integral and its application to control systems. ETJ Japan 6(3/4):83–87Google Scholar
  22. Manabe S (1961) The non integer integral and its application to control systems. ETJ Japan 6(3–4):83–87Google Scholar
  23. Melchior P, Lanusse P, Cois O, Dancla F, Oustaloup A (2002) Crone Toolbox for Matlab: fractional systems toolbox. Tutorial workshop on “fractional calculus applications in automatic control and robotics”. In: 41st IEEE CDC’02, Las VegasGoogle Scholar
  24. Monje CA, Vinagre B, Chen YQ, Feliu V, Lanusse P, Sabatier J (2004) Proposals for fractional PIλDμ tuning. In: Proceedings of the first IFAC symposium on fractional differentiation and its applications (FDA04), BordeauxGoogle Scholar
  25. Monje CA, Chen Y, Vinagre BM, Xue D, Feliu-Batlle V (2010) Fractional-order systems and controls: fundamentals and applications. Springer, London\New YorkCrossRefGoogle Scholar
  26. Nataraj PSV, Tharewal S (2010) On fractional-order QFT controllers. Trans ASME J Dynamic Syst Meas Control 129:212–218Google Scholar
  27. Oustaloup A (1975) Etude et réalisation d’un système d’asservissement d’ordre 3/2 de la fréquence d’un laser à colorant continu. Ph.D. thesis, Université Bordeaux 1, FranceGoogle Scholar
  28. Oustaloup A (1981) Linear feedback control systems of fractional order between 1 and 2. In: The IEEE international symposium on circuits and systems, Chicago, IllinoisGoogle Scholar
  29. Oustaloup A (1983) Systèmes asservis linéaires d’ordre fractionnaire. Ed Masson, ParisGoogle Scholar
  30. Oustaloup A (1991) La commande CRONE. Edition Hermès, PariszbMATHGoogle Scholar
  31. Oustaloup A (1995) La dérivation non entière, théorie, synthèse et applications. Editions Hermès, ParisGoogle Scholar
  32. Oustaloup A, Ballouk A, Lanusse P (1991) Synthesis of a narrow band template based on complex non integer derivation. In: IMACS symposium “modelling and control of technological systems”, LilleGoogle Scholar
  33. Oustaloup A, Lanusse P, Mathieu B (1995) Robust control of SISO plants : the CRONE control. In: ECC’95, RomeGoogle Scholar
  34. Oustaloup A, Sabatier J, Lanusse P (1999) From fractal robustness to the CRONE control. Fractional Calc Appl Anal 2(1):1–30Google Scholar
  35. Oustaloup A, Melchior P, Lanusse P, Cois O, Dancla F (2000) The CRONE toolbox for Matlab. In: IEEE international symposium on computer-aided control system design, AnchorageGoogle Scholar
  36. Oustaloup A, Pommier V, Lanusse P (2003) Design of a fractional control using performance contours – application to an electromechanical system. Fractional Calc Appl Anal Int J Theory Appl 6(1):1–24zbMATHMathSciNetGoogle Scholar
  37. Oustaloup A, Lanusse P, Sabatier J, Melchior P (2013) CRONE control : principles, extensions and applications. J Appl Nonlin Dyn 2(3):207–223. doi: 10.5890/JAND.2013.08.001 CrossRefGoogle Scholar
  38. Petras I (1999) The fractional-order controllers: methods for their synthesis and application. J Electr Eng 50(9–10):284–288Google Scholar
  39. Podlubny I (1999) Fractional-order systems and PIλDμ-controllers. IEEE Trans Autom Control 44(1):208–214CrossRefzbMATHMathSciNetGoogle Scholar
  40. Pommier-Budinger V, Janat Y, Nelson-Gruel D, Lanusse P, Oustaloup A (2008) Fractional robust control with iso-damping property. In: American control conference 2008, SeattleGoogle Scholar
  41. Popov VM (1962). Absolute stability of nonlinear systems of automatic control, Automation and Remote control, (Russian original in 1961), pp 857–875Google Scholar
  42. Tustin A (1958) The design of systems for automatic control of the position of massive object. Proc Inst Electr Eng 105C(1):1–57Google Scholar
  43. Valerio D, Sa da Costa J (2012) An introduction to fractional control. IET Editor, Institution of Engineering and TechnologyGoogle Scholar
  44. Vidyasagar M, Viswanadham N (1982) Algebraic design techniques for realizable stabilisation. IEEE Trans AC 27(5):895–903Google Scholar
  45. Wurmthaler C, Hippe P (1991) Systematic compensator design in the presence of input saturation. In: Proceeding of ECC’91, GrenobleGoogle Scholar
  46. Ygorra S, Cazaurang F, Bergeon B (1996) Anti windup control of stable plants with input saturation. In: Proceeding of CESA’96, LilleGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.IMS Laboratory - CNRS UMR 5218 – Bordeaux INP - Bordeaux University Bat A31 – 351 cours de la LibérationCedex TalenceFrance

Personalised recommendations