Skip to main content

Development of Water Quality Criteria for Toxic Organic Pollutants

  • Chapter
  • First Online:
  • 755 Accesses

Part of the book series: SpringerBriefs in Environmental Science ((BRIEFSENVIRONMENTAL))

Abstract

Nitrobenzene, phenanthrene (PHE), benzo[a]pyrene (BaP), triclosan (TCS), and perfluorooctane sulfonic acid (PFOS) are toxic organic pollutants in water ecosystem. However, there is still rare study on water quality criteria (WQC) in China for them. By gathering published toxicity data and conducting toxicity test of them with Chinese aquatic species, the dataset of these pollutants were obtained. Then, the method of species sensitivity distributions (SSD) developed by United States Environmental Protection Agency (USEPA) was mainly applied to derive criterion maximum concentration (CMC) and criterion continuous concentration (CCC), respectively. For nitrobenzene, CMC and CCC are 0.018 mg/L and 0.001 mg/L, respectively. For PHE, CMC and CCC are 0.0514 mg/L and 0.0186 mg/L, respectively. For BaP, CMC and CCC are 0.73 μg/L and 0.38 μg/L, respectively. For TCS, CMC and CCC are 0.009 mg/L and 0.002 mg/L, respectively; for PFOS, CMC and CCC are 32.24 µg/L and 4.56 µg/L, respectively. Besides, SSD differences between native and non-native species were compared to decide which species are more sensitive to a certain pollutant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aldenberg T, Jaworska JS (2000) Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotoxicol Environ Saf 46:1–18

    CAS  Google Scholar 

  • Allen HE, Hansen DJ (1996) The importance of trace metal speciation to water quality criteria. Water Environ Res 68:42–54

    CAS  Google Scholar 

  • Amorim MJ, Oliveira E, Soares AM, Scott-Fordsmand JJ (2010) Predicted no effect concentration (PNEC) for triclosan to terrestrial species (invertebrates and plants). Environ Int 36:338–343

    CAS  Google Scholar 

  • Ankley GT, Kuehl DW, Kahl MD, Jensen KM, Butterworth BC, Nichols JW (2004) Partial life-cycle toxicity and bioconcentration modeling of perfluorooctanesulfonate in the northern leopard frog (Rana pipiens). Environ Toxicol Chem 23(11):2745–2755

    CAS  Google Scholar 

  • ASTM (1993a) Chronic toxicity of the bromoxynil formulation Buctril to Daphnia magna exposed continuously and intermittently. Arch Environ Contam Toxicol 25:152–159

    Google Scholar 

  • ASTM (1993b) Conducting static acute toxicity test on wastewaters with Daphnia magna. Annual Book of ASTM Standards. American Society of Testing and Materials, Philadelphia, pp 84–4299

    Google Scholar 

  • ASTM (1993c) Standard guide for conducting acute toxicity tests with fishes, macroinvertebrates and amphibians. Annual Book of ASTM Standards. American Society of Testing and Materials, Philadelphia, pp 88–729

    Google Scholar 

  • ASTM (1993d) Standard guide for conducting renewal life-cycle toxicity tests with Daphnia magna. Annual Book of ASTM Standards. American Society of Testing and Materials, Philadelphia, PA, USA, pp 90–1191

    Google Scholar 

  • Augspurger T, Keller AE, Black MC, Cope WG, Dwyer FJ (2003) Water quality guidance for protection of freshwater mussels (Unionidae) from ammonia exposure. Environ Toxicol Chem 22:2569–2575

    CAS  Google Scholar 

  • Beach S, Newsted J, Coady K, Giesy J (2006) Ecotoxicological evaluation of perfluorooctanesulfonate (PFOS). In: Reviews of environmental contamination and toxicology, pp 133–174

    Google Scholar 

  • Benotti M, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA (2008) Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environ Sci Technol 43:597–603

    Google Scholar 

  • Black JA, Birge WJ, Westerman AG, Francis PC (1983) Comparative aquatic toxicology of aromatic hydrocarbons. Fundam Appl Toxicol 3:353–358

    CAS  Google Scholar 

  • Bollman MA, Baune WK, Smith S et al. (1989) Report on algal toxicity tests on selected office of toxic substances (OTS) chemicals (EPA 600/3-90-041). USEPA, Corvallis

    Google Scholar 

  • Bots J, De Bruyn L, Snijkers T, Van den Branden B, Van Gossum H (2010) Exposure to perfluorooctane sulfonic acid (PFOS) adversely affects the life cycle of the damselfly Enallagma cyathigerum. Environ Pollut 158:901–905

    CAS  Google Scholar 

  • Boudreau TM, Sibley P, Mabury S, Muir D, Solomon K (2003a) Laboratory evaluation of the toxicity of perfluorooctane sulfonate (PFOS) on Selenastrum capricornutum, Chlorella vulgaris, Lemna gibba, Daphnia magna, and Daphnia pulicaria. Arch Environ Con Tox 44(3):307–313

    CAS  Google Scholar 

  • Boudreau TM, Wilson CJ, Cheong WJ, Sibley PK, Mabury SA, Muir DCG, Solomon KR (2003b) Response of the zooplankton community and environmental fate of perfluorooctane sulfonic acid in aquatic microcosms. Environ Toxicol Chem 22(11):2739–2745

    CAS  Google Scholar 

  • Bouloubassi I, Saliot A (1991) Composition and sources of dissolved and particulate PAH in surface waters from the Rhone Delta (NW Mediterranean). Mar Pollut Bull 22:588–594

    CAS  Google Scholar 

  • Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: Environmental concentrations and toxicity. Chemosphere 82:1518–1532

    CAS  Google Scholar 

  • Bringmann G, Kuhn R (1959) Comparative water-toxicological investigations on bacteria, algae, and daphnia. Gesundheits-Ingenieur 80(4):115–120

    CAS  Google Scholar 

  • Bringmann G, Kuhn R (1978) Limiting values for the noxious effects of water pollutant material to blue algae (Microcystis aeruginosa) and green algae (Scenedesmus quadricauda) in cell propagation inhibition tests. Vom Wasser 50:45–60

    CAS  Google Scholar 

  • Brooke D, Footitt A, Nwaogu T (2004) Environmental risk evaluation report: Perfluorooctanesulphonate (PFOS). Environment agency, United Kingdom

    Google Scholar 

  • Buccafusco RJ, Ells SJ, LeBlanc GA (1981) Acute toxicity of priority pollutants to bluegill (Lepomis macrochirus). Bull Environ Contam Toxicol 26(4):446–452

    CAS  Google Scholar 

  • Call D, Brooke L, Harting S, Poirier S, McCauley D (1986) Toxicity of phenanthrene to several freshwater species. Center for Lake Superior Environmental Studies. University of Wisconsin, Superior, WI, pp 142–150

    Google Scholar 

  • Callen MS, Lopez JM, Iturmendi A, Mastral AM (2013) Nature and sources of particle associated polycyclic aromatic hydrocarbons (PAH) in the atmospheric environment of an urban area. Environ Pollut 183:166–174

    CAS  Google Scholar 

  • Canton JH, Slooff W, Kool HJ et al (1985) Toxicity, biodegradability and accumulation of a number of Cl/N-containing compounds for classification and establishing water quality criteria. Regul Toxicol Pharmacol 5(2):123–131

    CAS  Google Scholar 

  • Castano A, Cantarino MJ, Castillo P et al (1996) Correlations between the RTG-2 cytotoxicity test EC50 and in vivo LC50 rainbow trout bioassay. Chemosphere 32(11):2141–2157

    CAS  Google Scholar 

  • Chapman PM, McDonald BG, Kickham PE, McKinnon S (2006) Global geographic differences in marine metals toxicity. Mar Pollut Bull 52:1081–1084

    CAS  Google Scholar 

  • Cheung K, Leung H, Kong K, Wong M (2007) Residual levels of DDTs and PAHs in freshwater and marine fish from Hong Kong markets and their health risk assessment. Chemosphere 66:460–468

    CAS  Google Scholar 

  • Ciniglia C, Cascone C, Giudice RL, Pinto G, Pollio A (2005) Application of methods for assessing the geno-and cytotoxicity of Triclosan to C. ehrenbergii. J Hazard Mater 122:227–232

    CAS  Google Scholar 

  • Coogan MA, Edziyie RE, La Point TW, Venables BJ (2007) Algal bioaccumulation of triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater treatment plant receiving stream. Chemosphere 67:1911–1918

    CAS  Google Scholar 

  • CRAES (2006) Research on ecological effects of characteristic pollutant. Assessment report on ecological effects of characteristic pollutant in Songhuajiang River. Chinese Research Academy of Environmental Sciences, Beijing (in Chinese)

    Google Scholar 

  • Crossland N (1985) A method to evaluate effects of toxic chemicals on fish growth. Chemosphere 14:1855–1870

    CAS  Google Scholar 

  • Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Persp 107:907

    CAS  Google Scholar 

  • Davies P, Cook L, Goenarso D (1994) Sublethal responses to pesticides of several species of Australian freshwater fish and crustaceans and rainbow trout. Environ Toxicol Chem 13:1341–1354

    CAS  Google Scholar 

  • Dayan A (2007) Risk assessment of triclosan [Irgasan®] in human breast milk. Food Chem Toxicol 45:125–129

    CAS  Google Scholar 

  • DellaGreca M, Fiorentino A, Isidori M, Monaco P, Temussi F, Zarrelli A (2001) Antialgal furano-diterpenes from Potamogeton natans. Phytochemistry 58:299–304

    CAS  Google Scholar 

  • Deneer JW, van Leeuwenb CJ, Seinena W et al (1989) QSAR study of the toxicity and bioconcentration factor of nitrobenzene derivatives towards Daphnia magna, Chlorella pyrenoidosa and Photobacterium phosphoreum. Aquat Toxicol 15(1):83–98

    CAS  Google Scholar 

  • Desjardins D, Sutherland C, VanHoven R, Krueger H (2001a) PFOS: A 7-d toxicity test with duckweed (Lemna gibba G3). Wildlife International, Ltd. Project

    Google Scholar 

  • Desjardins D, Sutherland C, VanHoven R, Krueger H (2001b) PFOS: A 96-hr toxicity test with the freshwater alga (Anabaena flos-aquae).Wildlife International, Ltd. Project Number 454A-110B, EPA Docket AR226-0186

    Google Scholar 

  • Diamond JM, Klaine SJ, Butcher JB (2006) Implications of pulsed chemical exposures for aquatic life criteria and wastewater permit limits. Environ Sci Technol 40:5132–5138

    CAS  Google Scholar 

  • Dougherty JA, Swarzenski PW, Dinicola RS, Reinhard M (2010) Occurrence of herbicides and pharmaceutical and personal care products in surface water and groundwater around liberty bay, puget sound, Washington. J Environ Qual 39:1173–1180

    CAS  Google Scholar 

  • Drottar K, Krueger H (2000a) PFOS: A 48-hr static acute toxicity test with the cladoceran (Daphnia magna).Wildlife International, Ltd., Project No. 454A-104, EPA Docket AR226-0087

    Google Scholar 

  • Drottar K, Krueger H (2000b) PFOS: A 96-hr static acute toxicity test with the fathead minnow (Pimephales promelas). Wildlife International, Ltd., Project No. 454-102, EPA Docket AR226-0083

    Google Scholar 

  • Drottar K, Krueger H (2000c) PFOS: A 96-hr static acute toxicity test with the freshwater mussel (Unio complanatus). Wildlife International, Ltd., Project No. 454A-105, EPA Docket AR226-0091

    Google Scholar 

  • Drottar K, Krueger H (2000d) PFOS: A 96-hr toxicity test with the freshwater alga (Selenastrum capricornutum). Wildlife International, Ltd., Project Number 454A-103A. EPA Docket AR226-0085

    Google Scholar 

  • Drottar K, Krueger H (2000e) PFOS: A flow through life-cycle toxicity test with the saltwater mysid (Mysidopsis bahia). Wildlife International, Ltd., Project No. 454A-107,EPA Docket AR226-0101

    Google Scholar 

  • Drottar K, Krueger H (2000f) PFOS: A semi-static life-cycle toxicity test with the cladoceran (Daphnia magna). Wildlife International Ltd., Project No. 454A-109, EPA Docket AR226-0099

    Google Scholar 

  • Drottar K, Krueger H (2000g) PFOS: An early life-stage toxicity test with the fathead minnow (Pimephales promelas). Wildlife International, Ltd., Project No. 454-108, EPA Docket AR226-0097

    Google Scholar 

  • Drottar K, VanHoven R, Krueger H (2001) Perfluorooctanesulfonate, potassium salt (PFOS): a flow-through bioconcentration test with the bluegill (Lepomis macrochirus). Wildlife International, Ltd., Project No. 454A-134, EPA Docket AR226-1030a042

    Google Scholar 

  • Dyer S, Belanger S, Carr G (1997) An initial evaluation of the use of Euro/North American fish species for tropical effects assessments. Chemosphere 35:2767–2781

    CAS  Google Scholar 

  • Dyer SD, Versteeg DJ, Belanger SE, Chaney JG, Mayer FL (2006) Interspecies correlation estimates predict protective environmental concentrations. Environ Sci Technol 40:3102–3111

    CAS  Google Scholar 

  • EC (European Commission) (2003) Technical Guidance Document (TGD) on risk assessment in support of Commission Directive 93/67/EEC on risk assessment for new notified substances and Commission Regulation (EC) No 1488/94 on risk assessment for existing substances and Directive 98/8/EC of the European parliament and of the council concerning the placing of biocidal products on the market, Part II, Technical report, European Commission, Brussels, Belgium

    Google Scholar 

  • Evans A, Nipper M (2008) The influence of biomass on the toxicity of hydrophobic organic contaminants. Arch Environ Contam Toxicol 54:219–225

    CAS  Google Scholar 

  • Feng C, Wu F, Dyer S, Chang H, Zhao X (2013) Derivation of freshwater quality criteria for zinc using interspecies correlation estimation models to protect aquatic life in China. Chemosphere 90:1177–1183

    CAS  Google Scholar 

  • Feng C, Wu F, Zhao X, Li H, Chang H (2012) Water quality criteria research and progress. Sci. China Earth Sci. 55:882–891

    CAS  Google Scholar 

  • Frampton GK, Jänsch S, Scott-Fordsmand JJ, Römbke J, Van den Brink PJ (2006) Effects of pesticides on soil invertebrates in laboratory studies: a review and analysis using species sensitivity distributions. Environ Toxicol Chem 25:2480–2489

    CAS  Google Scholar 

  • Franz S, Altenburger R, Heilmeier H, Schmitt-Jansen M (2008) What contributes to the sensitivity of microalgae to triclosan? Aquat Toxicol 90:102–108

    CAS  Google Scholar 

  • Gaikowski MP, Rach JJ, Ramsay RT (1999) Acute toxicity of hydrogen peroxide treatments to selected lifestages of cold-, cool-, and warmwater fish. Aquaculture 178:191–207

    CAS  Google Scholar 

  • Geiger J, Buikema A Jr (1982) Hydrocarbons depress growth and reproduction of Daphnia pulex (Cladocera). Can J Fish Aquat Sci 39:830–836

    CAS  Google Scholar 

  • Giesy JP, Kannan K (2002) Perfluorochemical surfactants in the environment. Environ Sci Technol 36(7):146A–152A

    CAS  Google Scholar 

  • Giesy JP, Naile JE, Khim JS, Jones PD, Newsted JL (2010) Aquatic toxicology of perfluorinated chemicals. In: Reviews of environmental contamination and toxicology, pp 1–52

    Google Scholar 

  • Grimmer G, Jacob J, Dettbarn G, Naujack K-W (1997) Determination of urinary metabolites of polycyclic aromatic hydrocarbons (PAH) for the risk assessment of PAH-exposed workers. Int Arch Occ Env Hea 69:231–239

    CAS  Google Scholar 

  • Hailing-Sorensen B, Nyhohn N, Baun A (1996) Algal toxicity tests with volatile and hazardous compounds in air-tight test flasks with CO2 enriched headspace. Chemosphere 32:1513–1526

    Google Scholar 

  • Hanson M, Sibley P, Brain R, Mabury S, Solomon K (2005) Microcosm evaluation of the toxicity and risk to aquatic macrophytes from perfluorooctane sulfonic acid. Arch Environ Con Tox 48(3):329–337

    CAS  Google Scholar 

  • Hose GC, Van den Brink PJ (2004) Confirming the species-sensitivity distribution concept for endosulfan using laboratory, mesocosm, and field data. Arch Environ Contam Toxicol 47:511–520

    CAS  Google Scholar 

  • Hu J, Yu J, Tanaka S, Fujii S (2011) Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in water environment of Singapore. Water Air Soil Pollut 216(1):179–191

    CAS  Google Scholar 

  • Ishibashi H, Matsumura N, Hirano M, Matsuoka M, Shiratsuchi H, Ishibashi Y, Takao Y, Arizono K (2004) Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquat Toxicol 67:167–179

    CAS  Google Scholar 

  • Ji K, Kim Y, Oh S, Ahn B, Jo H, Choi K (2008) Toxicity of perfluorooctane sulfonic acid and perfluorooctanoic acid on freshwater macroinvertebrates (Daphnia magna and Moina macrocopa) and fish (Oryzias latipes). Environ Toxicol Chem 27(10):2159–2168

    CAS  Google Scholar 

  • Jin X, Zha J, Xu Y, Wang Z, Kumaran SS (2011) Derivation of aquatic predicted no-effect concentration (PNEC) for 2, 4-dichlorophenol: comparing native species data with non-native species data. Chemosphere 84:1506–1511

    CAS  Google Scholar 

  • Jin YH, Liu W, Sato I, Nakayama SF, Sasaki K, Saito N, Tsuda S (2009) PFOS and PFOA in environmental and tap water in China. Chemosphere 77(5):605–611

    CAS  Google Scholar 

  • Juhasz AL, Weber J, Stevenson G, Slee D, Gancarz D, Rofe A, Smith E (2014) In vivo measurement, in vitro estimation and fugacity prediction of PAH bioavailability in post-remediated creosote-contaminated soil. Sci Total Environ 473–474:147–154

    Google Scholar 

  • Kannan K, Tao L, Sinclair E, Pastva SD, Jude DJ, Giesy JP (2005) Perfluorinated compounds in aquatic organisms at various trophic levels in a great lakes food chain. Arch Environ Con Tox 48(4):559–566

    CAS  Google Scholar 

  • Karacık B, Okay O, Henkelmann B, Pfister G, Schramm K-W (2013) Water concentrations of PAH, PCB and OCP by using semipermeable membrane devices and sediments. Mar Pollut Bull 70:258–265

    Google Scholar 

  • Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res 42:3498–3518

    CAS  Google Scholar 

  • Kim JW, Ishibashi H, Yamauchi R, Ichikawa N, Takao Y, Hirano M, Koga M, Arizono K (2009a) Acute toxicity of pharmaceutical and personal care products on freshwater crustacean (Thamnocephalus platyurus) and fish (Oryzias latipes). J Toxicol Sci 34:227–232

    CAS  Google Scholar 

  • Kim JW, Jang HS, Kim JG, Ishibashi H, Hirano M, Nasu K, Ichikawa N, Takao Y, Shinohara R, Arizono K (2009b) Occurrence of pharmaceutical and personal care products (PPCPs) in surface water from Mankyung River, South Korea. J Health Sci 55:249–258

    CAS  Google Scholar 

  • Kolpin D, Furlong E, Meyer M, Thurman EM, Zaugg S, Barber L, Buxton H (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    CAS  Google Scholar 

  • Kuhn R (1988) Schadstoffwirkungen von umweltchemikalien im daphnien-reproduktions-test als grundlage fr die bewertung der umweltgefhrlichkeit in aquatischen sys. Forschungsbericht 10603052, Mrz (OECDG Data File)

    Google Scholar 

  • Kuhn R, Pattard M, Pernak KD et al (1989) Results of the harmful effects of water pollutants to Daphnia magna in the 21 day reproduction test. Water Res 23(4):501–510

    Google Scholar 

  • Kümmerer K (2004) Pharmaceuticals in the environment: sources, fate, effects and risks, Springer, Heidelberg

    Google Scholar 

  • LeBlanc GA (1980) Acute toxicity of priority pollutants to water flea (Daphnia magna). Bull Environ Contam Toxicol 24(5):684–691

    CAS  Google Scholar 

  • Lei BL, Jin XW, Huang SB, Wang ZJ (2009) Discussion of quality criteria for three chlorophenols in Taihu Lake. Asian J Ecotox 4(1):40–49

    Google Scholar 

  • Li MH (2008) Effects of nonionic and ionic surfactants on survival, oxidative stress, and cholinesterase activity of planarian. Chemosphere 70(10):1796–1803

    CAS  Google Scholar 

  • Li MH (2009) Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to plants and aquatic invertebrates. Environ Toxicol 24(1):95–101

    Google Scholar 

  • Li J, Wu DS, Peng F et al (2007) Acute toxicity of nitrobenzol and chlorophenols compounds to goldfish. J Hunan Environ-Biol Polytech 13(4):8–10 (in Chinese)

    CAS  Google Scholar 

  • Liang X, Nie X, Ying G, An T, Li K (2013) Assessment of toxic effects of triclosan on the swordtail fish (Xiphophorus helleri) by a multi-biomarker approach. Chemosphere 90:1281–1288

    CAS  Google Scholar 

  • Liao W (2012) Photolysis of Lamivudine and Triclosan in aqueous solution and toxic assessment of their photolytical products to hydrobiose, Ji Nan University, Taiwan (in Chinese)

    Google Scholar 

  • Liu YN, Fan XM, Kan XW et al (2008) Effect of benzene, phenol and nitrobenzene on Limnodrilus hoffmeisteri acute toxicity and superoxide dismutase activity. Acta Hydrobiol Sinica 32(3):420–423 (in Chinese)

    CAS  Google Scholar 

  • Louati H, Said OB, Soltani A, Got P, Cravo-Laureau C, Duran R, Aissa P, Pringault O, Mahmoudi E (2013) Biostimulation as an attractive technique to reduce phenanthrene toxicity for meiofauna and bacteria in lagoon sediment. Environ Sci Pollut Res 1–10

    Google Scholar 

  • Lu S, Archer MC (2005) Fatty acid synthase is a potential molecular target for the chemoprevention of breast cancer. Carcinogenesis 26:153–157

    CAS  Google Scholar 

  • Lu L, Shen YW (2002) Acute toxicity of phenol, alkyl benzene, nitrobenzene and water sample to sword fish (Xiphophorus helleri) and rare minnow (Gobiocypris rarus). Res Environ Sci 15(4):57–59 (in Chinese)

    Google Scholar 

  • Lussier SM, Kuhn A, Comeleo R (1999) An evaluation of the seven-day toxicity test with Americamysis bahia (formerly Mysidopsis bahia). Environ Toxicol Chem 18:2888–2893

    CAS  Google Scholar 

  • Lv GH, Jin QB, Wang C (2004) Quantitative structure-toxicity relationship for acute toxicity of nitrobenzenes to Daphnia carinata. J Hehai Univ (Nat Sci) 32(4):372–375 (in Chinese)

    Google Scholar 

  • Maas-Diepeveen JL, Leeuwen CJV (1986) Aquatic toxicity of aromatic nitro compounds and anilines to several freshwater species. Report No. 86-42, Laboratory for Ecotoxicology, Institute for Inland Water Management and Waste Water Treatment, 10p (DUT)

    Google Scholar 

  • MacDonald MM, Warne AL, Stock NL, Mabury SA, Solomon KR, Sibley PK (2004) Toxicity of perfluorooctane sulfonic acid and perfluorooctanoic acid to Chironomus tentans. Environ Toxicol Chem 23(9):2116–2123

    CAS  Google Scholar 

  • Mallett M, Grandy N, Lacey R (1997) Interlaboratory comparison of a method to evaluate the effects of chemicals on fish growth, Environ. Toxicol. Chem 16:528–533

    CAS  Google Scholar 

  • McAvoy DC, Schatowitz B, Jacob M, Hauk A, Eckhoff WS (2009) Measurement of triclosan in wastewater treatment systems. Environ Toxicol Chem 21:1323–1329

    Google Scholar 

  • Maltby L, Blake N, Brock T, Van den Brink P (2002) Addressing interspecific variation in sensitivity and the potential to reduce this source of uncertainty in ecotoxicological assessments, DEFRA project code PN0932. Department for Environment, Food and Rural Affairs, London

    Google Scholar 

  • Maltby L, Blake N, Brock T, Van den Brink P (2005) Insecticide species sensitivity distributions: importance of test species selection and relevance to aquatic ecosystems. Environ Toxicol Chem 24:379–388

    CAS  Google Scholar 

  • Meier JR, Snyder S, Sigler V, Altfater D, Gray M, Batin B, Baumann P, Gordon D, Wernsing P, Lazorchak J (2013) An integrated assessment of sediment remediation in a midwestern U.S. stream using sediment chemistry, water quality, bioassessment, and fish biomarkers. Environ Toxicol Chem 32:653–661

    CAS  Google Scholar 

  • Miller D, Marcy M, Berry W, Deacutis C, Lussier S, Kuhn A, Heber M, Schimmel S, Jackim E (1988) The acute toxicity of sewage sludge to marine fish, mysids, and copepods. Oce Proc Mar Pollut 5:103–113

    Google Scholar 

  • Mitra S, Klerks P, Bianchi T, Means J, Carman K (2000) Effects of estuarine organic matter biogeochemistry on the bioaccumulation of PAHs by two epibenthic species. Estuaries 23:864–876

    CAS  Google Scholar 

  • Moermond C, Verbruggen E, Smit C (2010) Environmental risk limits for PFOS. A proposal for water quality standards in accordance with the Water Framework Directive. Rivm report, vol 601714013

    Google Scholar 

  • Moreau C, Klerks P, Haas C (1999) Interaction between phenanthrene and zinc in their toxicity to the sheepshead minnow (Cyprinodon variegatus). Arch Environ Contam Toxicol 37:251–257

    CAS  Google Scholar 

  • Nadal M, Schuhmacher M, Domingo J (2004) Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environ Pollut 132:1–11

    CAS  Google Scholar 

  • Newman MC, Ownby DR, Mezin LC, Powell DC, Christensen TR, Lerberg SB, Anderson BA (2000) Applying species-sensitivity distributions in ecological risk assessment: assumptions of distribution type and sufficient numbers of species. Environ Toxicol Chem 19:508–515

    CAS  Google Scholar 

  • Newton APN, Cadena SMS, Rocha MEM, Carnieri EGS (2005) Martinelli de Oliveira MB, Effect of triclosan (TRN) on energy-linked functions of rat liver mitochondria. Toxicol Lett 160:49–59

    CAS  Google Scholar 

  • OECD (2002) Hazard assessment of perfluorooctane sulfonate (PFOS) and its salts. Environment directorate. Joint meeting of the chemicals committee and the working party on chemicals, pesticides and biotechnology

    Google Scholar 

  • Oliveira M, Ahmad I, Maria V, Pacheco M, Santos M (2010) Monitoring pollution of coastal lagoon using Liza aurata kidney oxidative stress and genetic endpoints: an integrated biomarker approach. Ecotoxicology 19:643–653

    CAS  Google Scholar 

  • Orvos DR, Versteeg DJ, Inauen J, Capdevielle M, Rothenstein A, Cunningham V (2009) Aquatic toxicity of triclosan. Environ Toxicol Chem 21:1338–1349

    Google Scholar 

  • OW/ORD Emerging Contaminants Workgroup (2008) White paper: aquatic life criteria for contaminants of emerging concern. USEPA, Washington

    Google Scholar 

  • Palenske NM, Nallani GC, Dzialowski EM (2010) Physiological effects and bioconcentration of triclosan on amphibian larvae. Comp Biochem Phys C 152:232–240

    Google Scholar 

  • Palmer S, Krueger H (2001) PFOS: a frog embryo teratogenesis assay-Xenopus (FETAX). Wildlife International, Ltd., Project No. 454A-116. EPA Docket AR226-1030a057

    Google Scholar 

  • Palmer S, Van Hoven R, Krueger H (2002) Perfluorooctanesulfonate, potassium salt (PFOS): A 96-hr static acute toxicity test with the rainbow trout (Oncorhynchus mykiss). Wildlife International Ltd. Report No. 454A-145. EPA Docket AR226-1030a044

    Google Scholar 

  • Pan G, Jia C, Zhao D, You C, Chen H, Jiang G (2009) Effect of cationic and anionic surfactants on the sorption and desorption of perfluorooctane sulfonate (PFOS) on natural sediments. Environ Pollut 157(1):325–330

    CAS  Google Scholar 

  • Paul JF, Cormier SM, Berry WJ, Kaufmann PR, Spehar RL, Norton DJ, Cantilli RE, Stevens R, Swietlik WF, Jessup BK (2008) Developing water quality criteria for suspended and bedded sediments. Water Environ Fed 2:1–17

    Google Scholar 

  • Pistocchi A, Loos R (2009) A map of European emissions and concentrations of PFOS and PFOA. Environ Sci Technol 43(24):9237–9244

    CAS  Google Scholar 

  • Price OR, Williams RJ, van Egmond R, Wilkinson MJ, Whelan MJ (2010) Predicting accurate and ecologically relevant regional scale concentrations of triclosan in rivers for use in higher-tier aquatic risk assessments. Environ Int 36:521–526

    CAS  Google Scholar 

  • Qi P, Wang Y, Mu J, Wang J (2011) Aquatic predicted no-effect-concentration derivation for perfluorooctane sulfonic acid. Environ Toxicol Chem 30(4):836–842

    CAS  Google Scholar 

  • Qiao M, Wang C, Huang S, Wang D, Wang Z (2006) Composition, sources, and potential toxicological significance of PAHs in the surface sediments of the Meiliang Bay, Taihu Lake, China. Environ Int 32:28–33

    CAS  Google Scholar 

  • Raimondo S, Mineau P, Barron M (2007) Estimation of chemical toxicity to wildlife species using interspecies correlation models. Environ Sci Technol 41:5888–5894

    CAS  Google Scholar 

  • Ramaswamy BR, Shanmugam G, Velu G, Rengarajan B, Larsson D (2011) GC–MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers. J Hazard Mater 186:1586–1593

    CAS  Google Scholar 

  • Ramos EU, Vaes WHJ, Mayer P et al (1999) Algal growth inhibition of Chlorella pyrenoidosa by polar narcotic pollutants: toxic cell concentrations and QSAR modeling. Aquat Toxicol 46(1):1–10

    CAS  Google Scholar 

  • Ramos EU, Vermeer C, Vaes WHJ et al (1998) Acute toxicity of polar narcotics to three aquatic species (Daphnia magna, Poecilia reticulata and Lymnaea stagnalis) and its relation to hydrophobicity. Chemosphere 37(4):633–650

    CAS  Google Scholar 

  • Ren DK, Su HQ, Liu PY, Wei RG, Qin ZF (2012) Developmental toxicity of perfluorooctane sulfonate (PFOS) and its substitutes to amphibian embryos. Asian J Ecotox 7(5):561–564

    CAS  Google Scholar 

  • Rosal R, Rodea-Palomares I, Boltes K, Fernández-Piñas F, Leganés F, Petre A (2010) Ecotoxicological assessment of surfactants in the aquatic environment: combined toxicity of docusate sodium with chlorinated pollutants. Chemosphere 81(2):288–293

    CAS  Google Scholar 

  • Rossi S, Neff J (1978) Toxicity of polynuclear aromatic hydrocarbons to the polychaete Neanthes arenaceodentata. Mar Pollut Bull 9:220–223

    CAS  Google Scholar 

  • Saito N, Sasaki K, Nakatome K, Harada K, Yoshinaga T, Koizumi A (2003) Perfluorooctane sulfonate concentrations in surface water in Japan. Arch Environ Con Tox 45(2):149–158

    CAS  Google Scholar 

  • Sanderson H, Boudreau TM, Mabury SA, Cheong WJ, Solomon KR (2002) Ecological impact and environmental fate of perfluorooctane sulfonate on the zooplankton community in indoor microcosms. Environ Toxicol Chem 21(7):1490–1496

    CAS  Google Scholar 

  • Sanderson H, Boudreau TM, Mabury SA, Solomon KR (2003) Impact of perfluorooctanoic acid on the structure of the zooplankton community in indoor microcosms. Aquat Toxicol 62(3):227–234

    CAS  Google Scholar 

  • Schafer H, Wenzel A, Fritsche U et al (1993) Long-term effects of selected xenobiotica on freshwater green algae: development of a flow-through test system. Sci Total Environ Ecol, Supplemental Part 1:735–740

    Google Scholar 

  • Skutlarek D, Exner M, Farber H (2006) Perfluorinated surfactants in surface and drinking waters. Environ Sci Pollut R 13(5):299–307

    CAS  Google Scholar 

  • So M, Miyake Y, Yeung W, Ho Y, Taniyasu S, Rostkowski P, Yamashita N, Zhou B, Shi X, Wang J (2007) Perfluorinated compounds in the Pearl River and Yangtze River of China. Chemosphere 68(11):2085–2095

    CAS  Google Scholar 

  • So M, Taniyasu S, Yamashita N, Giesy J, Zheng J, Fang Z, Im S, Lam PKS (2004) Perfluorinated compounds in coastal waters of Hong Kong, South China, and Korea. Environ Sci Technol 38(15):4056–4063

    CAS  Google Scholar 

  • Stevens JB, Coryell A (2007) Surface water quality criterion for perfluorooctane sulfonic acid. STS Project 200604796. Minnesota pollution control agency St. Paul, Minnesota. STS Project 200604796

    Google Scholar 

  • Stringer TJ, Glover CN, Keesing V, Northcott GL, Tremblay LA (2012) Development of a harpacticoid copepod bioassay: selection of species and relative sensitivity to zinc, atrazine and phenanthrene. Ecotoxicol Environ Saf 80:363–371

    CAS  Google Scholar 

  • Su HQ, Ren DH, Cao S, Qin ZF (2012) Acute toxicity of perfluorooctane sulfonate (PFOS) and its substitutes to amphibian tadpoles. Asian J Ecotox 7(5):521–524

    CAS  Google Scholar 

  • Sutherland C, Krueger H (2001) PFOS: A 96-hr toxicity test with the freshwater diatom (Navicula pelliculosa). Wildlife International, Ltd., Project

    Google Scholar 

  • Taniyasu S, Kannan K, Horii Y, Hanari N, Yamashita N (2003) A survey of perfluorooctane sulfonate and related perfluorinated organic compounds in water, fish, birds, and humans from Japan. Environ Sci Technol 37(12):2634–2639

    CAS  Google Scholar 

  • Ternes TA, Joss A, Siegrist H (2004) Peer reviewed: scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environ Sci Technol 38:392–399

    Google Scholar 

  • USEPA (1995) Final water quality guidance for the great lakes system: final rule. Federal register 60: 15366-15425. USEPA, Washington

    Google Scholar 

  • Unger MA, Newman MC, Vadas GG (2007) Predicting survival of grass shrimp (Palaemonetes pugio) during ethylnaphthalene, dimethylnaphthalene, and phenanthrene exposures differing in concentration and duration. Environ Toxicol Chem 26:528–534

    CAS  Google Scholar 

  • USEPA (2003) Developing water quality criteria for suspended and bedded sediments (SABS). (http://water.epa.gov/scitech/swguidance/standards/criteria/aqlife/sediment/upload/2004_08_17_criteria_sediment_sab-discussion-paper.pdf). Assessed on August 2003

  • USEPA (1985) Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses (PB 85-227049). Office of Research and Development, Environmental Research Laboratories, U.S. Environmental Protection Agency, Duluth, Minnesota; Narragansett, Rhode Island; Corvallis, Oregon, USA

    Google Scholar 

  • USEPA (2000) Office of pesticide programs, Pesticide ecotoxicity database (formerly: environmental effects database (EEDB)), Environmental fate and effects division, U.S. Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • USEPA (1978) In-depth studies on health and environmental impacts of selected water pollutants. U.S. Environmental Protection Agency, Duluth

    Google Scholar 

  • USEPA (1980) Ambient water quality criteria for nitrobenzene. U.S. Environmental Protection Agency, Washington

    Google Scholar 

  • USEPA (1994) Interim guidance on determination and use of water-effect ratios for metals. U.S. Environmental Protection Agency, Washington

    Google Scholar 

  • USEPA (2009) National recommended water quality criteria. Office of Water, Office of Science and Technology. U.S. Environmental Protection Agency, Washington

    Google Scholar 

  • Van Gossum H, Bots J, Snijkers T, Meyer J, Van Wassenbergh S, De Coen W, De Bruyn L (2009) Behaviour of damselfly larvae (Enallagma cyathigerum)(Insecta, Odonata) after long-term exposure to PFOS. Environ Pollut 157(4):1332–1336

    Google Scholar 

  • Van Vlaardingen P, Traas T, Wintersen A, Aldenberg T (2004) Etx2. 0. A program to calculate hazardous concentrations and fraction affected, based on normally-distributed toxicity data. RIVM report (and software) 601501028/2004. National Institute for Public Health and the Environment, The Netherlands

    Google Scholar 

  • Van Vlaardingen P, Traas T, Wintersen A, Aldenberg T (2005) ETX 2.0. A program to calculate hazardous concentrations and fraction affected, based on normally distributed toxicity Data

    Google Scholar 

  • Veldhoen N, Skirrow RC, Osachoff H, Wigmore H, Clapson DJ, Gunderson MP, Van Aggelen G, Helbing CC (2006) The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquat Toxicol 80:217–227

    CAS  Google Scholar 

  • Venkatesan AK, Pycke BF, Barber LB, Lee KE, Halden RU (2012) Occurrence of triclosan, triclocarban, and its lesser chlorinated congeners in Minnesota freshwater sediments collected near wastewater treatment plants. J Hazard Mater 229–230:29–35

    Google Scholar 

  • Wang HW, Ma S, Zhang Z, Chen H, Huang Z, Gong XY, Cai WG, Jia X (2012) Effects of perfluorooctane sulfonate (PFOS) exposure on antioxidant enzymes of Perna viridis. Asian J Ecotox 7(5):508–516

    CAS  Google Scholar 

  • Wang L, Ying G, Zhao J, Liu S, Yang B, Zhou L, Tao R, Su H (2011) Assessing estrogenic activity in surface water and sediment of the Liao River system in northeast China using combined chemical and biological tools. Environ Pollut 159:148–156

    CAS  Google Scholar 

  • Wang X, Liu Z, Yan Z, Zhang C, He L, Meng S (2013a) Species sensitivity evaluation of Pseudorasbora parva. Environ. Sci. 34:265–270 (in Chinese)

    Google Scholar 

  • Wang X, Liu Z, Yan Z, Zhang C, Wang W, Zhou J, Pei S (2013b) Development of aquatic life criteria for triclosan and comparison of the sensitivity between native and non-native species. J Hazard Mater 260:1017–1022

    CAS  Google Scholar 

  • Wang XN, Yan ZG, Liu ZT, Zhang C, Wang WL, Li HD (2014a) Comparison of species sensitivity distributions for species from China and the USA. Environ Sci Pollut Res 21:168–176

    Google Scholar 

  • Wang X, Yan Z, Liu Z, Zhang C, Wang W, Li H (2014b) Comparison of species sensitivity distributions for species from China and the USA. Environ Sci Pollut Res 21:168–176

    Google Scholar 

  • Wang H, Shen YW, Lu L et al (2003a) Acute toxicity of typical hazard chemicals to three kinds of aquatic organisms. Chin J Appl Environ Biol 9(1):49–52 (in Chinese)

    CAS  Google Scholar 

  • Wang H, Yang NY, Shen YW et al (2003b) Safety assessment on several organic pollutants of the Haihe River valley. Res Environ Sci, 16(6):35–36, 52 (in Chinese)

    Google Scholar 

  • Wang YF, Lv YX (2004) Assessment of acute toxicity about 13 kinds of nitrobenzol compound by aquatic ecological toxicological assay. J Xinxiang Med Coll 21(6):456–457 (in Chinese)

    CAS  Google Scholar 

  • Wellens H (1982) Comparison of the sensitivity of Brachydanio rerio and Leuciscus idus by testing the fish toxicity of chemicals and wastewaters. Z Wasser Abwasser Forsch 51(2):49–52

    Google Scholar 

  • Wheeler J, Grist E, Leung K, Morritt D, Crane M (2002) Species sensitivity distributions: data and model choice. Mar Pollut Bull 45:192–202

    CAS  Google Scholar 

  • Wu FC, Feng CL, Zhang RQ, Li YS, Du DY (2012) Derivation of water quality criteria for representative water-body pollutants in China. Sci China Earth Sci 42(5):665–672

    Google Scholar 

  • Wu F, Meng W, Zhao X, Li H, Zhang R, Cao Y, Liao H (2010) China embarking on development of its own national water quality criteria system. Environ Sci Technol 44(21):7992–7993

    CAS  Google Scholar 

  • Wu X, Liu R, Li H, Na G, Yao Z, Guan D (2009) Effects of Triclosan on the growth of Chlorella spp. Mar Sci Bull 28:117–120 (in Chinese)

    CAS  Google Scholar 

  • Xia Q, Zhang XH (1990) Manual on water quality standards. China Environmental Science Press, Beijing (in Chinese)

    Google Scholar 

  • Yan Z, Wang H, Wang Y, Zhang Y, Yu R, Zhou J, Leung K, Liu Z (2013) Developing a national water quality criteria system in China. Water Policy 15:936–942

    Google Scholar 

  • Yan Z, Yang N, Wang X, Wang W, Meng S, Liu Z (2012a) Preliminary analysis of species sensitivity distribution based on gene expression effect. Sci China Earth Sci 55:907–913

    CAS  Google Scholar 

  • Yan Z, Zhang Z, Wang H, Liang F, Li J, Liu H, Cheng S, Liang L, Liu Z (2012b) Development of aquatic life criteria for nitrobenzene in China. Environ Pollut 162:86–90

    CAS  Google Scholar 

  • Yang L, Ying G, Su H, Stauber JL, Adams MS, Binet MT (2009) Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata. Environ Toxicol Chem 27:1201–1208

    Google Scholar 

  • Yang L, Zhu L, Liu Z (2011) Occurrence and partition of perfluorinated compounds in water and sediment from Liao River and Taihu Lake, China. Chemosphere 83(6):806–814

    CAS  Google Scholar 

  • Yang S, Yan Z, Xu F, Wang S, Wu F (2012) Development of freshwater aquatic life criteria for Tetrabromobisphenol A in China. Environ Pollut 169:59–63

    CAS  Google Scholar 

  • Yen JH, Lin KH, Wang YS (2002) Acute lethal toxicity of environmental pollutants to aquatic organisms. Ecotox Environ Safe 52(2):113–116

    CAS  Google Scholar 

  • Yin D, Jin H, Yu L, Hu S (2003) Deriving freshwater quality criteria for 2, 4-dichlorophenol for protection of aquatic life in China. Environ Pollut 122:217–222

    CAS  Google Scholar 

  • Yoshioka Y, Ose Y, Sato T (1986) Correlation of the five test methods to assess chemical toxicity and relation to physical properties. Ecotox Environ Safe 12(1):15–21

    CAS  Google Scholar 

  • Yu N, Shi W, Zhang B, Su G, Feng J, Zhang X, Wei S, Yu H (2013) Occurrence of perfluoroalkyl acids including perfluorooctane sulfonate isomers in Huai river basin and Taihu lake in Jiangsu province, China. Environ Sci Technol 47(2):710–717

    CAS  Google Scholar 

  • Zhang H, Pan L, Tao Y (2014) Toxicity assessment of environmental pollutant phenanthrene in clam Venerupis philippinarum using oxidative stress biomarkers. Environ Toxicol Pharmacol 37:697–704

    CAS  Google Scholar 

  • Zhang X, Qin H, Su L, Qin W, Zou M, Sheng L, Zhao Y, Abraham M (2010) Interspecies correlations of toxicity to eight aquatic organisms: theoretical considerations. Sci Total Environ 408:4549–4555

    CAS  Google Scholar 

  • Zhao J, Ying G, Liu Y, Chen F, Yang J, Wang L (2010) Occurrence and risks of triclosan and triclocarban in the Pearl River system, South China: from source to the receiving environment. J Hazard Mater 179:215–222

    CAS  Google Scholar 

  • Zhao J, Ying G, Wang L, Yang J, Yang X, Yang L, Li X (2009) Determination of phenolic endocrine disrupting chemicals and acidic pharmaceuticals in surface water of the Pearl Rivers in South China by gas chromatography-negative chemical ionization-mass spectrometry. Sci Total Environ 407:962–974

    CAS  Google Scholar 

  • Zhou QF, Fu JJ, Meng HZ et al (2007) Subchronic toxicological effects of aquatic nitrobenzene on Medaka and Chinese rare minnow. Sci China, Ser B: Chem 50(5):707–717

    CAS  Google Scholar 

  • Zhu XY, Deng FX (2006) The toxicity, degradation and adsorption of nitrobenzene in Euglena gracilis. Huazhong Norm Univ J Postgrad 13(1):156–158 (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenguang Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Yan, Z., Wu, Jy., Wang, Xn., Zhang, Yh. (2015). Development of Water Quality Criteria for Toxic Organic Pollutants. In: Yan, Z., Liu, Z. (eds) Toxic Pollutants in China. SpringerBriefs in Environmental Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9795-5_1

Download citation

Publish with us

Policies and ethics