Skip to main content

FOXP3+ Treg Cells and Systems Biology Approaches to Studying Their Function

  • Chapter
Single Cell Sequencing and Systems Immunology

Abstract

Regulatory T (Treg) cells play a key role in immunological homeostasis in health and disease. The molecular mechanisms underlying the differentiation, maintenance and function of Treg cells remains largely unclear. However, recent studies have shown that Treg development is not simply controlled by a series of linear signaling pathways, but rather a complex and dynamic regulatory network. This section provides an overview of the applications of systems biological tools in the Treg field. These approaches have brought to the field new insights into the complexities of Treg biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akdis CA, Blaser K. Mechanisms of interleukin-10-mediated immune suppression. Immunology. 2001;103(2):131–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Akdis M, et al. Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J Exp Med. 2004;199(11):1567–75.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Angel TE, et al. Mass spectrometry-based proteomics: existing capabilities and future directions. Chem Soc Rev. 2012;41(10):3912–28.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Asano M, et al. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med. 1996;184(2):387–96.

    Article  PubMed  CAS  Google Scholar 

  • Atibalentja DF, Byersdorfer CA, Unanue ER. Thymus-blood protein interactions are highly effective in negative selection and regulatory T cell induction. J Immunol. 2009;183(12): 7909–18.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bacchetta R, et al. High levels of interleukin 10 production in vivo are associated with tolerance in SCID patients transplanted with HLA mismatched hematopoietic stem cells. J Exp Med. 1994;179(2):493–502.

    Article  PubMed  CAS  Google Scholar 

  • Basu A, et al. Proteome-wide prediction of acetylation substrates. Proc Natl Acad Sci U S A. 2009;106(33):13785–90.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bennett CL, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27(1):20–1.

    Article  PubMed  CAS  Google Scholar 

  • Bettelli E, et al. Reciprocal developmental pathways for the generation of pathogenic effector T(H)17 and regulatory T cells. Nature. 2006;441(7090):235–8.

    Article  PubMed  CAS  Google Scholar 

  • Beyer M, et al. Repression of the genome organizer SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation. Nat Immunol. 2011;12(9):898–907.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bilate AM, Lafaille JJ. Induced CD4+ Foxp3+ regulatory T cells in immune tolerance. Annu Rev Immunol. 2012;30:733–58.

    Article  PubMed  CAS  Google Scholar 

  • Birzele F, et al. Next-generation insights into regulatory T cells: expression profiling and FoxP3 occupancy in human. Nucleic Acids Res. 2011;39(18):7946–60.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bokinsky G, et al. Single-molecule transition-state analysis of RNA folding. Proc Natl Acad Sci U S A. 2003;100(16):9302–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bruder D, et al. Neuropilin-1: a surface marker of regulatory T cells. Eur J Immunol. 2004;34(3):623–30.

    Article  PubMed  CAS  Google Scholar 

  • Brunkow ME, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet. 2001;27(1):68–73.

    Article  PubMed  CAS  Google Scholar 

  • Burchill MA, et al. IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol. 2007;178(1):280–90.

    Article  PubMed  CAS  Google Scholar 

  • Carrier Y, et al. Th3 cells in peripheral tolerance. II. TGF-beta-transgenic Th3 cells rescue IL-2-deficient mice from autoimmunity. J Immunol. 2007a;178(1):172–8.

    Article  PubMed  CAS  Google Scholar 

  • Carrier Y, et al. Th3 cells in peripheral tolerance. I. Induction of Foxp3-positive regulatory T cells by Th3 cells derived from TGF-beta T cell-transgenic mice. J Immunol. 2007b;178(1):179–85.

    Article  PubMed  CAS  Google Scholar 

  • Charbonnier LM, et al. Immature dendritic cells suppress collagen-induced arthritis by in vivo expansion of CD49b+ regulatory T cells. J Immunol. 2006;177(6):3806–13.

    Article  PubMed  CAS  Google Scholar 

  • Chen YH, et al. Regulatory T-cell clones induced by oral tolerance – suppression of autoimmune encephalomyelitis. Science. 1994;265(5176):1237–40.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol Cell Proteomics. 2007;6(5):812–19.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen Z, Barbi J, Bu S, Yang HY, Li Z, Gao Y, et al. The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity. 2013;39(2):272–85.

    Google Scholar 

  • Dang EV, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell. 2011;146(5):772–84.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • DeBerardinis RJ, et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11–20.

    Article  PubMed  CAS  Google Scholar 

  • De Rosa V, et al. A key role of leptin in the control of regulatory T cell proliferation. Immunity. 2007;26(2):241–55.

    Article  PubMed  CAS  Google Scholar 

  • Feuerer M, et al. Enhanced thymic selection of FoxP3+ regulatory T cells in the NOD mouse model of autoimmune diabetes. Proc Natl Acad Sci U S A. 2007;104(46):18181–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Feuerer M, et al. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat Immunol. 2009;10(7):689–95.

    Article  PubMed  CAS  Google Scholar 

  • Floess S, et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 2007;5(2):169–78.

    Article  CAS  Google Scholar 

  • Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol. 2003;4(4):330–6.

    Article  PubMed  CAS  Google Scholar 

  • Fontenot JD, et al. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol. 2005;6(11):1142–51.

    Article  PubMed  CAS  Google Scholar 

  • Fu W, et al. A multiply redundant genetic switch ‘locks in’ the transcriptional signature of regulatory T cells. Nat Immunol. 2012;13(10):972–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fukaura H, et al. Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-beta 1-secreting Th3 T cells by oral administration of myelin in multiple sclerosis patients. J Clin Investig. 1996;98(1):70–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gavin MA, et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development (vol 103, pp. 6659, 2006). Proc Natl Acad Sci U S A. 2006;103(24):9373.

    Article  CAS  Google Scholar 

  • Gao Y, Lin F, Xu P, Nie J, Chen Z, Su J, et al. USP22 is a positive regulator of NFATc2 on promoting IL2 expression. FEBS Lett. 2014;588(6):878–83.

    Google Scholar 

  • Gerriets VA, Rathmell JC. Metabolic pathways in T cell fate and function. Trends Immunol. 2012;33(4):168–73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gronborg M, et al. A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identification of a novel protein, Frigg, as a protein kinase A substrate. Mol Cell Proteomics. 2002;1(7):517–27.

    Article  PubMed  CAS  Google Scholar 

  • Groux H, et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature. 1997;389(6652):737–42.

    Article  PubMed  CAS  Google Scholar 

  • Haringer B, et al. Identification and characterization of IL-10/IFN-gamma-producing effector-like T cells with regulatory function in human blood. J Exp Med. 2009;206(5):1009–17.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hinterberger M, Wirnsberger G, Klein L. B7/CD28 in central tolerance: costimulation promotes maturation of regulatory T cell precursors and prevents their clonal deletion. Front Immunol. 2011;2:30.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hori S. Developmental plasticity of Foxp3(+) regulatory T cells. Curr Opin Immunol. 2010;22(5):575–82.

    Article  PubMed  CAS  Google Scholar 

  • Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299(5609):1057–61.

    Article  PubMed  CAS  Google Scholar 

  • Horwitz DA, Zheng SG, Gray JD. Natural and TGF-beta-induced Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror images of each other. Trends Immunol. 2008;29(9):429–35.

    Article  PubMed  CAS  Google Scholar 

  • Jana S, et al. The role of NF-kappaB and Smad3 in TGF-beta-mediated Foxp3 expression. Eur J Immunol. 2009;39(9):2571–83.

    Article  PubMed  CAS  Google Scholar 

  • Jeron A, et al. ChIP-on-chip analysis identifies IL-22 as direct target gene of ectopically expressed FOXP3 transcription factor in human T cells. BMC Genomics. 2012;13:705.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jiang H, Chess L. The specific regulation of immune responses by CD8+ T cells restricted by the MHC class Ib molecule, Qa-1. Annu Rev Immunol. 2000;18:185–216.

    Article  PubMed  CAS  Google Scholar 

  • Jin JO, Han X, Yu Q. Interleukin-6 induces the generation of IL-10-producing Tr1 cells and suppresses autoimmune tissue inflammation. J Autoimmun. 2013;40:28–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jonuleit H, Schmitt E. The regulatory T cell family: distinct subsets and their interrelations. J Immunol. 2003;171(12):6323–7.

    Article  PubMed  CAS  Google Scholar 

  • Jordan MS, et al. Thymic selection of CD4+ CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol. 2001;2(4):301–6.

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Cantor H. Regulation of self-tolerance by Qa-1-restricted CD8(+) regulatory T cells. Semin Immunol. 2011;23(6):446–52.

    Article  PubMed  CAS  Google Scholar 

  • Kretschmer K, et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol. 2005;6(12):1219–27.

    Article  PubMed  CAS  Google Scholar 

  • Kuchen S, et al. Regulation of microRNA expression and abundance during lymphopoiesis. Immunity. 2010;32(6):828–39.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Levings MK, et al. Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+ CD4+ Tr cells. Blood. 2005;105(3):1162–9.

    Article  PubMed  CAS  Google Scholar 

  • Li B, et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc Natl Acad Sci U S A. 2007;104(11):4571–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li D, et al. T cell metabolism in autoimmune diseases. In: Chan J (ed) Autoimmune diseases – contributing factors, specific cases of autoimmune diseases, and stem cell and other therapies. InTech; 2012., 402pp. doi:10.5772/2896, ISBN 978-953-51-0693-7

    Google Scholar 

  • Liang G, et al. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol. 2002;22(2):480–91.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lu L, et al. All-trans retinoic acid promotes TGF-beta-induced Tregs via histone modification but not DNA demethylation on Foxp3 gene locus. PLoS ONE. 2011;6(9):e24590.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Magnani CF, et al. Killing of myeloid APCs via HLA class I, CD2 and CD226 defines a novel mechanism of suppression by human Tr1 cells. Eur J Immunol. 2011;41(6):1652–62.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mahic M, et al. Generation of highly suppressive adaptive CD8(+)CD25(+)FOXP3(+) regulatory T cells by continuous antigen stimulation. Eur J Immunol. 2008;38(3):640–6.

    Article  PubMed  CAS  Google Scholar 

  • Mardis ER. ChIP-seq: welcome to the new frontier. Nat Methods. 2007;4(8):613–14.

    Article  PubMed  CAS  Google Scholar 

  • McKenna KC, Previte DM. Influence of CD8+ T regulatory cells on intraocular tumor development. Front Immunol. 2012;3:303.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Michalek RD, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011;186(6):3299–303.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Miyara M, Sakaguchi S. Natural regulatory T cells: mechanisms of suppression. Trends Mol Med. 2007;13(3):108–16.

    Article  PubMed  CAS  Google Scholar 

  • Mosser DM, Zhang X. Interleukin-10: new perspectives on an old cytokine. Immunol Rev. 2008;226:205–18.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mrowka R, Patzak A, Herzel H. Is there a bias in proteome research? Genome Res. 2001;11(12):1971–3.

    Article  PubMed  CAS  Google Scholar 

  • Okamura T, et al. CD4+ CD25-LAG3+ regulatory T cells controlled by the transcription factor Egr-2. Proc Natl Acad Sci U S A. 2009;106(33):13974–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Oldenhove G, et al. Decrease of Foxp3(+) Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity. 2009;31(5):772–86.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ono M, et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature. 2007;446(7136):685–9.

    Article  PubMed  CAS  Google Scholar 

  • Ouyang W, et al. Novel Foxo1-dependent transcriptional programs control T(reg) cell function. Nature. 2012;491(7425):554–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Passerini L, et al. Functional type 1 regulatory T cells develop regardless of FOXP3 mutations in patients with IPEX syndrome. Eur J Immunol. 2011;41(4):1120–31.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pot C, et al. Induction of regulatory Tr1 cells and inhibition of T(H)17 cells by IL-27. Semin Immunol. 2011;23(6):438–45.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ramsdell F. Foxp3 and natural regulatory T cells: key to a cell lineage? Immunity. 2003;19(2):165–8.

    Article  PubMed  CAS  Google Scholar 

  • Ratushny V, Golemis E. Resolving the network of cell signaling pathways using the evolving yeast two-hybrid system. Biotechniques. 2008;44(5):655–62.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rifa’i M, et al. Essential roles of CD8+ CD122+ regulatory T cells in the maintenance of T cell homeostasis. J Exp Med. 2004;200(9):1123–34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rouas R, et al. Human natural Treg microRNA signature: role of microRNA-31 and microRNA-21 in FOXP3 expression. Eur J Immunol. 2009;39(6):1608–18.

    Article  PubMed  CAS  Google Scholar 

  • Rubtsov YP, et al. Stability of the regulatory T cell lineage in vivo. Science. 2010;329(5999):1667–71.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rudra D, et al. Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat Immunol. 2012;13(10):1010–19.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rust MJ, et al. Assembly of endocytic machinery around individual influenza viruses during viral entry. Nat Struct Mol Biol. 2004;11(6):567–73.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sadlon TJ, et al. Genome-wide identification of human FOXP3 target genes in natural regulatory T cells. J Immunol. 2010;185(2):1071–81.

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531–62.

    Article  PubMed  CAS  Google Scholar 

  • Samanta A, et al. TGF-beta and IL-6 signals modulate chromatin binding and promoter occupancy by acetylated FOXP3. Proc Natl Acad Sci U S A. 2008;105(37):14023–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schmidt A, Oberle N, Krammer PH. Molecular mechanisms of treg-mediated T cell suppression. Front Immunol. 2012;3:51.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shevach EM, et al. Role of TGF-Beta in the induction of Foxp3 expression and T regulatory cell function. J Clin Immunol. 2008;28(6):640–6.

    Article  PubMed  CAS  Google Scholar 

  • Shi LZ, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med. 2011;208(7):1367–76.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Thornton AM, et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol. 2010;184(7):3433–41.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tone Y, et al. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol. 2008;9(2):194–202.

    Article  PubMed  CAS  Google Scholar 

  • Tsun A, Chen Z, Li B. Romance of the three kingdoms: RORgammat allies with HIF1alpha against FoxP3 in regulating T cell metabolism and differentiation. Protein Cell. 2011;2(10):778–81.

    Article  PubMed  CAS  Google Scholar 

  • Vang KB, et al. Cutting edge: CD28 and c-Rel-dependent pathways initiate regulatory T cell development. J Immunol. 2010;184(8):4074–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vieira PL, et al. IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4(+)CD25(+) regulatory T cells. J Immunol. 2004;172(10):5986–93.

    Article  PubMed  CAS  Google Scholar 

  • Vlad G, et al. Immunoglobulin-like transcript 3-Fc suppresses T-cell responses to allogeneic human islet transplants in hu-NOD/SCID mice. Diabetes. 2008;57(7):1878–86.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang ET, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456(7221):470–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang Y, Su MA, Wan YY. An essential role of the transcription factor GATA-3 for the function of regulatory T cells. Immunity. 2011;35(3):337–48.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Weiss JM, et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J Exp Med. 2012;209(10):1723–42, S1.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wildin RS, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet. 2001;27(1):18–20.

    Article  PubMed  CAS  Google Scholar 

  • Wohlfert EA, et al. GATA3 controls Foxp3(+) regulatory T cell fate during inflammation in mice. J Clin Investig. 2011;121(11):4503–15.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xie XS, Dunn RC. Probing single-molecule dynamics. Science. 1994;265(5170):361–4.

    Article  PubMed  CAS  Google Scholar 

  • Xystrakis E, et al. Identification of a novel natural regulatory CD8 T-cell subset and analysis of its mechanism of regulation. Blood. 2004;104(10):3294–301.

    Article  PubMed  CAS  Google Scholar 

  • Yadav M, et al. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J Exp Med. 2012;209(10):1713–22, S1–19.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zabransky DJ, et al. Phenotypic and functional properties of Helios+ regulatory T cells. PLoS ONE. 2012;7(3):e34547.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang Y, et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 2008;9(9):R137.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang J, et al. Identification of the E3 deubiquitinase USP21 as a positive regulator of GATA3. J Biol Chem. 2013;288(13):9373–82.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zheng SG, et al. IL-2 is essential for TGF-beta to convert naive CD4(+)CD25(−) cells to CD25(+)Foxp3(+) regulatory T cells and for expansion of these cells. J Immunol. 2007;178(4):2018–27.

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature. 2010;463(7282):808–12.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhou L, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing ROR gamma t function. Nature. 2008;453(7192):236-U14.

    Article  CAS  Google Scholar 

  • Zhou X, et al. Cutting edge: all-trans retinoic acid sustains the stability and function of natural regulatory T cells in an inflammatory milieu. J Immunol. 2010;185(5):2675–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miranda Piccioni Ph.D. or Bin Li Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Luo, X. et al. (2015). FOXP3+ Treg Cells and Systems Biology Approaches to Studying Their Function. In: Wang, X. (eds) Single Cell Sequencing and Systems Immunology. Translational Bioinformatics, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9753-5_6

Download citation

Publish with us

Policies and ethics