Skip to main content

Part of the book series: Translational Bioinformatics ((TRBIO,volume 5))

  • 2691 Accesses

Abstract

Only a small fraction (estimated to be less than 1 %) of microbial species on Earth can be cultivated in the laboratory; thus, the standard microbial research methods based on pure culture isolation and observation can provide only very limited information about an environmental microbial community. The development and successful application of microbial small sub-unit ribosomal RNA (16S rRNA) gene PCR analysis has greatly expanded our knowledge of the diversity and phylogeny of microorganisms. Novel, yet-uncultivated microorganisms have been continually discovered by the 16S rRNA gene approach, revealing an “uncultured microbial majority”, which is estimated to comprise 40–50 as yet-uncultivated candidate phyla of bacteria and a similar number of as-yet uncultivated major lineages of archaea (Rappé and Giovannoni 2003). In an allusion to astrophysics that highlights its importance, the “uncultured microbial majority” has been called “biological dark matter” or “microbial dark matter” (Marcy et al. 2007). Recent achievements in metagenomics (genomic sequences from the entire environmental community) and single-cell genomics are now opening the window to observation and analysis of this “biological dark matter”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baner J, Nilsson M, Mendel-Hartvig M, Landegren U. Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res. 1998;26(22):5073–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clingenpeel S, Schwientek P, Hugenholtz P, Woyke T. Effects of sample treatments on genome recovery via single-cell genomics. ISME J. 2014;8(12):2546–9.

    Article  CAS  PubMed  Google Scholar 

  • Dholakia K, Reece P. Optical micromanipulation takes hold. Nano Today. 2006;1(1):18–27.

    Article  Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth’s biogeochemical cycles. Science. 2008;320(5879):1034–9.

    Article  CAS  PubMed  Google Scholar 

  • Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HT, Lee W, et al. Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem. 2010;397(8):3249–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haefner B. Drugs from the deep: marine natural products as drug candidates. Drug Discov Today. 2003;8(12):536–44.

    Article  CAS  PubMed  Google Scholar 

  • Huber R, Burggraf S, Mayer T, Barns SM, Rossnagel P, Stetter KO. Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature. 1995;376(6535):57–8.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Zhang X, Deka R, Jin L. Genome amplification of single sperm using multiple displacement amplification. Nucleic Acids Res. 2005;33(10):e91.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science. 2014;344(6182):416–20.

    Article  CAS  PubMed  Google Scholar 

  • Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet. 1998;19(3):225–32.

    Article  CAS  PubMed  Google Scholar 

  • Lloyd KG, Schreiber L, Petersen DG, Kjeldsen KU, Lever MA, Steen AD, et al. Predominant archaea in marine sediments degrade detrital proteins. Nature. 2013;496(7444):215–18.

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Zong C, Fan W, Yang M, Li J, Chapman AR, et al. Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science. 2012;338(6114):1627–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marcy Y, Ouverney C, Bik EM, Losekann T, Ivanova N, Martin HG, et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci U S A. 2007;104(29):11889–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McLean JS, Lombardo MJ, Ziegler MG, Novotny M, Yee-Greenbaum J, Badger JH, et al. Genome of the pathogen Porphyromonas gingivalis recovered from a biofilm in a hospital sink using a high-throughput single-cell genomics platform. Genome Res. 2013a;23(5):867–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McLean JS, Lombardo MJ, Badger JH, Edlund A, Novotny M, Yee-Greenbaum J, et al. Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. Proc Natl Acad Sci U S A. 2013b;110(26):E2390–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meng J, Xu J, Qin D, He Y, Xiao X, Wang F. Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J. 2014;8(3):650–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472(7341):90–4.

    Article  CAS  PubMed  Google Scholar 

  • Orba Y, Tanaka S, Nishihara H, Kawamura N, Itoh T, Shimizu M, et al. Application of laser capture microdissection to cytologic specimens for the detection of immunoglobulin heavy chain gene rearrangement in patients with malignant lymphoma. Cancer. 2003;99(4):198–204.

    Article  PubMed  Google Scholar 

  • Rappé MS, Giovannoni SJ. The uncultured microbial majority. Annu Rev Microbiol. 2003;57(1):369–94.

    Article  PubMed  Google Scholar 

  • Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499(7459):431–7.

    Article  CAS  PubMed  Google Scholar 

  • Schutze K, Posl H, Lahr G. Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine. Cell Mol Biol (Noisy-le-grand). 1998;44(5):735–46.

    CAS  Google Scholar 

  • Spits C, Le Caignec C, De Rycke M, Van Haute L, Van Steirteghem A, Liebaers I, et al. Whole-genome multiple displacement amplification from single cells. Nat Protoc. 2006;1(4):1965–70.

    Article  CAS  PubMed  Google Scholar 

  • Thalhammer S, Langer S, Speicher MR, Heckl WM, Geigl JB. Generation of chromosome painting probes from single chromosomes by laser microdissection and linker-adaptor PCR. Chromosome Res. 2004;12(4):337–43.

    Article  CAS  PubMed  Google Scholar 

  • Tindall KR, Kunkel TA. Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry. 1988;27(16):6008–13.

    Article  CAS  PubMed  Google Scholar 

  • Trogan E, Choudhury RP, Dansky HM, Rong JX, Breslow JL, Fisher EA. Laser capture microdissection analysis of gene expression in macrophages from atherosclerotic lesions of apolipoprotein E-deficient mice. Proc Natl Acad Sci U S A. 2002;99(4):2234–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett C, Knight R, Gordon JI. The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature. 2007;449(7164):804–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang F-P, Zhang Y, Chen Y, He Y, Qi J, Hinrichs K-U, et al. Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways. ISME J. 2014;8(5):1069–78.

    Article  CAS  PubMed  Google Scholar 

  • Woyke T, Tighe D, Mavromatis K, Clum A, Copeland A, Schackwitz W, et al. One bacterial cell, one complete genome. PLoS ONE. 2010;5(4):e10314.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yu ZT, Aw Yong KM, Fu J. Microfluidic blood cell sorting: now and beyond. Small (Weinheim an der Bergstrasse, Germany). 2014;10(9):1687–703.

    Article  CAS  Google Scholar 

  • Zhang K, Martiny AC, Reppas NB, Barry KW, Malek J, Chisholm SW, et al. Sequencing genomes from single cells by polymerase cloning. Nat Biotechnol. 2006;24(6):680–6.

    Article  CAS  PubMed  Google Scholar 

  • Zong C, Lu S, Chapman AR, Xie XS. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science. 2012;338(6114):1622–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Natural Science Foundation of China (NSFC, grant No. 91228201, 31290232), National High Technology Research and Development Program of China (Grant No. 2012AA092103-2) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengping Wang Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, Y., Wang, F. (2015). Single-Cell Sequencing of Microorganisms. In: Wang, X. (eds) Single Cell Sequencing and Systems Immunology. Translational Bioinformatics, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9753-5_3

Download citation

Publish with us

Policies and ethics