Skip to main content

Abiotic Resource Use

  • Chapter
Life Cycle Impact Assessment

Abstract

Abiotic resource use in life cycle assessment (LCA) deals with the environmental concerns due to the use of resources such as metals, minerals, fossil energy, nuclear energy, atmospheric resources (e.g. argon), and flow energy resources (e.g. wind energy). Land and water may also be considered as abiotic resources, but these are dealt with elsewhere in the book series in dedicated chapters (Chap. 11 Land use by Llorenç Milà i Canals and Laura de Baan and Chap. 12 Water use by Stephan Pfister). Methods that evaluate ‘abiotic resource use’ in LCA were divided in three categories: (1) Resource accounting methods, which are methods that account for the overall natural resource use along the life cycle of a product; (2) Resource depletion methods at the midpoint level, which are methods that address the scarcity of resources (and therefore damage to the area of protection Resources), but at a midpoint level; and (3) Resource depletion methods at the endpoint level, which are methods that address the scarcity of resources at an endpoint level. Numerous methods are presented in this chapter, with different concepts and approaches. However, several gaps still exist in the evaluation of abiotic resource use in LCA, and more research is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Chap. 12, Water use, by Stephan Pfister and Chap. 11, Land use, by Llorenç Milà i Canals and Laura de Baan.

References

  • Ahbe S, Braunschweig A, Müller-Wenk R (1990) Methodik für Ökobilanzen auf der Basis ökologischer Optimierung. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern

    Google Scholar 

  • Alvarenga RAF, Dewulf J, Langenhove HV, Huijbregts MAJ (2013) Exergy-based accounting for land as a natural resource in life cycle assessment. Int J Life Cycle Assess 18:939–947

    Article  Google Scholar 

  • Baral A, Bakshi BR (2010) Thermodynamic metrics for aggregation of natural resources in life cycle analysis: insight via application to some transportation fuels. Environ Sci Technol 44:800–807

    Article  CAS  Google Scholar 

  • Baral A, Bakshi BR, Smith RL (2012) Assessing resource intensity and renewability of cellulosic ethanol technologies using eco-LCA. Environ Sci Technol 46:2436–2444

    Article  CAS  Google Scholar 

  • Baumann H, Rydberg T (1994) Life cycle assessment: a comparison of three methods for impact analysis and evaluation. J Clean Prod 2:13–20

    Article  Google Scholar 

  • Bösch M, Hellweg S, Huijbregts M, Frischknecht R (2007) Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. Int J Life Cycle Assess 12:181–190

    Article  Google Scholar 

  • Boustead I, Hancock GF (1979) Handbook of industrial energy analysis. Wiley, New York

    Google Scholar 

  • Brand G, Scheidegger A, Schwank O, Braunschweig A (1998) Bewertung in Ökobilanzen mit der Methode der ökologischen Knappheit – Ökofaktoren 1997. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern

    Google Scholar 

  • Brandão M, Milài Canals L (2012) Global characterisation factors to assess landuse impacts on biotic production. Int J Life Cycle Assess 18(6):1243–1252

    Article  Google Scholar 

  • Chapman PF, Roberts F (1983) Metal resources and energy. Butterworths, Kent

    Google Scholar 

  • Dewulf J, Bosch ME, Meester BD, Van der Vorst GV, Van Langenhove H, Hellweg S, Huijbregts MAJ (2007) Cumulative exergy extraction from the natural environment (CEENE): a comprehensive life cycle impact assessment method for resource accounting. Environ Sci Technol 41:8477–8483

    Article  CAS  Google Scholar 

  • Dewulf J, Van Langenhove H, Muys B, Bruers S, Bakshi BR, Grubb GF, Paulus DM, Sciubba E (2008) Exergy: its potential and limitations in environmental science and technology. Environ Sci Technol 42:2221–2232

    Article  CAS  Google Scholar 

  • ecoinvent (2010) ecoinvent data v2.2. ecoinvent reports No.1-25. Swiss Centre for Life Cycle Inventories, Dübendorf

    Google Scholar 

  • EPA (2014) United States Environmental Protection Agency. Natural resources. Teacher fact sheet. http://www.epa.gov/osw/education/quest/pdfs/unit1/chap1/u1_natresources.pdf

  • European Commission (2011) International Reference Life Cycle Data System (ILCD) handbook- recommendations for life cycle impact assessment in the European context, 1st edn. European Commission – Joint Research Centre – Institute for Environment and Sustainability, Luxemburg

    Google Scholar 

  • Ewing B, Reed A, Galli A, Kitzes J, Wachernagel M (2010) Calculation methodology for the national footprint accounts. Global Footprint Network, Oakland

    Google Scholar 

  • Finnveden G (1996) Resources and related impact categories – part II. In: Udo de Haes HA (ed) Towards a methodology for life cycle impact assessment. SETAC-Europe, Brussels

    Google Scholar 

  • Finnveden G (2005) The resource debate needs to continue. Int J Life Cycle Assess 10:372

    Article  Google Scholar 

  • Finnveden G, Moberg Å (2005) Environmental systems analysis tools: an overview. J Clean Prod 13(12):1165–1173

    Article  Google Scholar 

  • Frischknecht R, Steiner R, Jungbluth N (2009) The ecological scarcity method – eco-factors 2006. A method for impact assessment in LCA. Bundesamt für Umwelt (BAFU), Bern

    Google Scholar 

  • Global Footprint Network (2009) Ecological footprint standards 2009. Global Footprint Network, Oakland

    Google Scholar 

  • Goedkoop M, Heijungs R, Huijbregts M, de Schryver A, Struijs J, van Zelm R (2009) ReCiPe 2008: a life cycle impact assessment method which comprises harmonized category indicators at the midpoint and the endpoint level, 1st edn. Report I: characterisation

    Google Scholar 

  • Goedkoop M, Spriensma R (2000) The eco-indicator 99 – a damage oriented method for life cycle impact assessment: methodology report. PRe Consultants, Amersfoort

    Google Scholar 

  • Guinée J (1995) Development of a methodology for the environmental life-cycle assessment of products. Leiden University, Leiden

    Google Scholar 

  • Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, van Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes HA, de Bruijn H, van Duin R, Huijbregts MAJ, Lindeijer E, Roorda AAH, van der Ven BL, Weidema BP (2002) Handbook on life cycle assessment: an operation guide to the ISO standards. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hau JL, Bakshi BR (2004a) Expanding exergy analysis to account for ecosystem products and services. Environ Sci Technol 38(13):3768–3777

    Article  CAS  Google Scholar 

  • Hau JL, Bakshi BR (2004b) Promise and problems of emergy analysis. Ecol Model 178(1–2):215–225

    Article  Google Scholar 

  • Hauschild M, Wenzel H (1998) Environmental assessment of products vol 2: scientific background. Chapman & Hall/Kluwer Academic Publishers, London/Hingham, 1997. ISBN 0-412-80810-2

    Google Scholar 

  • Heijungs R, Guinée J, Huppes G (1997) Impact categories for natural resource and land use. Section Substances & Products. CML Report. CML, Leiden University, Leiden

    Google Scholar 

  • Hischier R, Weidema B, Althaus H-J, Doka G, Dones R, Frischknecht R, Hellweg S, Humbert S, Jungbluth N, Loerincik Y, Margni M, Nemecek T, Simons A (2009) Implementation of life cycle impact assessment methods: final report ecoinvent v2.1, vol 3. Swiss Centre for Life Cycle Inventories, St. Gallen

    Google Scholar 

  • Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM (2011) The water footprint assessment manual: setting the global standard. Water Footprint Network, London

    Google Scholar 

  • Hoekstra AY, Hung PQ (2002) Virtual water trade: a quantification of virtual water flows between nations in relation to international crop trade. Research report series no 11. IHE Delft, Delft

    Google Scholar 

  • Huijbregts MAJ, Hellweg S, Frischknecht R, Hendriks HWM, Hungerbuhler K, Hendriks AJ (2010) Cumulative energy demand as predictor for the environmental burden of commodity production. Environ Sci Technol 44:2189–2196

    Article  CAS  Google Scholar 

  • Huijbregts MAJ, Hellweg S, Frischknecht R, Hungerbuhler K, Hendriks AJ (2008) Ecological footprint accounting in the life cycle assessment of products. Ecol Econ 64:798–807

    Article  Google Scholar 

  • Huijbregts MAJ, Rombouts LJA, Hellweg S, Frischknecht R, Hendriks AJ, van de Meent D, Ragas AMJ, Reijnders L, Struijs J (2006) Is cumulative fossil energy demand a useful indicator for the environmental performance of products? Environ Sci Technol 40:641–648

    Article  CAS  Google Scholar 

  • Ingwersen WW (2011) Emergy as a life cycle impact assessment indicator. J Ind Ecol 15:550–567

    Article  Google Scholar 

  • ISO (2006) ISO international standard 14040: environmental management — life cycle assessment — principles and framework. International Organization for Standardisation, Geneva

    Google Scholar 

  • Jolliet O, Margni M, Charles R, Humbert S, Payet J, Rebitzer G, Rosenbaum R (2003a) IMPACT 2002+: a new life cycle impact assessment methodology. Int J Life Cycle Assess 8:324–330

    Article  Google Scholar 

  • Jolliet O, Müller-Wenk R, Brent A, Goedkoop M, Itsubo N, Pena C, WB P, Schenk R, Stewart M (2003b) Final report of the LCIA definition study. UNEP/SETAC Life Cycle Initiative, Paris

    Google Scholar 

  • Liao W, Heijungs R, Huppes G (2012a) Natural resource demand of global biofuels in the anthropocene: a review. Renew Sust Energ Rev 16:996–1003

    Article  Google Scholar 

  • Liao W, Heijungs R, Huppes G (2012b) Thermodynamic resource indicators in LCA: a case study on the titania produced in Panzhihua city, southwest China. Int J Life Cycle Assess 17:951–961

    Article  CAS  Google Scholar 

  • Lindeijer E, Müller-Wenk R, Steen B (2002) Impact assessment of resources and land use. In: Udo de Haes HA (ed) Life cycle impact assessment: striving towards the best practice. SETAC, Pensacola, pp 11–64

    Google Scholar 

  • Milà i Canals L, Chenoweth J, Chapagain A, Orr S, Antón A, Clift R (2009) Assessing freshwater use impacts in LCA: part I – inventory modelling and characterisation factors for the main impact pathways. Int J Life Cycle Assess 14:28–42

    Article  Google Scholar 

  • Miyazaki N (2006) The JEPIX Initiative in Japan. A new ecological accounting system of a better measurement of eco-efficiency. In: Schaltegger S, Bennett M, Burritt R (eds) Sustainability accounting and reporting. Springer, Dordrecht, pp 339–354

    Chapter  Google Scholar 

  • Müller-Wenk R (1998) Depletion of abiotic resources weighted on the base of ‘virtual’ impacts of lower grade deposits in future. IWO Diskussionsbeitrag Nr. 57

    Google Scholar 

  • Odum HT (1996) Environmental accounting: emergy and environmental decision making, 1st edn. Wiley, New York

    Google Scholar 

  • OECD (2008a) Measuring material flows and resource productivity, vol III, Inventory of country activities. OECD Publishing, Paris

    Google Scholar 

  • OECD (2008b) Measuring material flows and resource productivity, vol II, The accounting framework. OECD Publishing, Paris

    Google Scholar 

  • OECD (2008c) Measuring material flows and resource productivity. The OECD guide, vol I. OECD Publishing, Paris

    Google Scholar 

  • OECD/IEA (2013) Resources to reserves 2013 – oil, gas and coal technologies for the energy markets of the future. Organisation for Economic Co-operation and Development, International Energy Agency, Paris

    Google Scholar 

  • PE International (2012) http://www.gabi-software.com. Accessed 20 Apr 2012

  • Pfister S, Koehler A, Hellweg S (2009) Assessing the environmental impacts of freshwater consumption in LCA. Environ Sci Technol 43:4098–4104

    Article  CAS  Google Scholar 

  • Pimentel D, Hurd LE, Bellotti AC, Forster MJ, Oka IN, Sholes OD, Whitman RJ (1973) Food production and the energy crisis. Science 182(4111):443–449

    Article  CAS  Google Scholar 

  • Ritthoff M, Rohn H, Liedtke C (2002) MIPS Berechnen: Ressourcen produktivität von Produkten und Dienstleistungen. Wuppertal Spezial. Wuppertal Institut für Klima, Umwelt, Energie, Wuppertal

    Google Scholar 

  • Rugani B, Benetto E (2012) Improvements to emergy evaluations by using life cycle assessment. Environ Sci Technol 46:4701–4712

    Article  CAS  Google Scholar 

  • Rugani B, Huijbregts MAJ, Mutel C, Bastianoni S, Hellweg S (2011) Solar energy demand (sed) of commodity life cycles. Environ Sci Technol 45:5426–5433

    Article  CAS  Google Scholar 

  • Schmidt-Bleek F, Bringezu S, Hinterberger F, Liedtke C, Spannenberg J, Stiller H, Welfens MJ (1998) MAIA Einführung in die Material-Intensitäts-Analyse nach dem MIPS-Konzept, Berlin

    Google Scholar 

  • Schneider L, Berger M, Finkbeiner M (2011) The anthropogenic stock extended abiotic depletion potential (AADP) as a new parameterisation to model the depletion of abiotic resources. Int J Life Cycle Assess 16:929–936

    Article  Google Scholar 

  • Spangenberg JH, Hinterberger F, Moll S, Schütz H (1999) Material flow analysis, TMR and the mips-concept: a contribution to the development of indicators for measuring changes in consumption and production patterns. Wuppertal Institute for Environment, Climate and Energy; Department for Material Flows and Structural Change, Wuppertal

    Google Scholar 

  • Steen B (1999a) A systematic approach to environmental priority strategies in product development (EPS). Version 2000 – general system characteristics. Chalmers University of Technology, Gothenburg

    Google Scholar 

  • Steen B (1999b) A systematic approach to environmental priority strategies in product development (EPS). Version 2000 – models and data of the default method. Chalmers University of Technology, Gothenburg

    Google Scholar 

  • Steen B (2006) Abiotic resource depletion different perceptions of the problem with mineral deposits. Int J Life Cycle Assess 11:49–54

    Article  Google Scholar 

  • Steen B, Borg G (2002) An estimation of the cost of sustainable production of metal concentrates from the earth’s crust. Ecol Econ 42:401–413

    Article  Google Scholar 

  • Stewart M, Weidema BP (2005) A consistent framework for assessing the impacts from resource use – a focus on resource functionality. Int J Life Cycle Assess 10:240–247

    Article  Google Scholar 

  • Szargut J, Morris DR, Steward FR (1988) Exergy analysis of thermal, chemical, and metallurgical processes. Springer, Berlin

    Google Scholar 

  • Udo de Haes HA, Jolliet O, Finnveden G, Hauschild M, Krewitt W, Miiller-Wenk R (1999) Best available practice regarding impact categories and category indicators in life cycle impact assessment. Int J Life Cycle Assess 4:167–174

    Article  Google Scholar 

  • United States Geological Survey (2010) Mineral commodity summaries 2010. Geological Survey, Washington, DC

    Google Scholar 

  • Urban RA, Bakshi BR (2009) 1,3-Propanediolfrom fossils versus biomass: a life cycle evaluation of emissions and ecological resources. Ind Eng Chem Res 48:8068–8082

    Article  CAS  Google Scholar 

  • Van Oers L (2012) CML spreadsheets. CML – Institute of Environmental Sciences, Leiden University, Leiden. http://www.cml.leiden.edu/software/data-cmlia.html

  • Van Oers L, de Koning A, Guinee J, Huppes G (2002) Abiotic resource depletion in LCA – improving characterisation factors for abiotic resource depletion as recommended in the new Dutch LCA Handbook. Road and Hydraulic Engineering Institute, Leiden University. http://www.leidenuniv.nl/cml/ssp/projects/lca2/report_abiotic_depletion_web.pdf

  • VDI (1997) Cumulative energy demand – terms, definitions, methods of calculation.VDI guideline 4600. Verein Deutscher Ingenieure, Düsseldorf

    Google Scholar 

  • Vieira MDM, Goedkoop MJ, Storm P, Huijbregts MAJ (2012) Ore grade decrease as life cycle impact indicator for metal scarcity: the case of copper. Environ Sci Technol 46:12772–12778

    Article  CAS  Google Scholar 

  • Wackernagel M, Rees W (1996) Our ecological footprint: reducing human impact on the earth. New Society Publishers, Gabriola Island

    Google Scholar 

  • Weidema BP, Finnveden G, Stewart M (2005) Impacts from resource use: a common position paper. Int J Life Cycle Assess 10(6):382

    Article  Google Scholar 

  • Yellishetty M, Mudd GM, Ranjith PG (2011) The steel industry, abiotic resource depletion and life cycle assessment: a real or perceived issue? J Clean Prod 19:78–90

    Article  CAS  Google Scholar 

  • Zhang Y, Baral A, Bakshi BR (2010) Accounting for ecosystem services in life cycle assessment, part ii: toward an ecologically based LCA. Environ Sci Technol 44:2624–2631

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jo Dewulf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Swart, P., Alvarenga, R.A.F., Dewulf, J. (2015). Abiotic Resource Use. In: Hauschild, M., Huijbregts, M. (eds) Life Cycle Impact Assessment. LCA Compendium – The Complete World of Life Cycle Assessment. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9744-3_13

Download citation

Publish with us

Policies and ethics