Chromokinesins in Genome Maintenance and Cancer

  • Manjari MazumdarEmail author
  • Tom Misteli


The chromokinesins constitute a distinct and unique subfamily of kinesin motor proteins. Chromokinesins are predominantly nuclear and localize to condensed chromosome arms during mitosis. Although chromokinesins are generally thought to primarily be involved in production of polar ejection forces to push chromosomes away from the pole for metaphase alignment, more recent studies have revealed some chromokinesins as integral components of chromosome structure. The two major family members, chromokinesins 4 and 10, possess unique properties and perform critical functions, including chromatin organization during both interphase and mitosis. Interestingly, chromokinesins studies have also been implicated in a number of human cancers. In this chapter we review the current knowledge of the structure, function and potential role of chromokinesins in cancer as well as the promise of this class of kinesins as candidate targets for therapeutic strategies.


Mitotic Chromosome Motor Domain Histone Chaperone Kinesin Motor Maintain Genome Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42(1):39–50CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Brady ST (1985) A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317(6032):73–75CrossRefPubMedGoogle Scholar
  3. 3.
    Hirokawa N, Noda Y, Okada Y (1998) Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr Opin Cell Biol 10(1):60–73CrossRefPubMedGoogle Scholar
  4. 4.
    Miki H, Okada Y, Hirokawa N (2005) Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 15(9):467–476CrossRefPubMedGoogle Scholar
  5. 5.
    Hirokawa N et al (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10(10):682–696CrossRefPubMedGoogle Scholar
  6. 6.
    Wordeman L (2010) How kinesin motor proteins drive mitotic spindle function: lessons from molecular assays. Semin Cell Dev Biol 21(3):260–268CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Rath O, Kozielski F (2012) Kinesins and cancer. Nat Rev Cancer 12(8):527–539CrossRefPubMedGoogle Scholar
  8. 8.
    Funabiki H, Murray AW (2000) The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102(4):411–424CrossRefPubMedGoogle Scholar
  9. 9.
    Tokai N et al (1996) Kid, a novel kinesin-like DNA binding protein, is localized to chromosomes and the mitotic spindle. EMBO J 15(3):457–467PubMedCentralPubMedGoogle Scholar
  10. 10.
    Wang SZ, Adler R (1995) Chromokinesin: a DNA-binding, kinesin-like nuclear protein. J Cell Biol 128(5):761–768CrossRefPubMedGoogle Scholar
  11. 11.
    Mazumdar M, Sundareshan S, Misteli T (2004) Human chromokinesin KIF4A functions in chromosome condensation and segregation. J Cell Biol 166(5):613–620CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Levesque AA, Compton DA (2001) The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J Cell Biol 154(6):1135–1146CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Mazumdar M, Misteli T (2005) Chromokinesins: multitalented players in mitosis. Trends Cell Biol 15(7):349–355CrossRefPubMedGoogle Scholar
  14. 14.
    Antonio C et al (2000) Xkid, a chromokinesin required for chromosome alignment on the metaphase plate. Cell 102(4):425–435CrossRefPubMedGoogle Scholar
  15. 15.
    Shiroguchi K et al (2003) The second microtubule-binding site of monomeric kid enhances the microtubule affinity. J Biol Chem 278(25):22460–22465CrossRefPubMedGoogle Scholar
  16. 16.
    Ohsugi M et al (2003) Cdc2-mediated phosphorylation of Kid controls its distribution to spindle and chromosomes. EMBO J 22(9):2091–2103CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Cassimeris L, Rieder CL, Salmon ED (1994) Microtubule assembly and kinetochore directional instability in vertebrate monopolar spindles: implications for the mechanism of chromosome congression. J Cell Sci 107(Pt 1):285–297PubMedGoogle Scholar
  18. 18.
    Rieder CL et al (1986) Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J Cell Biol 103(2):581–591CrossRefPubMedGoogle Scholar
  19. 19.
    Ke K, Cheng J, Hunt AJ (2009) The distribution of polar ejection forces determines the amplitude of chromosome directional instability. Curr Biol 19(10):807–815CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Bieling P, Kronja I, Surrey T (2010) Microtubule motility on reconstituted meiotic chromatin. Curr Biol 20(8):763–769CrossRefPubMedGoogle Scholar
  21. 21.
    Rieder CL, Salmon ED (1994) Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J Cell Biol 124(3):223–233CrossRefPubMedGoogle Scholar
  22. 22.
    Brouhard GJ, Hunt AJ (2005) Microtubule movements on the arms of mitotic chromosomes: polar ejection forces quantified in vitro. Proc Natl Acad Sci U S A 102(39):13903–13908CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Stumpff J et al (2012) Kif18A and chromokinesins confine centromere movements via microtubule growth suppression and spatial control of kinetochore tension. Dev Cell 22(5):1017–1029CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Santamaria A et al (2008) The spindle protein CHICA mediates localization of the chromokinesin Kid to the mitotic spindle. Curr Biol 18(10):723–729CrossRefPubMedGoogle Scholar
  25. 25.
    Kurasawa Y et al (2004) Essential roles of KIF4 and its binding partner PRC1 in organized central spindle midzone formation. EMBO J 23(16):3237–3248CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Lee YM, Kim W (2004) Kinesin superfamily protein member 4 (KIF4) is localized to midzone and midbody in dividing cells. Exp Mol Med 36(1):93–97CrossRefPubMedGoogle Scholar
  27. 27.
    Zhu C, Jiang W (2005) Cell cycle-dependent translocation of PRC1 on the spindle by Kif4 is essential for midzone formation and cytokinesis. Proc Natl Acad Sci U S A 102(2):343–348CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Hu B et al (2011) ATP hydrolysis is required for relocating cohesin from sites occupied by its Scc2/4 loading complex. Curr Biol 21(1):12–24CrossRefPubMedGoogle Scholar
  29. 29.
    Zhu C et al (2005) Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol Biol Cell 16(7):3187–3199CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Powers J et al (2004) Loss of KLP-19 polar ejection force causes misorientation and missegregation of holocentric chromosomes. J Cell Biol 166(7):991–1001CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Kwon M et al (2004) The chromokinesin, KLP3A, dives mitotic spindle pole separation during prometaphase and anaphase and facilitates chromatid motility. Mol Biol Cell 15(1):219–233CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Williams BC et al (1995) The Drosophila kinesin-like protein KLP3A is a midbody component required for central spindle assembly and initiation of cytokinesis. J Cell Biol 129(3):709–723CrossRefPubMedGoogle Scholar
  33. 33.
    Vernos I et al (1995) Xklp1, a chromosomal Xenopus kinesin-like protein essential for spindle organization and chromosome positioning. Cell 81(1):117–127CrossRefPubMedGoogle Scholar
  34. 34.
    Bringmann H et al (2004) A kinesin-like motor inhibits microtubule dynamic instability. Science 303(5663):1519–1522CrossRefPubMedGoogle Scholar
  35. 35.
    Castoldi M, Vernos I (2006) Chromokinesin Xklp1 contributes to the regulation of microtubule density and organization during spindle assembly. Mol Biol Cell 17(3):1451–1460CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Mazumdar M, Sung MH, Misteli T (2011) Chromatin maintenance by a molecular motor protein. Nucleus 2(6):591–600CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Wu G et al (2008) A novel role of the chromokinesin Kif4A in DNA damage response. Cell Cycle 7(13):2013–2020CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Samejima K et al (2012) Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIalpha. J Cell Biol 199(5):755–770CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Yajima J et al (2003) The human chromokinesin Kid is a plus end-directed microtubule-based motor. EMBO J 22(5):1067–1074CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Levesque AA et al (2003) A functional relationship between NuMA and kid is involved in both spindle organization and chromosome alignment in vertebrate cells. Mol Biol Cell 14(9):3541–3552CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Tokai-Nishizumi N et al (2005) The chromokinesin Kid is required for maintenance of proper metaphase spindle size. Mol Biol Cell 16(11):5455–5463CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Magidson V et al (2011) The spatial arrangement of chromosomes during prometaphase facilitates spindle assembly. Cell 146(4):555–567CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Oshimori N, Ohsugi M, Yamamoto T (2006) The Plk1 target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity. Nat Cell Biol 8(10):1095–1101CrossRefPubMedGoogle Scholar
  44. 44.
    Logarinho E et al (2012) CLASPs prevent irreversible multipolarity by ensuring spindle-pole resistance to traction forces during chromosome alignment. Nat Cell Biol 14(3):295–303CrossRefPubMedGoogle Scholar
  45. 45.
    Ha MJ et al (2000) Assignment of the kinesin family member 4 genes (KIF4A and KIF4B) to human chromosome bands Xq13.1 and 5q33.1 by in situ hybridization. Cytogenet Cell Genet 88(1–2):41–42CrossRefPubMedGoogle Scholar
  46. 46.
    Sekine Y et al (1994) A novel microtubule-based motor protein (KIF4) for organelle transports, whose expression is regulated developmentally. J Cell Biol 127(1):187–201CrossRefPubMedGoogle Scholar
  47. 47.
    Peretti D et al (2000) Evidence for the involvement of KIF4 in the anterograde transport of L1-containing vesicles. J Cell Biol 149(1):141–152CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Kim W et al (1998) Binding of murine leukemia virus Gag polyproteins to KIF4, a microtubule-based motor protein. J Virol 72(8):6898–6901PubMedCentralPubMedGoogle Scholar
  49. 49.
    Martinez NW et al (2008) Kinesin KIF4 regulates intracellular trafficking and stability of the human immunodeficiency virus type 1 Gag polyprotein. J Virol 82(20):9937–9950CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Hirokawa N (2006) mRNA transport in dendrites: RNA granules, motors, and tracks. J Neurosci 26(27):7139–7142CrossRefPubMedGoogle Scholar
  51. 51.
    Mazumdar M et al (2006) Tumor formation via loss of a molecular motor protein. Curr Biol 16(15):1559–1564CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Mazumdar M et al. (2011) Chromokinesin KIF4 facilitates chromatin organization critical for immunoglobulin class switch recombination and prevents lymphoma formation. Cancer Res 71(8): Supplement 1:934Google Scholar
  53. 53.
    Germani A et al (2000) SIAH-1 interacts with alpha-tubulin and degrades the kinesin Kid by the proteasome pathway during mitosis. Oncogene 19(52):5997–6006CrossRefPubMedGoogle Scholar
  54. 54.
    Bruzzoni-Giovanelli H et al (2010) Distinct expression patterns of the E3 ligase SIAH-1 and its partner Kid/KIF22 in normal tissues and in the breast tumoral processes. J Exp Clin Cancer Res 29:10CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Gao J et al (2011) Overexpression of chromokinesin KIF4 inhibits proliferation of human gastric carcinoma cells both in vitro and in vivo. Tumour Biol 32(1):53–61CrossRefPubMedGoogle Scholar
  56. 56.
    Colak D et al (2013) Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. PLoS One 8(5):e63204CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Taniwaki M et al (2007) Activation of KIF4A as a prognostic biomarker and therapeutic target for lung cancer. Clin Cancer Res 13(22 Pt 1):6624–6631CrossRefPubMedGoogle Scholar
  58. 58.
    Lee BP et al (2001) Differential gene expression in premalignant human trophoblast: role of IGFBP-5. Int J Cancer 94(5):674–684CrossRefPubMedGoogle Scholar
  59. 59.
    Weil RJ et al (2005) Breast cancer metastasis to the central nervous system. Am J Pathol 167(4):913–920CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Cohen Y et al (2014) The proliferation arrest of primary tumor cells out-of-niche is associated with widespread downregulation of mitotic and transcriptional genes. Hematology 19(5):286–292Google Scholar
  61. 61.
    Heinonen K et al (1999) Acquired X-chromosome aneuploidy in children with acute lymphoblastic leukemia. Med Pediatr Oncol 32(5):360–365CrossRefPubMedGoogle Scholar
  62. 62.
    Pageau GJ et al (2007) The disappearing Barr body in breast and ovarian cancers. Nat Rev Cancer 7(8):628–633CrossRefPubMedGoogle Scholar
  63. 63.
    Yildirim E et al (2013) Xist RNA is a potent suppressor of hematologic cancer in mice. Cell 152(4):727–742CrossRefPubMedGoogle Scholar
  64. 64.
    Conde L et al (2013) Integrating GWAS and expression data for functional characterization of disease-associated SNPs: an application to follicular lymphoma. Am J Hum Genet 92(1):126–130CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Zou JX et al (2014) Kinesin family deregulation coordinated by bromodomain protein ANCCA and histone methyltransferase MLL for breast cancer cell growth, survival, and tamoxifen resistance. Mol Cancer Res 12(4):539–549CrossRefPubMedGoogle Scholar
  66. 66.
    Rouam S, Moreau T, Broet P (2010) Identifying common prognostic factors in genomic cancer studies: a novel index for censored outcomes. BMC Bioinf 11:150CrossRefGoogle Scholar
  67. 67.
    Minakawa Y et al (2013) Kinesin family member 4A: a potential predictor for progression of human oral cancer. PLoS One 8(12):e85951CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Weaver BA, Cleveland DW (2007) Aneuploidy: instigator and inhibitor of tumorigenesis. Cancer Res 67(21):10103–10105CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Weaver BA et al (2007) Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11(1):25–36CrossRefPubMedGoogle Scholar
  70. 70.
    Misteli T (2013) The cell biology of genomes: bringing the double helix to life. Cell 152(6):1209–1212CrossRefPubMedGoogle Scholar
  71. 71.
    Scaffidi P, Misteli T (2010) Cancer epigenetics: from disruption of differentiation programs to the emergence of cancer stem cells. Cold Spring Harb Symp Quant Biol 75:251–258CrossRefPubMedGoogle Scholar
  72. 72.
    Groth A et al (2007) Chromatin challenges during DNA replication and repair. Cell 128(4):721–733CrossRefPubMedGoogle Scholar
  73. 73.
    Robertson AK et al (2004) Effects of chromatin structure on the enzymatic and DNA binding functions of DNA methyltransferases DNMT1 and Dnmt3a in vitro. Biochem Biophys Res Commun 322(1):110–118CrossRefPubMedGoogle Scholar
  74. 74.
    Ono T, Yamashita D, Hirano T (2013) Condensin II initiates sister chromatid resolution during S phase. J Cell Biol 200(4):429–441CrossRefPubMedCentralPubMedGoogle Scholar
  75. 75.
    Hernandez-Munain C, McMurry MT, Krangel MS (1999) Regulation of chromatin accessibility for V(D)J recombination. Cold Spring Harb Symp Quant Biol 64:183–189CrossRefPubMedGoogle Scholar
  76. 76.
    Vanasse GJ, Concannon P, Willerford DM (1999) Regulated genomic instability and neoplasia in the lymphoid lineage. Blood 94(12):3997–4010PubMedGoogle Scholar
  77. 77.
    Zhang Y et al (2010) The role of mechanistic factors in promoting chromosomal translocations found in lymphoid and other cancers. Adv Immunol 106:93–133CrossRefPubMedCentralPubMedGoogle Scholar
  78. 78.
    Domenech E, Malumbres M (2013) Mitosis-targeting therapies: a troubleshooting guide. Curr Opin Pharmacol 13(4):519–528CrossRefPubMedGoogle Scholar
  79. 79.
    Pommier Y, Marchand C (2012) Interfacial inhibitors: targeting macromolecular complexes. Nat Rev Drug Discov 11(1):25–36Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.HoustonUSA
  2. 2.National Cancer Institute, NIHBethesdaUSA

Personalised recommendations