The Human Kinesin-14 Motor KifC1/HSET Is an Attractive Anti-cancer Drug Target

  • Vaishali Pannu
  • Padmashree C. G. Rida
  • Ritu AnejaEmail author


KifC1/HSET is a kinesin-14 motor protein recently recognized as a crucial player in the bi-focal clustering of supernumerary centrosomes in human cancer cells during mitosis. Various threads of evidence also implicate HSET as a potential driver of tumor evolution, with overexpression resulting in the emergence of more aggressive traits in tumors. Since HSET function appears to be dispensable for the viability of healthy somatic cells, these observations raise the tantalizing possibility that targeting HSET might be a promising cancer-selective chemotherapeutic approach. In this chapter, we summarize the multiple cellular roles played by HSET in various model systems and enumerate the steps required to validate and develop HSET as an anti-cancer drug target.


Spindle Pole Spindle Assembly Bipolar Spindle Centrosome Amplification Central Spindle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chandra R, Salmon ED, Erickson HP, Lockhart A, Endow SA (1993) Structural and functional domains of the Drosophila ncd microtubule motor protein. J Biol Chem 268:9005–9013PubMedGoogle Scholar
  2. 2.
    Walker RA (1995) Ncd and kinesin motor domains interact with both alpha- and beta-tubulin. Proc Natl Acad Sci U S A 92:5960–5964CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Walczak CE, Verma S, Mitchison TJ (1997) XCTK2: a kinesin-related protein that promotes mitotic spindle assembly in Xenopus laevis egg extracts. J Cell Biol 136:859–870CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Karabay A, Walker RA (1999) The Ncd tail domain promotes microtubule assembly and stability. Biochem Biophys Res Commun 258:39–43. doi:S0006-291X(99)90572-7 [pii] 10.1006/bbrc.1999.0572 CrossRefPubMedGoogle Scholar
  5. 5.
    Ems-McClung SC, Zheng Y, Walczak CE (2004) Importin alpha/beta and Ran-GTP regulate XCTK2 microtubule binding through a bipartite nuclear localization signal. Mol Biol Cell 15:46–57. doi: 10.1091/mbc.E03-07-0454E03-07-0454 [pii] CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    DeLuca JG, Newton CN, Himes RH, Jordan MA, Wilson L (2001) Purification and characterization of native conventional kinesin, HSET, and CENP-E from mitotic hela cells. J Biol Chem 276:28014–28021. doi: 10.1074/jbc.M102801200M102801200 [pii] CrossRefPubMedGoogle Scholar
  7. 7.
    Walker RA, Salmon ED, Endow SA (1990) The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature 347:780–782. doi: 10.1038/347780a0 CrossRefPubMedGoogle Scholar
  8. 8.
    Endow SA et al (1994) Yeast Kar3 is a minus-end microtubule motor protein that destabilizes microtubules preferentially at the minus ends. EMBO J 13:2708–2713PubMedCentralPubMedGoogle Scholar
  9. 9.
    Kuriyama R et al (1995) Characterization of a minus end-directed kinesin-like motor protein from cultured mammalian cells. J Cell Biol 129:1049–1059CrossRefPubMedGoogle Scholar
  10. 10.
    Sharp DJ et al (2000) Functional coordination of three mitotic motors in Drosophila embryos. Mol Biol Cell 11:241–253CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Mogilner A, Wollman R, Civelekoglu-Scholey G, Scholey J (2006) Modeling mitosis. Trends Cell Biol 16:88–96. doi:S0962-8924(05)00315-6 [pii] 10.1016/j.tcb.2005.12.007 CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang Y, Sperry AO (2004) Comparative analysis of two C-terminal kinesin motor proteins: KIFC1 and KIFC5A. Cell Motil Cytoskeleton 58:213–230. doi: 10.1002/cm.20008 CrossRefPubMedGoogle Scholar
  13. 13.
    Sansregret L et al (2011) Cut homeobox 1 causes chromosomal instability by promoting bipolar division after cytokinesis failure. Proc Natl Acad Sci U S A 108:1949–1954. doi:1008403108 [pii] 10.1073/pnas.1008403108 CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Truscott M, Harada R, Vadnais C, Robert F, Nepveu A (2008) p110 CUX1 cooperates with E2F transcription factors in the transcriptional activation of cell cycle-regulated genes. Mol Cell Biol 28:3127–3138. doi:MCB.02089-07 [pii] 10.1128/MCB.02089-07 CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Cai S, Weaver LN, Ems-McClung SC, Walczak CE (2009) Kinesin-14 family proteins HSET/XCTK2 control spindle length by cross-linking and sliding microtubules. Mol Biol Cell 20:1348–1359. doi:E08-09-0971 [pii] 10.1091/mbc.E08-09-0971 CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Simeonov DR et al (2009) Distinct kinesin-14 mitotic mechanisms in spindle bipolarity. Cell Cycle 8:3563–3575. doi:9970 [pii]CrossRefGoogle Scholar
  17. 17.
    Compton DA (2000) Spindle assembly in animal cells. Annu Rev Biochem 69:95–114. doi:69/1/95 [pii] 10.1146/annurev.biochem.69.1.95 CrossRefPubMedGoogle Scholar
  18. 18.
    Walczak CE, Heald R (2008) Mechanisms of mitotic spindle assembly and function. Int Rev Cytol 265:111–158. doi:S0074-7696(07)65003-7 [pii] 10.1016/S0074-7696(07)65003-7 CrossRefPubMedGoogle Scholar
  19. 19.
    Kirschner M, Mitchison T (1986) Beyond self-assembly: from microtubules to morphogenesis. Cell 45:329–342. doi:0092-8674(86)90318-1 [pii]CrossRefPubMedGoogle Scholar
  20. 20.
    McIntosh JR, Grishchuk EL, West RR (2002) Chromosome-microtubule interactions during mitosis. Annu Rev Cell Dev Biol 18:193–219. doi: 10.1146/annurev.cellbio.18.032002.132412032002.132412 [pii] CrossRefPubMedGoogle Scholar
  21. 21.
    McKim KS, Hawley RS (1995) Chromosomal control of meiotic cell division. Science 270:1595–1601CrossRefPubMedGoogle Scholar
  22. 22.
    Mountain V et al (1999) The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. J Cell Biol 147:351–366CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Chakravarty A, Howard L, Compton DA (2004) A mechanistic model for the organization of microtubule asters by motor and non-motor proteins in a mammalian mitotic extract. Mol Biol Cell 15:2116–2132. doi: 10.1091/mbc.E03-08-0579E03-08-0579 [pii] CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Inoue YH et al (2004) Mutations in orbit/mast reveal that the central spindle is comprised of two microtubule populations, those that initiate cleavage and those that propagate furrow ingression. J Cell Biol 166:49–60. doi: 10.1083/jcb.200402052jcb.200402052 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Straight AF et al (2003) Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science 299:1743–1747. doi: 10.1126/science.1081412299/5613/1743 [pii] CrossRefPubMedGoogle Scholar
  26. 26.
    Cai S, Weaver LN, Ems-McClung SC, Walczak CE (2010) Proper organization of microtubule minus ends is needed for midzone stability and cytokinesis. Curr Biol 20:880–885. doi:S0960-9822(10)00442-2 [pii] 10.1016/j.cub.2010.03.067 CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Sheetz MP (1999) Motor and cargo interactions. Eur J Biochem 262:19–25CrossRefPubMedGoogle Scholar
  28. 28.
    Tanaka Y et al (1998) Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93:1147–1158. doi:S0092-8674(00)81459-2 [pii]CrossRefPubMedGoogle Scholar
  29. 29.
    Hollenbeck PJ, Swanson JA (1990) Radial extension of macrophage tubular lysosomes supported by kinesin. Nature 346:864–866. doi: 10.1038/346864a0 CrossRefPubMedGoogle Scholar
  30. 30.
    Nath S et al (2007) Kif5B and Kifc1 interact and are required for motility and fission of early endocytic vesicles in mouse liver. Mol Biol Cell 18:1839–1849. doi:E06-06-0524 [pii] 10.1091/mbc.E06-06-0524 CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Farina F et al (2013) Kinesin KIFC1 actively transports bare double-stranded DNA. Nucleic Acids Res 41:4926–4937. doi:gkt204 [pii] 10.1093/nar/gkt204 CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Yang WX, Sperry AO (2003) C-terminal kinesin motor KIFC1 participates in acrosome biogenesis and vesicle transport. Biol Reprod 69:1719–1729. doi: 10.1095/biolreprod.102.014878biolreprod.102.014878 [pii]CrossRefPubMedGoogle Scholar
  33. 33.
    Yang WX, Jefferson H, Sperry AO (2006) The molecular motor KIFC1 associates with a complex containing nucleoporin NUP62 that is regulated during development and by the small GTPase RAN. Biol Reprod 74:684–690. doi:biolreprod.105.049312 [pii] 10.1095/biolreprod.105.049312 CrossRefPubMedGoogle Scholar
  34. 34.
    Loughlin R, Riggs B, Heald R (2008) SnapShot: motor proteins in spindle assembly. Cell 134:548, e541. doi:S0092-8674(08)00958-6 [pii] 10.1016/j.cell.2008.07.038
  35. 35.
    Verhey KJ, Hammond JW (2009) Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol 10:765–777. doi:nrm2782 [pii] 10.1038/nrm2782 CrossRefPubMedGoogle Scholar
  36. 36.
    Wordeman L (2010) How kinesin motor proteins drive mitotic spindle function: lessons from molecular assays. Semin Cell Dev Biol 21:260–268. doi:S1084-9521(10)00019-4 [pii] 10.1016/j.semcdb.2010.01.018 CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Gadde S, Heald R (2004) Mechanisms and molecules of the mitotic spindle. Curr Biol 14:R797–R805. doi: 10.1016/j.cub.2004.09.021S0960982204006979 [pii]CrossRefPubMedGoogle Scholar
  38. 38.
    Kalab P, Heald R (2008) The RanGTP gradient – a GPS for the mitotic spindle. J Cell Sci 121:1577–1586. doi:121/10/1577 [pii] 10.1242/jcs.005959 CrossRefPubMedGoogle Scholar
  39. 39.
    O’Connell CB, Khodjakov AL (2007) Cooperative mechanisms of mitotic spindle formation. J Cell Sci 120:1717–1722. doi:120/10/1717 [pii] 10.1242/jcs.03442 CrossRefPubMedGoogle Scholar
  40. 40.
    Schuh M, Ellenberg J (2007) Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes. Cell 130:484–498. doi:S0092-8674(07)00792-1 [pii] 10.1016/j.cell.2007.06.025 CrossRefPubMedGoogle Scholar
  41. 41.
    Wadsworth P, Khodjakov A (2004) E pluribus unum: towards a universal mechanism for spindle assembly. Trends Cell Biol 14:413–419. doi: 10.1016/j.tcb.2004.07.004S0962-8924(04)00169-2 [pii]CrossRefPubMedGoogle Scholar
  42. 42.
    Clarke PR, Zhang C (2008) Spatial and temporal coordination of mitosis by Ran GTPase. Nat Rev Mol Cell Biol 9:464–477. doi:nrm2410 [pii] 10.1038/nrm2410 CrossRefPubMedGoogle Scholar
  43. 43.
    Gruss OJ et al (2001) Ran induces spindle assembly by reversing the inhibitory effect of importin alpha on TPX2 activity. Cell 104:83–93. doi:S0092-8674(01)00193-3 [pii]CrossRefPubMedGoogle Scholar
  44. 44.
    Koffa MD et al (2006) HURP is part of a Ran-dependent complex involved in spindle formation. Curr Biol 16:743–754. doi:S0960-9822(06)01353-4 [pii] 10.1016/j.cub.2006.03.056 CrossRefPubMedGoogle Scholar
  45. 45.
    Nachury MV et al (2001) Importin beta is a mitotic target of the small GTPase Ran in spindle assembly. Cell 104:95–106. doi:S0092-8674(01)00194-5 [pii]CrossRefPubMedGoogle Scholar
  46. 46.
    Ribbeck K et al (2006) NuSAP, a mitotic RanGTP target that stabilizes and cross-links microtubules. Mol Biol Cell 17:2646–2660. doi:E05-12-1178 [pii] 10.1091/mbc.E05-12-1178 CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Sillje HH, Nagel S, Korner R, Nigg EA (2006) HURP is a Ran-importin beta-regulated protein that stabilizes kinetochore microtubules in the vicinity of chromosomes. Curr Biol 16:731–742. doi:S0960-9822(06)01277-2 [pii] 10.1016/j.cub.2006.02.070 CrossRefPubMedGoogle Scholar
  48. 48.
    Song L, Rape M (2010) Regulated degradation of spindle assembly factors by the anaphase-promoting complex. Mol Cell 38:369–382. doi:S1097-2765(10)00317-5 [pii] 10.1016/j.molcel.2010.02.038 CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Stewart S, Fang G (2005) Anaphase-promoting complex/cyclosome controls the stability of TPX2 during mitotic exit. Mol Cell Biol 25:10516–10527. doi:25/23/10516 [pii] 10.1128/MCB.25.23.10516-10527.2005 CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Wiese C et al (2001) Role of importin-beta in coupling Ran to downstream targets in microtubule assembly. Science 291:653–656CrossRefPubMedGoogle Scholar
  51. 51.
    Goshima G, Nedelec F, Vale RD (2005) Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. J Cell Biol 171:229–240. doi:jcb.200505107 [pii] 10.1083/jcb.200505107 CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Hatsumi M, Endow SA (1992) The Drosophila ncd microtubule motor protein is spindle-associated in meiotic and mitotic cells. J Cell Sci 103(Pt 4):1013–1020PubMedGoogle Scholar
  53. 53.
    Skold HN, Komma DJ, Endow SA (2005) Assembly pathway of the anastral Drosophila oocyte meiosis I spindle. J Cell Sci 118:1745–1755. doi:jcs.02304 [pii] 10.1242/jcs.02304 CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Kimble M, Church K (1983) Meiosis and early cleavage in Drosophila melanogaster eggs: effects of the claret-non-disjunctional mutation. J Cell Sci 62:301–318PubMedGoogle Scholar
  55. 55.
    Endow SA, Komma DJ (1996) Centrosome and spindle function of the Drosophila Ncd microtubule motor visualized in live embryos using Ncd-GFP fusion proteins. J Cell Sci 109(Pt 10):2429–2442PubMedGoogle Scholar
  56. 56.
    Endow SA, Komma DJ (1997) Spindle dynamics during meiosis in Drosophila oocytes. J Cell Biol 137:1321–1336CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Matthies HJ, McDonald HB, Goldstein LS, Theurkauf WE (1996) Anastral meiotic spindle morphogenesis: role of the non-claret disjunctional kinesin-like protein. J Cell Biol 134:455–464CrossRefPubMedGoogle Scholar
  58. 58.
    Kleylein-Sohn J et al (2012) Acentrosomal spindle organization renders cancer cells dependent on the kinesin HSET. J Cell Sci 125:5391–5402. doi:jcs.107474 [pii] 10.1242/jcs.107474 CrossRefPubMedGoogle Scholar
  59. 59.
    Ambrose JC, Li W, Marcus A, Ma H, Cyr R (2005) A minus-end-directed kinesin with plus-end tracking protein activity is involved in spindle morphogenesis. Mol Biol Cell 16:1584–1592. doi:E04-10-0935 [pii] 10.1091/mbc.E04-10-0935 CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Janson ME et al (2007) Crosslinkers and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast. Cell 128:357–368. doi:S0092-8674(07)00048-7 [pii] 10.1016/j.cell.2006.12.030 CrossRefPubMedGoogle Scholar
  61. 61.
    Braun M et al (2013) The human kinesin-14 HSET tracks the tips of growing microtubules in vitro. Cytoskeleton (Hoboken) 70:515–521. doi: 10.1002/cm.21133 CrossRefGoogle Scholar
  62. 62.
    Giehl M et al (2005) Centrosome aberrations in chronic myeloid leukemia correlate with stage of disease and chromosomal instability. Leukemia 19:1192–1197. doi:2403779 [pii] 10.1038/sj.leu.2403779 CrossRefPubMedGoogle Scholar
  63. 63.
    Pihan GA et al (1998) Centrosome defects and genetic instability in malignant tumors. Cancer Res 58:3974–3985PubMedGoogle Scholar
  64. 64.
    Zyss D, Gergely F (2009) Centrosome function in cancer: guilty or innocent? Trends Cell Biol 19:334–346. doi:S0962-8924(09)00113-5 [pii] 10.1016/j.tcb.2009.04.001 CrossRefPubMedGoogle Scholar
  65. 65.
    Godinho SA, Kwon M, Pellman D (2009) Centrosomes and cancer: how cancer cells divide with too many centrosomes. Cancer Metastasis Rev 28:85–98. doi: 10.1007/s10555-008-9163-6 CrossRefPubMedGoogle Scholar
  66. 66.
    Nigg EA (2002) Centrosome aberrations: cause or consequence of cancer progression? Nat Rev Cancer 2:815–825. doi: 10.1038/nrc924nrc924 [pii]CrossRefPubMedGoogle Scholar
  67. 67.
    Levine DS, Sanchez CA, Rabinovitch PS, Reid BJ (1991) Formation of the tetraploid intermediate is associated with the development of cells with more than four centrioles in the elastase-simian virus 40 tumor antigen transgenic mouse model of pancreatic cancer. Proc Natl Acad Sci U S A 88:6427–6431CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Lingle WL, Salisbury JL (1999) Altered centrosome structure is associated with abnormal mitoses in human breast tumors. Am J Pathol 155:1941–1951. doi:S0002-9440(10)65513-7 [pii] 10.1016/S0002-9440(10)65513-7 CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Kwon M et al (2008) Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 22:2189–2203. doi:gad.1700908 [pii] 10.1101/gad.1700908 CrossRefPubMedCentralPubMedGoogle Scholar
  70. 70.
    Leber B et al (2010) Proteins required for centrosome clustering in cancer cells. Sci Transl Med 2:33ra38. doi:2/33/33ra38 [pii] 10.1126/scitranslmed.3000915 CrossRefPubMedGoogle Scholar
  71. 71.
    Ogden A, Rida PC, Aneja R (2012) Let’s huddle to prevent a muddle: centrosome declustering as an attractive anticancer strategy. Cell Death Differ 19:1255–1267. doi:cdd201261 [pii] 10.1038/cdd.2012.61 CrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.
    De S, Cipriano R, Jackson MW, Stark GR (2009) Overexpression of kinesins mediates docetaxel resistance in breast cancer cells. Cancer Res 69:8035–8042. doi:0008-5472.CAN-09-1224 [pii] 10.1158/0008-5472.CAN-09-1224 CrossRefPubMedGoogle Scholar
  73. 73.
    Muller C et al (2007) Inhibitors of kinesin Eg5: antiproliferative activity of monastrol analogues against human glioblastoma cells. Cancer Chemother Pharmacol 59:157–164. doi: 10.1007/s00280-006-0254-1 CrossRefPubMedGoogle Scholar
  74. 74.
    Grinberg-Rashi H et al (2009) The expression of three genes in primary non-small cell lung cancer is associated with metastatic spread to the brain. Clin Cancer Res 15:1755–1761. doi:1078-0432.CCR-08-2124 [pii] 10.1158/1078-0432.CCR-08-2124 CrossRefPubMedGoogle Scholar
  75. 75.
    Wu J et al (2013) Discovery and mechanistic study of a small molecule inhibitor for motor protein KIFC1. ACS Chem Biol 8:2201–2208. doi: 10.1021/cb400186w CrossRefPubMedGoogle Scholar
  76. 76.
    Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460:278–282. doi:nature08136 [pii] 10.1038/nature08136 CrossRefPubMedCentralPubMedGoogle Scholar
  77. 77.
    Silkworth WT, Nardi IK, Scholl LM, Cimini D (2009) Multipolar spindle pole coalescence is a major source of kinetochore mis-attachment and chromosome mis-segregation in cancer cells. PLoS One 4:e6564. doi: 10.1371/journal.pone.0006564 CrossRefPubMedCentralPubMedGoogle Scholar
  78. 78.
    Ogden A, Rida PC, Aneja R (2013) Heading off with the herd: how cancer cells might maneuver supernumerary centrosomes for directional migration. Cancer Metastasis Rev 32:269–287. doi: 10.1007/s10555-012-9413-5 CrossRefPubMedCentralPubMedGoogle Scholar
  79. 79.
    Watts CA et al (2013) Design, synthesis, and biological evaluation of an allosteric inhibitor of HSET that targets cancer cells with supernumerary centrosomes. Chem Biol 20:1399–1410. doi:S1074-5521(13)00348-7 [pii] 10.1016/j.chembiol.2013.09.012 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Vaishali Pannu
    • 1
  • Padmashree C. G. Rida
    • 1
  • Ritu Aneja
    • 1
    Email author
  1. 1.Department of BiologyGeorgia State UniversityAtlantaUSA

Personalised recommendations