Skip to main content

Down-Regulating CENP-E Activity: For Better or for Worse

  • Chapter
  • First Online:
Kinesins and Cancer

Abstract

CENP-E is a kinesin located at the kinetochore that mediates chromosome dynamics throughout mitosis. From one end, the molecule is anchored at the kinetochore, while its N-terminus walks toward the microtubule plus-ends. This participates to bring mono-oriented chromosomes toward the metaphase plate in prometaphase. Besides, CENP-E displays a second binding site in its C-terminus and an extremely long coiled-coil domain in its central section. Those features in combination with its motor activity allows CENP-E the unique ability, for a kinesin, to track both growing and shrinking microtubule ends. This tip-tracking ability contributes to the stabilization of chromosomes attachment when they achieve bi-orientation in metaphase and during their poleward movement in anaphase. CENP-E possess several characteristics that makes it a good target for chemotherapeutic strategies: (i) its enzymatic activity can be inhibited, (ii) its function is essential to cell viability, (iii) its roles are thought to be restricted to mitosis, and (iv) it is overexpressed in various cancers, which could open a therapeutic window. Nevertheless although several CENP-E inhibitors have been developed, whether they display therapeutic efficiency remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Putkey FR et al (2002) Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Dev Cell 3:351–365

    Article  CAS  PubMed  Google Scholar 

  2. Wood KW, Sakowicz R, Goldstein LS, Cleveland DW (1997) CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91:357–366

    Article  CAS  PubMed  Google Scholar 

  3. Schaar BT, Chan GK, Maddox P, Salmon ED, Yen TJ (1997) CENP-E function at kinetochores is essential for chromosome alignment. J Cell Biol 139:1373–1382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Yucel JK et al (2000) CENP-meta, an essential kinetochore kinesin required for the maintenance of metaphase chromosome alignment in Drosophila. J Cell Biol 150:1–11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Yao X, Abrieu A, Zheng Y, Sullivan KF, Cleveland DW (2000) CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nat Cell Biol 2:484–491

    Article  CAS  PubMed  Google Scholar 

  6. Tanudji M et al (2004) Gene silencing of CENP-E by small interfering RNA in HeLa cells leads to missegregation of chromosomes after a mitotic delay. Mol Biol Cell 15:3771–3781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Wood KW et al (2010) Antitumor activity of an allosteric inhibitor of centromere-associated protein-E. Proc Natl Acad Sci U S A 107:5839–5844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Kapoor TM et al (2006) Chromosomes can congress to the metaphase plate before biorientation. Science 311:388–391

    Article  CAS  PubMed  Google Scholar 

  9. Kim Y, Heuser JE, Waterman CM, Cleveland DW (2008) CENP-E combines a slow, processive motor and a flexible coiled coil to produce an essential motile kinetochore tether. J Cell Biol 181:411–419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Gudimchuk N et al (2013) Kinetochore kinesin CENP-E is a processive bi-directional tracker of dynamic microtubule tips. Nat Cell Biol 15:1079–1088

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Garcia-Saez I, Yen T, Wade RH, Kozielski F (2004) Crystal structure of the motor domain of the human kinetochore protein CENP-E. J Mol Biol 340:1107–1116

    Article  CAS  PubMed  Google Scholar 

  12. Sardar HS, Luczak VG, Lopez MM, Lister BC, Gilbert SP (2010) Mitotic kinesin CENP-E promotes microtubule plus-end elongation. Curr Biol 20:1648–1653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Rosenfeld SS et al (2009) The ATPase cycle of the mitotic motor CENP-E. J Biol Chem 284:32858–32868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Espeut J et al (2008) Phosphorylation relieves autoinhibition of the kinetochore motor Cenp-E. Mol Cell 29:637–643

    Article  CAS  PubMed  Google Scholar 

  15. Yardimci H, van Duffelen M, Mao Y, Rosenfeld SS, Selvin PR (2008) The mitotic kinesin CENP-E is a processive transport motor. Proc Natl Acad Sci U S A 105:6016–6021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Lombillo VA, Nislow C, Yen TJ, Gelfand VI, McIntosh JR (1995) Antibodies to the kinesin motor domain and CENP-E inhibit microtubule depolymerization-dependent motion of chromosomes in vitro [see comments]. J Cell Biol 128:107–115

    Article  CAS  PubMed  Google Scholar 

  17. Musinipally V, Howes S, Alushin GM, Nogales E (2013) The microtubule binding properties of CENP-E’s C-terminus and CENP-F. J Mol Biol 425:4427–4441

    Article  CAS  PubMed  Google Scholar 

  18. Sardar HS, Gilbert SP (2012) Microtubule capture by mitotic kinesin centromere protein E (CENP-E). J Biol Chem 287:24894–24904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Maffini S et al (2009) Motor-independent targeting of CLASPs to kinetochores by CENP-E promotes microtubule turnover and poleward flux. Curr Biol 19:1566–1572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Kim Y, Holland AJ, Lan W, Cleveland DW (2010) Aurora kinases and protein phosphatase 1 mediate chromosome congression through regulation of CENP-E. Cell 142:444–455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Nousiainen M, Sillje HH, Sauer G, Nigg EA, Korner R (2006) Phosphoproteome analysis of the human mitotic spindle. Proc Natl Acad Sci U S A 103:5391–5396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Zhang XD et al (2008) SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis. Mol Cell 29:729–741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ashar HR et al (2000) Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. J Biol Chem 275:30451–30457

    Article  CAS  PubMed  Google Scholar 

  24. Chan GK, Schaar BT, Yen TJ (1998) Characterization of the kinetochore binding domain of CENP-E reveals interactions with the kinetochore proteins CENP-F and hBUBR1. J Cell Biol 143:49–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Topper LM, Bastians H, Ruderman JV, Gorbsky GJ (2001) Elevating the level of Cdc34/Ubc3 ubiquitin-conjugating enzyme in mitosis inhibits association of CENP-E with kinetochores and blocks the metaphase alignment of chromosomes. J Cell Biol 154:707–717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Huang Y et al (2012) CENP-E kinesin interacts with SKAP protein to orchestrate accurate chromosome segregation in mitosis. J Biol Chem 287:1500–1509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Wang X et al (2012) Mitotic regulator SKAP forms a link between kinetochore core complex KMN and dynamic spindle microtubules. J Biol Chem 287:39380–39390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Liu D et al (2007) Human NUF2 interacts with centromere-associated protein E and is essential for a stable spindle microtubule-kinetochore attachment. J Biol Chem 282:21415–21424

    Article  CAS  PubMed  Google Scholar 

  29. Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A (2006) The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127:983–997

    Article  CAS  PubMed  Google Scholar 

  30. Lampson MA, Kapoor TM (2005) The human mitotic checkpoint protein BubR1 regulates chromosome-spindle attachments. Nat Cell Biol 7:93–98

    Article  CAS  PubMed  Google Scholar 

  31. Maiato H, Logarinho E (2011) Motor-dependent and -independent roles of CENP-E at kinetochores: the cautionary tale of UA62784. Chem Biol 18:679–680

    Article  CAS  PubMed  Google Scholar 

  32. Abrieu A, Kahana JA, Wood KW, Cleveland DW (2000) CENP-E as an essential component of the mitotic checkpoint in vitro. Cell 102:817–826

    Article  CAS  PubMed  Google Scholar 

  33. Mao Y, Abrieu A, Cleveland DW (2003) Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1. Cell 114:87–98

    Article  CAS  PubMed  Google Scholar 

  34. Mao Y, Desai A, Cleveland DW (2005) Microtubule capture by CENP-E silences BubR1-dependent mitotic checkpoint signaling. J Cell Biol 170:873–880

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Weaver BA et al (2003) Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. J Cell Biol 162:551–563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Guo Y, Kim C, Ahmad S, Zhang J, Mao Y (2012) CENP-E–dependent BubR1 autophosphorylation enhances chromosome alignment and the mitotic checkpoint. J Cell Biol 198:205–217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Suijkerbuijk SJ et al (2012) The vertebrate mitotic checkpoint protein BUBR1 is an unusual pseudokinase. Dev Cell 22:1321–1329

    Article  CAS  PubMed  Google Scholar 

  38. Han JS et al (2013) Catalytic assembly of the mitotic checkpoint inhibitor BubR1-Cdc20 by a Mad2-induced functional switch in Cdc20. Mol Cell 51:92–104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Park I et al (2013) Loss of BubR1 acetylation causes defects in spindle assembly checkpoint signaling and promotes tumor formation. J Cell Biol 202:295–309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Brown KD, Wood KW, Cleveland DW (1996) The kinesin-like protein CENP-E is kinetochore-associated throughout poleward chromosome segregation during anaphase-A. J Cell Sci 109(Pt 5):961–969

    CAS  PubMed  Google Scholar 

  41. Cooke CA, Schaar B, Yen TJ, Earnshaw WC (1997) Localization of CENP-E in the fibrous corona and outer plate of mammalian kinetochores from prometaphase through anaphase. Chromosoma 106:446–455

    Article  CAS  PubMed  Google Scholar 

  42. Brown KD, Coulson RM, Yen TJ, Cleveland DW (1994) Cyclin-like accumulation and loss of the putative kinetochore motor CENP-E results from coupling continuous synthesis with specific degradation at the end of mitosis. J Cell Biol 125:1303–1312

    Article  CAS  PubMed  Google Scholar 

  43. Savoian MS, Earnshaw WC, Khodjakov A, Rieder CL (1999) Cleavage furrows formed between centrosomes lacking an intervening spindle and chromosomes contain microtubule bundles, INCENP, and CHO1 but not CENP-E. Mol Biol Cell 10:297–311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Lindon C, Pines J (2004) Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells. J Cell Biol 164:233–241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Spiliotis ET, Kinoshita M, Nelson WJ (2005) A mitotic septin scaffold required for mammalian chromosome congression and segregation. Science 307:1781–1785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Zhu M et al (2008) Septin 7 interacts with centromere-associated protein E and is required for its kinetochore localization. J Biol Chem 283:18916–18925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Kurasawa Y, Earnshaw WC, Mochizuki Y, Dohmae N, Todokoro K (2004) Essential roles of KIF4 and its binding partner PRC1 in organized central spindle midzone formation. EMBO J 23:3237–3248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Bieling P, Telley IA, Surrey T (2010) A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps. Cell 142:420–432

    Article  CAS  PubMed  Google Scholar 

  49. Subramanian R et al (2010) Insights into antiparallel microtubule crosslinking by PRC1, a conserved nonmotor microtubule binding protein. Cell 142:433–443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Liu D et al (2006) Interaction of Skp1 with CENP-E at the midbody is essential for cytokinesis. Biochem Biophys Res Commun 345:394–402

    Article  CAS  PubMed  Google Scholar 

  51. Gascoigne KE, Taylor SS (2008) Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 14:111–122

    Article  CAS  PubMed  Google Scholar 

  52. Topham CH, Taylor SS (2013) Mitosis and apoptosis: how is the balance set? Curr Opin Cell Biol 25:780–785

    Article  CAS  PubMed  Google Scholar 

  53. Janssen A, van der Burg M, Szuhai K, Kops GJ, Medema RH (2011) Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333:1895–1898

    Article  CAS  PubMed  Google Scholar 

  54. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  CAS  PubMed  Google Scholar 

  55. Weaver BA, Silk AD, Montagna C, Verdier-Pinard P, Cleveland DW (2007) Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11:25–36

    Article  CAS  PubMed  Google Scholar 

  56. Janssen A, Kops GJ, Medema RH (2009) Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proc Natl Acad Sci U S A 106:19108–19113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Torres EM et al (2007) Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317:916–924

    Article  CAS  PubMed  Google Scholar 

  58. Williams BR et al (2008) Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 322:703–709

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Torres EM et al (2010) Identification of aneuploidy-tolerating mutations. Cell 143:71–83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Tang YC, Williams BR, Siegel JJ, Amon A (2011) Identification of aneuploidy-selective antiproliferation compounds. Cell 144:499–512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Sheltzer JM et al (2011) Aneuploidy drives genomic instability in yeast. Science 333:1026–1030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Liu Z et al (2009) Reduced expression of cenp-e in human hepatocellular carcinoma. J Exp Clin Cancer Res 28:156

    Article  PubMed Central  PubMed  Google Scholar 

  63. Torres JZ et al (2011) The STARD9/Kif16a kinesin associates with mitotic microtubules and regulates spindle pole assembly. Cell 147:1309–1323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Agarwal R et al (2009) Integrative analysis of cyclin protein levels identifies cyclin b1 as a classifier and predictor of outcomes in breast cancer. Clin Cancer Res 15:3654–3662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Chibon F et al (2010) Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nat Med 16:781–787

    Article  CAS  PubMed  Google Scholar 

  66. Raverot G et al (2010) Prognostic factors in prolactin pituitary tumors: clinical, histological, and molecular data from a series of 94 patients with a long postoperative follow-up. J Clin Endocrinol Metab 95:1708–1716

    Article  CAS  PubMed  Google Scholar 

  67. Bie L et al (2011) The accuracy of survival time prediction for patients with glioma is improved by measuring mitotic spindle checkpoint gene expression. PLoS One 6:e25631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Ju W et al (2009) Identification of genes with differential expression in chemoresistant epithelial ovarian cancer using high-density oligonucleotide microarrays. Oncol Res 18:47–56

    Article  CAS  PubMed  Google Scholar 

  69. DeRycke MS et al (2013) Identification of novel variants in colorectal cancer families by high-throughput exome sequencing. Cancer Epidemiol Biomarkers Prev 22:1239–1251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Sakowicz R et al (1998) A marine natural product inhibitor of kinesin motors. Science 280:292–295

    Article  CAS  PubMed  Google Scholar 

  71. Sutton D et al (2007) GSK923295A, a potent and selective CENP-E inhibitor, has broad spectrum activity against human tumor xenografts in nude mice. In Proceedings of the American Association for Cancer Research, Los Angeles, Abstract #1522

    Google Scholar 

  72. Lock RB et al (2012) Initial testing of the CENP-E inhibitor GSK923295A by the pediatric preclinical testing program. Pediatr Blood Cancer 58:916–923

    Article  PubMed Central  PubMed  Google Scholar 

  73. Chung V et al (2012) First-time-in-human study of GSK923295, a novel antimitotic inhibitor of centromere-associated protein E (CENP-E), in patients with refractory cancer. Cancer Chemother Pharmacol 69:733–741

    Article  CAS  PubMed  Google Scholar 

  74. Henderson MC et al (2009) UA62784, a novel inhibitor of centromere protein E kinesin-like protein. Mol Cancer Ther 8:36–44

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Tcherniuk S, Deshayes S, Sarli V, Divita G, Abrieu A (2011) UA62784 is a cytotoxic inhibitor of microtubules, not CENP-E. Chem Biol 18:631–641

    Article  CAS  PubMed  Google Scholar 

  76. Schafer-Hales K et al (2007) Farnesyl transferase inhibitors impair chromosomal maintenance in cell lines and human tumors by compromising CENP-E and CENP-F function. Mol Cancer Ther 6:1317–1328

    Article  CAS  PubMed  Google Scholar 

  77. Ding X et al (2010) Probing CENP-E function in chromosome dynamics using small molecule inhibitor syntelin. Cell Res 20:1386–1389

    Article  PubMed Central  PubMed  Google Scholar 

  78. Hirayama T et al (2013) Synthetic studies of centromere-associated protein-E (CENP-E) inhibitors: 1. Exploration of fused bicyclic core scaffolds using electrostatic potential map. Bioorg Med Chem 21:5488–5502

    Article  CAS  PubMed  Google Scholar 

  79. Wood KW, Chua P, Sutton D, Jackson JR (2008) Centromere-associated protein E: a motor that puts the brakes on the mitotic checkpoint. Clin Cancer Res 14:7588–7592

    Article  CAS  PubMed  Google Scholar 

  80. Malumbres M (2011) Physiological relevance of cell cycle kinases. Physiol Rev 91:973–1007

    Article  CAS  PubMed  Google Scholar 

  81. Nara M et al (2013) Bortezomib reduces the tumorigenicity of multiple myeloma via downregulation of upregulated targets in clonogenic side population cells. PLoS One 8:e56954

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Komlodi-Pasztor E, Sackett D, Wilkerson J, Fojo T (2011) Mitosis is not a key target of microtubule agents in patient tumors. Nat Rev Clin Oncol 8:244–250

    Article  CAS  PubMed  Google Scholar 

  83. Balamuth NJ et al (2010) Serial transcriptome analysis and cross-species integration identifies centromere-associated protein E as a novel neuroblastoma target. Cancer Res 70:2749–2758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Wan X et al (2009) Protein architecture of the human kinetochore microtubule attachment site. Cell 137:672–684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Welburn JP, Cheeseman IM (2008) Toward a molecular structure of the eukaryotic kinetochore. Dev Cell 15:645–655

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariane Abrieu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Espeut, J., Abrieu, A. (2015). Down-Regulating CENP-E Activity: For Better or for Worse. In: Kozielski, FSB, F. (eds) Kinesins and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9732-0_6

Download citation

Publish with us

Policies and ethics