Advertisement

Down-Regulating CENP-E Activity: For Better or for Worse

  • Julien Espeut
  • Ariane AbrieuEmail author
Chapter

Abstract

CENP-E is a kinesin located at the kinetochore that mediates chromosome dynamics throughout mitosis. From one end, the molecule is anchored at the kinetochore, while its N-terminus walks toward the microtubule plus-ends. This participates to bring mono-oriented chromosomes toward the metaphase plate in prometaphase. Besides, CENP-E displays a second binding site in its C-terminus and an extremely long coiled-coil domain in its central section. Those features in combination with its motor activity allows CENP-E the unique ability, for a kinesin, to track both growing and shrinking microtubule ends. This tip-tracking ability contributes to the stabilization of chromosomes attachment when they achieve bi-orientation in metaphase and during their poleward movement in anaphase. CENP-E possess several characteristics that makes it a good target for chemotherapeutic strategies: (i) its enzymatic activity can be inhibited, (ii) its function is essential to cell viability, (iii) its roles are thought to be restricted to mitosis, and (iv) it is overexpressed in various cancers, which could open a therapeutic window. Nevertheless although several CENP-E inhibitors have been developed, whether they display therapeutic efficiency remains to be determined.

Keywords

Vinca Alkaloid Motor Domain Metaphase Plate Spindle Assembly Checkpoint Mitotic Catastrophe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Putkey FR et al (2002) Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Dev Cell 3:351–365CrossRefPubMedGoogle Scholar
  2. 2.
    Wood KW, Sakowicz R, Goldstein LS, Cleveland DW (1997) CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91:357–366CrossRefPubMedGoogle Scholar
  3. 3.
    Schaar BT, Chan GK, Maddox P, Salmon ED, Yen TJ (1997) CENP-E function at kinetochores is essential for chromosome alignment. J Cell Biol 139:1373–1382CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Yucel JK et al (2000) CENP-meta, an essential kinetochore kinesin required for the maintenance of metaphase chromosome alignment in Drosophila. J Cell Biol 150:1–11CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Yao X, Abrieu A, Zheng Y, Sullivan KF, Cleveland DW (2000) CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nat Cell Biol 2:484–491CrossRefPubMedGoogle Scholar
  6. 6.
    Tanudji M et al (2004) Gene silencing of CENP-E by small interfering RNA in HeLa cells leads to missegregation of chromosomes after a mitotic delay. Mol Biol Cell 15:3771–3781CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Wood KW et al (2010) Antitumor activity of an allosteric inhibitor of centromere-associated protein-E. Proc Natl Acad Sci U S A 107:5839–5844CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Kapoor TM et al (2006) Chromosomes can congress to the metaphase plate before biorientation. Science 311:388–391CrossRefPubMedGoogle Scholar
  9. 9.
    Kim Y, Heuser JE, Waterman CM, Cleveland DW (2008) CENP-E combines a slow, processive motor and a flexible coiled coil to produce an essential motile kinetochore tether. J Cell Biol 181:411–419CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Gudimchuk N et al (2013) Kinetochore kinesin CENP-E is a processive bi-directional tracker of dynamic microtubule tips. Nat Cell Biol 15:1079–1088CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Garcia-Saez I, Yen T, Wade RH, Kozielski F (2004) Crystal structure of the motor domain of the human kinetochore protein CENP-E. J Mol Biol 340:1107–1116CrossRefPubMedGoogle Scholar
  12. 12.
    Sardar HS, Luczak VG, Lopez MM, Lister BC, Gilbert SP (2010) Mitotic kinesin CENP-E promotes microtubule plus-end elongation. Curr Biol 20:1648–1653CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Rosenfeld SS et al (2009) The ATPase cycle of the mitotic motor CENP-E. J Biol Chem 284:32858–32868CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Espeut J et al (2008) Phosphorylation relieves autoinhibition of the kinetochore motor Cenp-E. Mol Cell 29:637–643CrossRefPubMedGoogle Scholar
  15. 15.
    Yardimci H, van Duffelen M, Mao Y, Rosenfeld SS, Selvin PR (2008) The mitotic kinesin CENP-E is a processive transport motor. Proc Natl Acad Sci U S A 105:6016–6021CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Lombillo VA, Nislow C, Yen TJ, Gelfand VI, McIntosh JR (1995) Antibodies to the kinesin motor domain and CENP-E inhibit microtubule depolymerization-dependent motion of chromosomes in vitro [see comments]. J Cell Biol 128:107–115CrossRefPubMedGoogle Scholar
  17. 17.
    Musinipally V, Howes S, Alushin GM, Nogales E (2013) The microtubule binding properties of CENP-E’s C-terminus and CENP-F. J Mol Biol 425:4427–4441CrossRefPubMedGoogle Scholar
  18. 18.
    Sardar HS, Gilbert SP (2012) Microtubule capture by mitotic kinesin centromere protein E (CENP-E). J Biol Chem 287:24894–24904CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Maffini S et al (2009) Motor-independent targeting of CLASPs to kinetochores by CENP-E promotes microtubule turnover and poleward flux. Curr Biol 19:1566–1572CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Kim Y, Holland AJ, Lan W, Cleveland DW (2010) Aurora kinases and protein phosphatase 1 mediate chromosome congression through regulation of CENP-E. Cell 142:444–455CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Nousiainen M, Sillje HH, Sauer G, Nigg EA, Korner R (2006) Phosphoproteome analysis of the human mitotic spindle. Proc Natl Acad Sci U S A 103:5391–5396CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Zhang XD et al (2008) SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis. Mol Cell 29:729–741CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Ashar HR et al (2000) Farnesyl transferase inhibitors block the farnesylation of CENP-E and CENP-F and alter the association of CENP-E with the microtubules. J Biol Chem 275:30451–30457CrossRefPubMedGoogle Scholar
  24. 24.
    Chan GK, Schaar BT, Yen TJ (1998) Characterization of the kinetochore binding domain of CENP-E reveals interactions with the kinetochore proteins CENP-F and hBUBR1. J Cell Biol 143:49–63CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Topper LM, Bastians H, Ruderman JV, Gorbsky GJ (2001) Elevating the level of Cdc34/Ubc3 ubiquitin-conjugating enzyme in mitosis inhibits association of CENP-E with kinetochores and blocks the metaphase alignment of chromosomes. J Cell Biol 154:707–717CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Huang Y et al (2012) CENP-E kinesin interacts with SKAP protein to orchestrate accurate chromosome segregation in mitosis. J Biol Chem 287:1500–1509CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Wang X et al (2012) Mitotic regulator SKAP forms a link between kinetochore core complex KMN and dynamic spindle microtubules. J Biol Chem 287:39380–39390CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Liu D et al (2007) Human NUF2 interacts with centromere-associated protein E and is essential for a stable spindle microtubule-kinetochore attachment. J Biol Chem 282:21415–21424CrossRefPubMedGoogle Scholar
  29. 29.
    Cheeseman IM, Chappie JS, Wilson-Kubalek EM, Desai A (2006) The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127:983–997CrossRefPubMedGoogle Scholar
  30. 30.
    Lampson MA, Kapoor TM (2005) The human mitotic checkpoint protein BubR1 regulates chromosome-spindle attachments. Nat Cell Biol 7:93–98CrossRefPubMedGoogle Scholar
  31. 31.
    Maiato H, Logarinho E (2011) Motor-dependent and -independent roles of CENP-E at kinetochores: the cautionary tale of UA62784. Chem Biol 18:679–680CrossRefPubMedGoogle Scholar
  32. 32.
    Abrieu A, Kahana JA, Wood KW, Cleveland DW (2000) CENP-E as an essential component of the mitotic checkpoint in vitro. Cell 102:817–826CrossRefPubMedGoogle Scholar
  33. 33.
    Mao Y, Abrieu A, Cleveland DW (2003) Activating and silencing the mitotic checkpoint through CENP-E-dependent activation/inactivation of BubR1. Cell 114:87–98CrossRefPubMedGoogle Scholar
  34. 34.
    Mao Y, Desai A, Cleveland DW (2005) Microtubule capture by CENP-E silences BubR1-dependent mitotic checkpoint signaling. J Cell Biol 170:873–880CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Weaver BA et al (2003) Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. J Cell Biol 162:551–563CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Guo Y, Kim C, Ahmad S, Zhang J, Mao Y (2012) CENP-E–dependent BubR1 autophosphorylation enhances chromosome alignment and the mitotic checkpoint. J Cell Biol 198:205–217CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Suijkerbuijk SJ et al (2012) The vertebrate mitotic checkpoint protein BUBR1 is an unusual pseudokinase. Dev Cell 22:1321–1329CrossRefPubMedGoogle Scholar
  38. 38.
    Han JS et al (2013) Catalytic assembly of the mitotic checkpoint inhibitor BubR1-Cdc20 by a Mad2-induced functional switch in Cdc20. Mol Cell 51:92–104CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Park I et al (2013) Loss of BubR1 acetylation causes defects in spindle assembly checkpoint signaling and promotes tumor formation. J Cell Biol 202:295–309CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Brown KD, Wood KW, Cleveland DW (1996) The kinesin-like protein CENP-E is kinetochore-associated throughout poleward chromosome segregation during anaphase-A. J Cell Sci 109(Pt 5):961–969PubMedGoogle Scholar
  41. 41.
    Cooke CA, Schaar B, Yen TJ, Earnshaw WC (1997) Localization of CENP-E in the fibrous corona and outer plate of mammalian kinetochores from prometaphase through anaphase. Chromosoma 106:446–455CrossRefPubMedGoogle Scholar
  42. 42.
    Brown KD, Coulson RM, Yen TJ, Cleveland DW (1994) Cyclin-like accumulation and loss of the putative kinetochore motor CENP-E results from coupling continuous synthesis with specific degradation at the end of mitosis. J Cell Biol 125:1303–1312CrossRefPubMedGoogle Scholar
  43. 43.
    Savoian MS, Earnshaw WC, Khodjakov A, Rieder CL (1999) Cleavage furrows formed between centrosomes lacking an intervening spindle and chromosomes contain microtubule bundles, INCENP, and CHO1 but not CENP-E. Mol Biol Cell 10:297–311CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Lindon C, Pines J (2004) Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells. J Cell Biol 164:233–241CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Spiliotis ET, Kinoshita M, Nelson WJ (2005) A mitotic septin scaffold required for mammalian chromosome congression and segregation. Science 307:1781–1785CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Zhu M et al (2008) Septin 7 interacts with centromere-associated protein E and is required for its kinetochore localization. J Biol Chem 283:18916–18925CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Kurasawa Y, Earnshaw WC, Mochizuki Y, Dohmae N, Todokoro K (2004) Essential roles of KIF4 and its binding partner PRC1 in organized central spindle midzone formation. EMBO J 23:3237–3248CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Bieling P, Telley IA, Surrey T (2010) A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps. Cell 142:420–432CrossRefPubMedGoogle Scholar
  49. 49.
    Subramanian R et al (2010) Insights into antiparallel microtubule crosslinking by PRC1, a conserved nonmotor microtubule binding protein. Cell 142:433–443CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Liu D et al (2006) Interaction of Skp1 with CENP-E at the midbody is essential for cytokinesis. Biochem Biophys Res Commun 345:394–402CrossRefPubMedGoogle Scholar
  51. 51.
    Gascoigne KE, Taylor SS (2008) Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 14:111–122CrossRefPubMedGoogle Scholar
  52. 52.
    Topham CH, Taylor SS (2013) Mitosis and apoptosis: how is the balance set? Curr Opin Cell Biol 25:780–785CrossRefPubMedGoogle Scholar
  53. 53.
    Janssen A, van der Burg M, Szuhai K, Kops GJ, Medema RH (2011) Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333:1895–1898CrossRefPubMedGoogle Scholar
  54. 54.
    Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310CrossRefPubMedGoogle Scholar
  55. 55.
    Weaver BA, Silk AD, Montagna C, Verdier-Pinard P, Cleveland DW (2007) Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11:25–36CrossRefPubMedGoogle Scholar
  56. 56.
    Janssen A, Kops GJ, Medema RH (2009) Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proc Natl Acad Sci U S A 106:19108–19113CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Torres EM et al (2007) Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317:916–924CrossRefPubMedGoogle Scholar
  58. 58.
    Williams BR et al (2008) Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 322:703–709CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Torres EM et al (2010) Identification of aneuploidy-tolerating mutations. Cell 143:71–83CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Tang YC, Williams BR, Siegel JJ, Amon A (2011) Identification of aneuploidy-selective antiproliferation compounds. Cell 144:499–512CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Sheltzer JM et al (2011) Aneuploidy drives genomic instability in yeast. Science 333:1026–1030CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Liu Z et al (2009) Reduced expression of cenp-e in human hepatocellular carcinoma. J Exp Clin Cancer Res 28:156CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Torres JZ et al (2011) The STARD9/Kif16a kinesin associates with mitotic microtubules and regulates spindle pole assembly. Cell 147:1309–1323CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Agarwal R et al (2009) Integrative analysis of cyclin protein levels identifies cyclin b1 as a classifier and predictor of outcomes in breast cancer. Clin Cancer Res 15:3654–3662CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Chibon F et al (2010) Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nat Med 16:781–787CrossRefPubMedGoogle Scholar
  66. 66.
    Raverot G et al (2010) Prognostic factors in prolactin pituitary tumors: clinical, histological, and molecular data from a series of 94 patients with a long postoperative follow-up. J Clin Endocrinol Metab 95:1708–1716CrossRefPubMedGoogle Scholar
  67. 67.
    Bie L et al (2011) The accuracy of survival time prediction for patients with glioma is improved by measuring mitotic spindle checkpoint gene expression. PLoS One 6:e25631CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Ju W et al (2009) Identification of genes with differential expression in chemoresistant epithelial ovarian cancer using high-density oligonucleotide microarrays. Oncol Res 18:47–56CrossRefPubMedGoogle Scholar
  69. 69.
    DeRycke MS et al (2013) Identification of novel variants in colorectal cancer families by high-throughput exome sequencing. Cancer Epidemiol Biomarkers Prev 22:1239–1251CrossRefPubMedCentralPubMedGoogle Scholar
  70. 70.
    Sakowicz R et al (1998) A marine natural product inhibitor of kinesin motors. Science 280:292–295CrossRefPubMedGoogle Scholar
  71. 71.
    Sutton D et al (2007) GSK923295A, a potent and selective CENP-E inhibitor, has broad spectrum activity against human tumor xenografts in nude mice. In Proceedings of the American Association for Cancer Research, Los Angeles, Abstract #1522Google Scholar
  72. 72.
    Lock RB et al (2012) Initial testing of the CENP-E inhibitor GSK923295A by the pediatric preclinical testing program. Pediatr Blood Cancer 58:916–923CrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    Chung V et al (2012) First-time-in-human study of GSK923295, a novel antimitotic inhibitor of centromere-associated protein E (CENP-E), in patients with refractory cancer. Cancer Chemother Pharmacol 69:733–741CrossRefPubMedGoogle Scholar
  74. 74.
    Henderson MC et al (2009) UA62784, a novel inhibitor of centromere protein E kinesin-like protein. Mol Cancer Ther 8:36–44CrossRefPubMedCentralPubMedGoogle Scholar
  75. 75.
    Tcherniuk S, Deshayes S, Sarli V, Divita G, Abrieu A (2011) UA62784 is a cytotoxic inhibitor of microtubules, not CENP-E. Chem Biol 18:631–641CrossRefPubMedGoogle Scholar
  76. 76.
    Schafer-Hales K et al (2007) Farnesyl transferase inhibitors impair chromosomal maintenance in cell lines and human tumors by compromising CENP-E and CENP-F function. Mol Cancer Ther 6:1317–1328CrossRefPubMedGoogle Scholar
  77. 77.
    Ding X et al (2010) Probing CENP-E function in chromosome dynamics using small molecule inhibitor syntelin. Cell Res 20:1386–1389CrossRefPubMedCentralPubMedGoogle Scholar
  78. 78.
    Hirayama T et al (2013) Synthetic studies of centromere-associated protein-E (CENP-E) inhibitors: 1. Exploration of fused bicyclic core scaffolds using electrostatic potential map. Bioorg Med Chem 21:5488–5502CrossRefPubMedGoogle Scholar
  79. 79.
    Wood KW, Chua P, Sutton D, Jackson JR (2008) Centromere-associated protein E: a motor that puts the brakes on the mitotic checkpoint. Clin Cancer Res 14:7588–7592CrossRefPubMedGoogle Scholar
  80. 80.
    Malumbres M (2011) Physiological relevance of cell cycle kinases. Physiol Rev 91:973–1007CrossRefPubMedGoogle Scholar
  81. 81.
    Nara M et al (2013) Bortezomib reduces the tumorigenicity of multiple myeloma via downregulation of upregulated targets in clonogenic side population cells. PLoS One 8:e56954CrossRefPubMedCentralPubMedGoogle Scholar
  82. 82.
    Komlodi-Pasztor E, Sackett D, Wilkerson J, Fojo T (2011) Mitosis is not a key target of microtubule agents in patient tumors. Nat Rev Clin Oncol 8:244–250CrossRefPubMedGoogle Scholar
  83. 83.
    Balamuth NJ et al (2010) Serial transcriptome analysis and cross-species integration identifies centromere-associated protein E as a novel neuroblastoma target. Cancer Res 70:2749–2758CrossRefPubMedCentralPubMedGoogle Scholar
  84. 84.
    Wan X et al (2009) Protein architecture of the human kinetochore microtubule attachment site. Cell 137:672–684CrossRefPubMedCentralPubMedGoogle Scholar
  85. 85.
    Welburn JP, Cheeseman IM (2008) Toward a molecular structure of the eukaryotic kinetochore. Dev Cell 15:645–655CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Université Montpellier, CRBMMontpellierFrance
  2. 2.CNRS UMR 5237MontpellierFrance

Personalised recommendations