Kif15: A Useful Target for Anti-cancer Therapy?

  • Roy G. H. P. van Heesbeen
  • René H. MedemaEmail author


Kif15 (kinesin-12) was discovered a decade ago as a kinesin motor involved in bipolar spindle assembly. Although its exact molecular function is still under debate, data from recent studies indicate that Kif15 cooperates with Eg5 (kinesin-5) to promote centrosome separation and bipolar spindle assembly. Due to the essential function of Eg5 in bipolar spindle assembly, inhibitors of this protein recently entered clinical trails as anti-cancer therapy. However, several studies from past years indicate that Eg5 is not essential for bipolar spindle assembly under certain conditions and Kif15 seems to the central player in mediating Eg5-independent bipolar spindle assembly. In this chapter, we describe the function of Kif15 during mitosis and discuss if Kif15 could be a target for drug development in anticancer therapy.


Spindle Assembly Bipolar Spindle Nuclear Envelope Breakdown Monopolar Spindle Centrosome Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tanenbaum ME, Medema RH (2010) Mechanisms of centrosome separation and bipolar spindle assembly. Dev Cell 19(6):797–806CrossRefPubMedGoogle Scholar
  2. 2.
    Kashina AS et al (1996) A bipolar kinesin. Nature 379(6562):270–272CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Kapitein LC et al (2005) The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435(7038):114–118CrossRefPubMedGoogle Scholar
  4. 4.
    van den Wildenberg SMJL et al (2008) The homotetrameric kinesin-5 KLP61F preferentially crosslinks microtubules into antiparallel orientations. Curr Biol 18(23):1860–1864CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Blangy A et al (1995) Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83(7):1159–1169CrossRefPubMedGoogle Scholar
  6. 6.
    Sawin KE et al (1992) Mitotic spindle organization by a plus-end-directed microtubule motor. Nature 359(6395):540–543CrossRefPubMedGoogle Scholar
  7. 7.
    Tanenbaum ME et al (2008) Dynein, Lis1 and CLIP-170 counteract Eg5-dependent centrosome separation during bipolar spindle assembly. EMBO J 27(24):3235–3245CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Whitehead CM, Rattner JB (1998) Expanding the role of HsEg5 within the mitotic and post-mitotic phases of the cell cycle. J Cell Sci 111(Pt 17):2551–2561PubMedGoogle Scholar
  9. 9.
    Ferenz NP et al (2009) Dynein antagonizes Eg5 by crosslinking and sliding antiparallel microtubules. Curr Biol 19(21):1833–1838CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Mountain V et al (1999) The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. J Cell Biol 147(2):351–366CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Raaijmakers JA et al (2012) Nuclear envelope-associated dynein drives prophase centrosome separation and enables Eg5-independent bipolar spindle formation. EMBO J 31(21):4179–4190CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Sharp DJ et al (1999) Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos. Nat Cell Biol 1(1):51–54CrossRefPubMedGoogle Scholar
  13. 13.
    Kapoor TM et al (2000) Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J Cell Biol 150(5):975–988CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Kollu S, Bakhoum SF, Compton DA (2009) Interplay of microtubule dynamics and sliding during bipolar spindle formation in mammalian cells. Curr Biol 19(24):2108–2113CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Tanenbaum ME et al (2009) Kif15 cooperates with Eg5 to promote bipolar spindle assembly. Curr Biol 19(20):1703–1711CrossRefPubMedGoogle Scholar
  16. 16.
    Vanneste D et al (2009) The role of Hklp2 in the stabilization and maintenance of spindle bipolarity. Curr Biol 19(20):1712–1717CrossRefPubMedGoogle Scholar
  17. 17.
    Bishop JD, Han Z, Schumacher JM (2005) The Caenorhabditis elegans Aurora B kinase AIR-2 phosphorylates and is required for the localization of a BimC kinesin to meiotic and mitotic spindles. Mol Biol Cell 16(2):742–756CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Tikhonenko I et al (2008) Kinesin-5 is not essential for mitotic spindle elongation in Dictyostelium. Cell Motil Cytoskeleton 65(11):853–862CrossRefPubMedGoogle Scholar
  19. 19.
    Vernos I, Heasman J, Wylie C (1993) Multiple kinesin-like transcripts in Xenopus oocytes. Dev Biol 157(1):232–239CrossRefPubMedGoogle Scholar
  20. 20.
    Boleti H, Karsenti E, Vernos I (1996) Xklp2, a novel Xenopus centrosomal kinesin-like protein required for centrosome separation during mitosis. Cell 84(1):49–59CrossRefPubMedGoogle Scholar
  21. 21.
    Wittmann T et al (1998) Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J Cell Biol 143(3):673–685CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Walczak CE et al (1998) A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr Biol 8(16):903–913CrossRefPubMedGoogle Scholar
  23. 23.
    Zhu C et al (2005) Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol Biol Cell 16(7):3187–3199CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Rogers GC et al (2000) A kinesin-related protein, KRP(180), positions prometaphase spindle poles during early sea urchin embryonic cell division. J Cell Biol 150(3):499–512CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Segbert C et al (2003) KLP-18, a Klp2 kinesin, is required for assembly of acentrosomal meiotic spindles in Caenorhabditis elegans. Mol Biol Cell 14(11):4458–4469CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Wignall SM, Villeneuve AM (2009) Lateral microtubule bundles promote chromosome alignment during acentrosomal oocyte meiosis. Nat Cell Biol 11(7):909–913CrossRefGoogle Scholar
  27. 27.
    van Heesbeen RGHP et al (2013) Nuclear envelope-associated dynein cooperates with Eg5 to drive prophase centrosome separation. Commun Integr Biol 6(3):e23841CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Sturgill EG, Ohi R (2013) Kinesin-12 differentially affects spindle assembly depending on its microtubule substrate. Curr Biol 23(14):1280–1290Google Scholar
  29. 29.
    Vladimirou E et al (2013) Nonautonomous movement of chromosomes in mitosis. Dev Cell 27(1):60–71CrossRefPubMedGoogle Scholar
  30. 30.
    Florian S, Mayer TU (2011) Modulated microtubule dynamics enable Hklp2/Kif15 to assemble bipolar spindles. Cell Cycle 10(20):3533–3544CrossRefPubMedGoogle Scholar
  31. 31.
    van Heesbeen RGHP et al (2014) Balanced activity of three mitotic motors is required for bipolar spindle assembly and chromosome segregation. Cell Reports 8(4):948–956Google Scholar
  32. 32.
    Rath O, Kozielski F (2012) Kinesins and cancer. Nat Rev Cancer 12(8):527–539CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Roy G. H. P. van Heesbeen
    • 1
  • René H. Medema
    • 1
    Email author
  1. 1.Division of Cell BiologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands

Personalised recommendations