Inhibitors of Mitotic Kinesins for Cancer Treatment: Consequences for Neurons

  • Olga I. Kahn
  • Peter W. BaasEmail author


Detailed analyses of the behavior of cancer cells have revealed a significant deregulation of the cell cycle leading to increased proliferation rates along with often aggressive invasive properties of the affected cells. Microtubules, the first major target for cancer therapy, are cytoskeletal elements crucial for cell division, architecture of cells and transport of proteins and organelles within them. To this day, pharmacologic intervention at the level of microtubules remains one of the most common approaches for chemotherapy, with various drugs disabling the mitotic apparatus usually through hyper-stabilization of microtubules. Given that microtubules are so important for terminally post-mitotic neurons, it is not surprising that such drugs cause painful and debilitating neuropathies. These and other undesirable effects have inspired researchers to seek alternative microtubule-based therapies, focusing on proteins believed to be vital for successful mitosis but irrelevant to other cellular events. Such targets include a category of kinesins believed to be mitosis-specific. However, recent studies indicate that these so-called mitotic kinesins are also expressed in terminally post-mitotic neurons, where they are repurposed to perform important functions, at least during development. The levels of these kinesins wane as the nervous system matures, so the question remains as to whether they perform important functions in adult neurons. While no major nervous system maladies have been reported from studies to date on such drugs, chemotherapists should be cognizant of potential effects on neurons that might prove deleterious for patients.


Microtubule Polymer Microtubule Array Mitotic Apparatus Adult Neuron Alpha Tubulin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are thankful to past and present members of our laboratory for their contributions to the work presented here. The authors declare no financial or conflicting interests.


  1. 1.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi: 10.1016/j.cell.2011.02.013, S0092-8674(11)00127-9 [pii]CrossRefPubMedGoogle Scholar
  2. 2.
    Kirschner M, Mitchison T (1986) Beyond self-assembly: from microtubules to morphogenesis. Cell 45:329–342. doi: 10.1016/0092-8674(86)90318-1 [pii]
  3. 3.
    Ferrier J, Pereira V, Busserolles J, Authier N, Balayssac D (2013) Emerging trends in understanding chemotherapy-induced peripheral neuropathy. Curr Pain Headache Rep 17:364. doi: 10.1007/s11916-013-0364-5 CrossRefPubMedGoogle Scholar
  4. 4.
    Jaggi AS, Singh N (2012) Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy. Toxicology 291:1–9. doi: 10.1016/j.tox.2011.10.019, S0300-483X(11)00458-6 [pii]CrossRefPubMedGoogle Scholar
  5. 5.
    Amos LA, Lowe J (1999) How taxol stabilises microtubule structure. Chem Biol 6:R65–R69. doi:S1074-5521(99)89002-4 [pii]CrossRefPubMedGoogle Scholar
  6. 6.
    Prota AE et al (2013) Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science 339:587–590. doi: 10.1126/science.1230582, science.1230582 [pii]CrossRefPubMedGoogle Scholar
  7. 7.
    Brunden KR et al (2011) The characterization of microtubule-stabilizing drugs as possible therapeutic agents for Alzheimer’s disease and related tauopathies. Pharmacol Res 63:341–351. doi: 10.1016/j.phrs.2010.12.002, S1043-6618(10)00227-6 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Zhang B et al (2012) The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J Neurosci 32:3601–3611. doi: 10.1523/JNEUROSCI.4922-11.2012, 32/11/3601 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Baas PW, Ahmad FJ (2013) Beyond taxol: microtubule-based treatment of disease and injury of the nervous system. Brain. doi: 10.1093/brain/awt153, awt153 [pii]PubMedCentralGoogle Scholar
  10. 10.
    Buster DW et al (2003) Expression of the mitotic kinesin Kif15 in postmitotic neurons: implications for neuronal migration and development. J Neurocytol 32:79–96. doi:5146300 [pii]CrossRefPubMedGoogle Scholar
  11. 11.
    Haque SA, Hasaka TP, Brooks AD, Lobanov PV, Baas PW (2004) Monastrol, a prototype anti-cancer drug that inhibits a mitotic kinesin, induces rapid bursts of axonal outgrowth from cultured postmitotic neurons. Cell Motil Cytoskeleton 58:10–16. doi: 10.1002/cm.10176 CrossRefPubMedGoogle Scholar
  12. 12.
    Myers KA, Baas PW (2007) Kinesin-5 regulates the growth of the axon by acting as a brake on its microtubule array. J Cell Biol 178:1081–1091. doi: 10.1083/jcb.200702074, jcb.200702074 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Nadar VC, Ketschek A, Myers KA, Gallo G, Baas PW (2008) Kinesin-5 is essential for growth-cone turning. Curr Biol 18:1972–1977. doi: 10.1016/j.cub.2008.11.021, S0960-9822(08)01501-7 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Liu M et al (2010) Kinesin-12, a mitotic microtubule-associated motor protein, impacts axonal growth, navigation, and branching. J Neurosci 30:14896–14906. doi: 10.1523/JNEUROSCI.3739-10.2010, 30/44/14896 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Falnikar A, Tole S, Baas PW (2011) Kinesin-5, a mitotic microtubule-associated motor protein, modulates neuronal migration. Mol Biol Cell 22:1561–1574. doi: 10.1091/mbc.E10-11-0905, mbc.E10-11-0905 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Lin S, Liu M, Mozgova OI, Yu W, Baas PW (2012) Mitotic motors coregulate microtubule patterns in axons and dendrites. J Neurosci 32:14033–14049. doi: 10.1523/JNEUROSCI. 3070-12.2012, 32/40/14033 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Couillard-Despres S, Iglseder B, Aigner L (2011) Neurogenesis, cellular plasticity and cognition: the impact of stem cells in the adult and aging brain–a mini-review. Gerontology 57:559–564. doi: 10.1159/000323481, 000323481 [pii]CrossRefPubMedGoogle Scholar
  18. 18.
    Verpelli C, Montani C, Vicidomini C, Heise C, Sala C (2013) Mutations of the synapse genes and intellectual disability syndromes. Eur J Pharmacol. doi: 10.1016/j.ejphar.2013.07.023, S0014-2999(13)00545-1 [pii]PubMedGoogle Scholar
  19. 19.
    Holtmaat A, Randall J, Cane M (2013) Optical imaging of structural and functional synaptic plasticity in vivo. Eur J Pharmacol. doi: 10.1016/j.ejphar.2013.07.020, S0014-2999(13)00542-6 [pii]PubMedGoogle Scholar
  20. 20.
    Shirao T, Gonzalez-Billault C (2013) Actin filaments and microtubules in dendritic spines. J Neurochem 126:155–164. doi: 10.1111/jnc.12313 CrossRefPubMedGoogle Scholar
  21. 21.
    Chang PK, Boridy S, McKinney RA, Maysinger D (2013) Letrozole potentiates mitochondrial and dendritic spine impairments induced by beta amyloid. J Aging Res 2013:538979. doi: 10.1155/2013/538979 CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Meng C, He Z, Xing D (2013) Low-level laser therapy rescues dendrite atrophy via upregulating BDNF expression: implications for Alzheimer’s disease. J Neurosci 33:13505–13517. doi: 10.1523/JNEUROSCI. 0918-13.2013, 33/33/13505 [pii]CrossRefPubMedGoogle Scholar
  23. 23.
    Murmu RP, Li W, Holtmaat A, Li JY (2013) Dendritic spine instability leads to progressive neocortical spine loss in a mouse model of Huntington’s disease. J Neurosci 33:12997–13009. doi:10.1523/JNEUROSCI. 5284-12.2013, 33/32/12997 [pii]CrossRefPubMedGoogle Scholar
  24. 24.
    Conde C, Caceres A (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 10:319–332. doi: 10.1038/nrn2631, nrn2631 [pii]CrossRefPubMedGoogle Scholar
  25. 25.
    Bradke F, Dotti CG (2000) Establishment of neuronal polarity: lessons from cultured hippocampal neurons. Curr Opin Neurobiol 10:574–581. doi:S0959-4388(00)00124-0 [pii]CrossRefPubMedGoogle Scholar
  26. 26.
    Heidemann SR, Landers JM, Hamborg MA (1981) Polarity orientation of axonal microtubules. J Cell Biol 91:661–665CrossRefPubMedGoogle Scholar
  27. 27.
    Baas PW, Deitch JS, Black MM, Banker GA (1988) Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc Natl Acad Sci U S A 85:8335–8339CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Baas PW, Lin S (2011) Hooks and comets: the story of microtubule polarity orientation in the neuron. Dev Neurobiol 71:403–418. doi: 10.1002/dneu.20818 CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Horton AC, Ehlers MD (2003) Dual modes of endoplasmic reticulum-to-Golgi transport in dendrites revealed by live-cell imaging. J Neurosci 23:6188–6199. doi:23/15/6188 [pii]PubMedGoogle Scholar
  30. 30.
    Baas PW, Buster DW (2004) Slow axonal transport and the genesis of neuronal morphology. J Neurobiol 58:3–17. doi: 10.1002/neu.10281 CrossRefPubMedGoogle Scholar
  31. 31.
    Myers KA, Baas PW (2011) Microtubule-actin interactions during neuronal development. Adv Neurobiol 5:73–96CrossRefGoogle Scholar
  32. 32.
    Baas PW, Vidya Nadar C, Myers KA (2006) Axonal transport of microtubules: the long and short of it. Traffic 7:490–498. doi: 10.1111/j.1600-0854.2006.00392.x, TRA392 [pii]CrossRefPubMedGoogle Scholar
  33. 33.
    Baas PW, Slaughter T, Brown A, Black MM (1991) Microtubule dynamics in axons and dendrites. J Neurosci Res 30:134–153. doi: 10.1002/jnr.490300115 CrossRefPubMedGoogle Scholar
  34. 34.
    Challacombe JF, Snow DM, Letourneau PC (1997) Dynamic microtubule ends are required for growth cone turning to avoid an inhibitory guidance cue. J Neurosci 17:3085–3095PubMedGoogle Scholar
  35. 35.
    Geraldo S, Gordon-Weeks PR (2009) Cytoskeletal dynamics in growth-cone steering. J Cell Sci 122:3595–3604. doi: 10.1242/jcs.042309, 122/20/3595 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Baas PW, Black MM (1990) Individual microtubules in the axon consist of domains that differ in both composition and stability. J Cell Biol 111:495–509CrossRefPubMedGoogle Scholar
  37. 37.
    Brown A, Li Y, Slaughter T, Black MM (1993) Composite microtubules of the axon: quantitative analysis of tyrosinated and acetylated tubulin along individual axonal microtubules. J Cell Sci 104(Pt 2):339–352PubMedGoogle Scholar
  38. 38.
    Baas PW, Ahmad FJ (1992) The plus ends of stable microtubules are the exclusive nucleating structures for microtubules in the axon. J Cell Biol 116:1231–1241CrossRefPubMedGoogle Scholar
  39. 39.
    Baas PW, Black MM, Banker GA (1989) Changes in microtubule polarity orientation during the development of hippocampal neurons in culture. J Cell Biol 109:3085–3094CrossRefPubMedGoogle Scholar
  40. 40.
    Shemesh OA, Spira ME (2010) Paclitaxel induces axonal microtubules polar reconfiguration and impaired organelle transport: implications for the pathogenesis of paclitaxel-induced polyneuropathy. Acta Neuropathol 119:235–248. doi: 10.1007/s00401-009-0586-0 CrossRefPubMedGoogle Scholar
  41. 41.
    Kuznetsov AV (2010) Effect of the degree of polar mismatching on traffic jam formation in fast axonal transport. Comput Methods Biomech Biomed Engin 13:711–722. doi: 10.1080/10255840903505154, 920291996 [pii]CrossRefPubMedGoogle Scholar
  42. 42.
    Baas PW, Mozgova OI (2012) A novel role for retrograde transport of microtubules in the axon. Cytoskeleton (Hoboken) 69:416–425. doi: 10.1002/cm.21013 CrossRefGoogle Scholar
  43. 43.
    Janke C, Kneussel M (2010) Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Trends Neurosci 33:362–372. doi: 10.1016/j.tins.2010.05.001, S0166-2236(10)00065-2 [pii]CrossRefPubMedGoogle Scholar
  44. 44.
    Janke C, Bulinski JC (2011) Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 12:773–786. doi: 10.1038/nrm3227, nrm3227 [pii]CrossRefPubMedGoogle Scholar
  45. 45.
    Wloga D, Gaertig J (2010) Post-translational modifications of microtubules. J Cell Sci 123:3447–3455. doi: 10.1242/jcs.063727, 123/20/3447 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Wloga D et al (2010) Hyperglutamylation of tubulin can either stabilize or destabilize microtubules in the same cell. Eukaryot Cell 9:184–193. doi: 10.1128/EC.00176-09, EC.00176-09 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Garnham CP, Roll-Mecak A (2012) The chemical complexity of cellular microtubules: tubulin post-translational modification enzymes and their roles in tuning microtubule functions. Cytoskeleton (Hoboken) 69:442–463. doi: 10.1002/cm.21027 CrossRefGoogle Scholar
  48. 48.
    Westermann S, Weber K (2003) Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 4:938–947. doi: 10.1038/nrm1260, nrm1260 [pii]CrossRefPubMedGoogle Scholar
  49. 49.
    Peris L et al (2009) Motor-dependent microtubule disassembly driven by tubulin tyrosination. J Cell Biol 185:1159–1166. doi: 10.1083/jcb.200902142, jcb.200902142 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Dunn S et al (2008) Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells. J Cell Sci 121:1085–1095. doi: 10.1242/jcs.026492, jcs.026492 [pii]CrossRefPubMedGoogle Scholar
  51. 51.
    Konishi Y, Setou M (2009) Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat Neurosci 12:559–567. doi: 10.1038/nn.2314, nn.2314 [pii]CrossRefPubMedGoogle Scholar
  52. 52.
    Hammond JW et al (2010) Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons. Mol Biol Cell 21:572–583. doi: 10.1091/mbc.E09-01-0044, E09-01-0044 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Verhey KJ, Hammond JW (2009) Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol 10:765–777. doi: 10.1038/nrm2782, nrm2782 [pii]CrossRefPubMedGoogle Scholar
  54. 54.
    Sharp DJ, Rogers GC, Scholey JM (2000) Microtubule motors in mitosis. Nature 407:41–47. doi: 10.1038/35024000 CrossRefPubMedGoogle Scholar
  55. 55.
    Sharp DJ, Kuriyama R, Baas PW (1996) Expression of a kinesin-related motor protein induces Sf9 cells to form dendrite-like processes with nonuniform microtubule polarity orientation. J Neurosci 16:4370–4375PubMedGoogle Scholar
  56. 56.
    Sharp DJ, Kuriyama R, Essner R, Baas PW (1997) Expression of a minus-end-directed motor protein induces Sf9 cells to form axon-like processes with uniform microtubule polarity orientation. J Cell Sci 110(Pt 19):2373–2380PubMedGoogle Scholar
  57. 57.
    Sharp DJ et al (1997) Identification of a microtubule-associated motor protein essential for dendritic differentiation. J Cell Biol 138:833–843CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Rank KC et al (2012) Kar3Vik1, a member of the kinesin-14 superfamily, shows a novel kinesin microtubule binding pattern. J Cell Biol 197:957–970. doi: 10.1083/jcb.201201132, jcb.201201132 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Ferenz NP, Gable A, Wadsworth P (2010) Mitotic functions of kinesin-5. Semin Cell Dev Biol 21:255–259. doi: 10.1016/j.semcdb.2010.01.019, S1084-9521(10)00020-0 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Saunders AM, Powers J, Strome S, Saxton WM (2007) Kinesin-5 acts as a brake in anaphase spindle elongation. Curr Biol 17:R453–R454. doi: 10.1016/j.cub.2007.05.001, S0960-9822(07)01333-4 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Kashina AS et al (1996) A bipolar kinesin. Nature 379:270–272. doi: 10.1038/379270a0 CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Wittmann T, Boleti H, Antony C, Karsenti E, Vernos I (1998) Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J Cell Biol 143:673–685CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Rogers GC et al (2000) A kinesin-related protein, KRP(180), positions prometaphase spindle poles during early sea urchin embryonic cell division. J Cell Biol 150:499–512CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Sturgill EG, Ohi R (2013) Kinesin-12 differentially affects spindle assembly depending on its microtubule substrate. Curr Biol 23:1280–1290. doi: 10.1016/j.cub.2013.05.043, S0960-9822(13)00638-6 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Vale RD, Spudich JA, Griffis ER (2009) Dynamics of myosin, microtubules, and Kinesin-6 at the cortex during cytokinesis in Drosophila S2 cells. J Cell Biol 186:727–738. doi: 10.1083/jcb.200902083, jcb.200902083 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  66. 66.
    White EA, Raghuraman H, Perozo E, Glotzer M (2013) Binding of the CYK-4 subunit of the centralspindlin complex induces a large scale conformational change in the kinesin subunit. J Biol Chem 288:19785–19795. doi: 10.1074/jbc.M113.463695, M113.463695 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Douglas ME, Davies T, Joseph N, Mishima M (2010) Aurora B and 14-3-3 coordinately regulate clustering of centralspindlin during cytokinesis. Curr Biol 20:927–933. doi: 10.1016/j.cub.2010.03.055, S0960-9822(10)00381-7 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Nadar VC, Lin S, Baas PW (2012) Microtubule redistribution in growth cones elicited by focal inactivation of kinesin-5. J Neurosci 32:5783–5794. doi: 10.1523/JNEUROSCI.0144-12.2012, 32/17/5783 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Kahn OI, Sharma V, González-Billault C, Baas PW (2015) Effects of kinesin-5 inhibition on dendritic architecture and microtubule organization. Mol Biol Cell 26(1):66–77. doi:1091/mbc.E14-08-1313Google Scholar
  70. 70.
    Falnikar A, Tole S, Liu M, Liu JS, Baas PW (2013) Polarity in migrating neurons is related to a mechanism analogous to cytokinesis. Curr Biol 23:1215–1220. doi:10.1091/mbc.E14-08-1313, S0960-9822(13)00622-2 [pii]Google Scholar
  71. 71.
    Ferhat L, Kuriyama R, Lyons GE, Micales B, Baas PW (1998) Expression of the mitotic motor protein CHO1/MKLP1 in postmitotic neurons. Eur J Neurosci 10:1383–1393CrossRefPubMedGoogle Scholar
  72. 72.
    Ferhat L et al (1998) Expression of the mitotic motor protein Eg5 in postmitotic neurons: implications for neuronal development. J Neurosci 18:7822–7835PubMedGoogle Scholar
  73. 73.
    Silverman MA et al (2010) Expression of kinesin superfamily genes in cultured hippocampal neurons. Cytoskeleton (Hoboken) 67:784–795. doi: 10.1002/cm.20487 CrossRefGoogle Scholar
  74. 74.
    Lin S et al (2011) Inhibition of kinesin-5, a microtubule-based motor protein, as a strategy for enhancing regeneration of adult axons. Traffic 12:269–286. doi: 10.1111/j.1600-0854.2010.01152.x CrossRefPubMedCentralPubMedGoogle Scholar
  75. 75.
    Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ (1999) Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci 2:260–265. doi: 10.1038/6365 CrossRefPubMedGoogle Scholar
  76. 76.
    Leuner B, Gould E, Shors TJ (2006) Is there a link between adult neurogenesis and learning? Hippocampus 16:216–224. doi: 10.1002/hipo.20153 CrossRefPubMedGoogle Scholar
  77. 77.
    Monje M, Dietrich J (2012) Cognitive side effects of cancer therapy demonstrate a functional role for adult neurogenesis. Behav Brain Res 227:376–379. doi: 10.1016/j.bbr.2011.05.012, S0166-4328(11)00401-3 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  78. 78.
    Pan YW, Chan GC, Kuo CT, Storm DR, Xia Z (2012) Inhibition of adult neurogenesis by inducible and targeted deletion of ERK5 mitogen-activated protein kinase specifically in adult neurogenic regions impairs contextual fear extinction and remote fear memory. J Neurosci 32:6444–6455. doi:10.1523/JNEUROSCI. 6076-11.2012, 32/19/6444 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  79. 79.
    Mirescu C, Peters JD, Noiman L, Gould E (2006) Sleep deprivation inhibits adult neurogenesis in the hippocampus by elevating glucocorticoids. Proc Natl Acad Sci U S A 103:19170–19175. doi: 10.1073/pnas.0608644103, 0608644103 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  80. 80.
    Hu CK, Coughlin M, Field CM, Mitchison TJ (2011) KIF4 regulates midzone length during cytokinesis. Curr Biol 21:815–824. doi: 10.1016/j.cub.2011.04.019, S0960-9822(11)00435-0 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  81. 81.
    Zhu C et al (2005) Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol Biol Cell 16:3187–3199. doi: 10.1091/mbc.E05-02-0167, E05-02-0167 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  82. 82.
    Mazumdar M, Misteli T (2005) Chromokinesins: multitalented players in mitosis. Trends Cell Biol 15:349–355. doi: 10.1016/j.tcb.2005.05.006, S0962-8924(05)00131-5 [pii]CrossRefPubMedGoogle Scholar
  83. 83.
    Mazumdar M et al (2006) Tumor formation via loss of a molecular motor protein. Curr Biol 16:1559–1564. doi: 10.1016/j.cub.2006.06.029, S0960-9822(06)01755-6 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  84. 84.
    Taniwaki M et al (2007) Activation of KIF4A as a prognostic biomarker and therapeutic target for lung cancer. Clin Cancer Res 13(6624–6631):2007. doi: 10.1158/1078-0432.CCR-07-1328, 13/22/6624 [pii]Google Scholar
  85. 85.
    Narayan G et al (2007) Gene dosage alterations revealed by cDNA microarray analysis in cervical cancer: identification of candidate amplified and overexpressed genes. Genes Chromosomes Cancer 46:373–384. doi: 10.1002/gcc.20418 CrossRefPubMedGoogle Scholar
  86. 86.
    Bisbal M et al (2009) KIF4 mediates anterograde translocation and positioning of ribosomal constituents to axons. J Biol Chem 284:9489–9497. doi: 10.1074/jbc.M808586200, M808586200 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  87. 87.
    Kaplan DR, Miller FD (2006) When a motor goes bad: a kinesin regulates neuronal survival. Cell 125:224–226. doi: 10.1016/j.cell.2006.03.031, S0092-8674(06)00432-6 [pii]CrossRefPubMedGoogle Scholar
  88. 88.
    Moores CA, Milligan RA (2006) Lucky 13-microtubule depolymerisation by kinesin-13 motors. J Cell Sci 119:3905–3913. doi: 10.1242/jcs.03224, 119/19/3905 [pii]CrossRefPubMedGoogle Scholar
  89. 89.
    Dawson SC et al (2007) Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis. Eukaryot Cell 6:2354–2364. doi: 10.1128/EC.00128-07, EC.00128-07 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  90. 90.
    Ems-McClung SC, Walczak CE (2010) Kinesin-13 s in mitosis: key players in the spatial and temporal organization of spindle microtubules. Semin Cell Dev Biol 21:276–282. doi: 10.1016/j.semcdb.2010.01.016, S1084-9521(10)00017-0 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  91. 91.
    Hood EA, Kettenbach AN, Gerber SA, Compton DA (2012) Plk1 regulates the kinesin-13 protein Kif2b to promote faithful chromosome segregation. Mol Biol Cell 23:2264–2274. doi: 10.1091/mbc.E11-12-1013, mbc.E11-12-1013 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  92. 92.
    Wang CQ et al (2010) Overexpression of Kif2a promotes the progression and metastasis of squamous cell carcinoma of the oral tongue. Oral Oncol 46:65–69. doi: 10.1016/j.oraloncology.2009.11.003, S1368-8375(09)00967-1 [pii]CrossRefPubMedGoogle Scholar
  93. 93.
    Stevens KN et al (2011) Evaluation of associations between common variation in mitotic regulatory pathways and risk of overall and high grade breast cancer. Breast Cancer Res Treat 129:617–622. doi: 10.1007/s10549-011-1587-y CrossRefPubMedCentralPubMedGoogle Scholar
  94. 94.
    Homma N et al (2003) Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell 114:229–239. doi:S0092867403005221 [pii]CrossRefPubMedGoogle Scholar
  95. 95.
    Poirier K et al (2013) Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat Genet 45:962. doi: 10.1038/ng0813-962b, ng0813-962b [pii]CrossRefGoogle Scholar
  96. 96.
    Liu M et al (2010) Ectopic expression of the microtubule-dependent motor protein Eg5 promotes pancreatic tumourigenesis. J Pathol 221:221–228. doi: 10.1002/path.2706 CrossRefPubMedGoogle Scholar
  97. 97.
    Castillo A, Morse HC 3rd, Godfrey VL, Naeem R, Justice MJ (2007) Overexpression of Eg5 causes genomic instability and tumor formation in mice. Cancer Res 67:10138–10147. doi: 10.1158/0008-5472.CAN-07-0326, 67/21/10138 [pii]CrossRefPubMedGoogle Scholar
  98. 98.
    Ganguly A, Yang H, Cabral F (2011) Overexpression of mitotic centromere-associated Kinesin stimulates microtubule detachment and confers resistance to paclitaxel. Mol Cancer Ther 10:929–937. doi: 10.1158/1535-7163.MCT-10-1109, 1535-7163.MCT-10-1109 [pii]CrossRefPubMedCentralPubMedGoogle Scholar
  99. 99.
    Marra E, Palombo F, Ciliberto G, Aurisicchio L (2013) Kinesin spindle protein SiRNA slows tumor progression. J Cell Physiol 228:58–64. doi: 10.1002/jcp.24103 CrossRefPubMedGoogle Scholar
  100. 100.
    Tabernero J et al (2013) First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov 3:406–417. doi: 10.1158/2159-8290.CD-12-0429, 2159-8290.CD-12-0429 [pii]CrossRefPubMedGoogle Scholar
  101. 101.
    Gomez HL et al (2012) Phase I dose-escalation and pharmacokinetic study of ispinesib, a kinesin spindle protein inhibitor, administered on days 1 and 15 of a 28-day schedule in patients with no prior treatment for advanced breast cancer. Anticancer Drugs 23:335–341. doi: 10.1097/CAD.0b013e32834e74d6 CrossRefPubMedGoogle Scholar
  102. 102.
    Khoury HJ et al (2012) A phase 1 dose-escalation study of ARRY-520, a kinesin spindle protein inhibitor, in patients with advanced myeloid leukemias. Cancer 118:3556–3564. doi: 10.1002/cncr.26664 CrossRefPubMedGoogle Scholar
  103. 103.
    Woessner R et al (2009) ARRY-520, a novel KSP inhibitor with potent activity in hematological and taxane-resistant tumor models. Anticancer Res 29:4373–4380. doi:29/11/4373 [pii]PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Neurobiology and AnatomyDrexel University College of MedicinePhiladelphiaUSA

Personalised recommendations