Advertisement

The Kinesin-6 Members MKLP1, MKLP2 and MPP1

  • Ryan D. BaronEmail author
  • Francis A. Barr
Chapter

Abstract

The kinesin-6 or mitotic kinesin (MKLP) family comprises three members in human cells: MKLP1 (KIF23), MKLP2 (KIF20A), and MPP1 (KIF20B). All three members have been characterised primarily because of their role in cell division, where they contribute to the regulation of the cytokinetic machinery as cells exit mitosis. Here we discuss the mechanisms by which MKLP1, MKLP2 and MPP1 regulate events during cell division and in post-mitotic tissues, highlighting common themes and points of difference. We also outline the ways they are dysregulated in human cancers. Finally we discuss the different ways kinesin-6 family members are being targeted to develop novel chemotherapy and immunotherapy strategies for treating human cancers.

Keywords

Motor Domain Cleavage Furrow Contractile Ring Central Spindle Astral Microtubule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Miki H, Okada Y, Hirokawa N (2005) Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 15(9):467–476. doi: 10.1016/j.tcb.2005.07.006 PubMedGoogle Scholar
  2. 2.
    Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, Goldstein LS, Goodson HV, Hirokawa N, Howard J, Malmberg RL, McIntosh JR, Miki H, Mitchison TJ, Okada Y, Reddy AS, Saxton WM, Schliwa M, Scholey JM, Vale RD, Walczak CE, Wordeman L (2004) A standardized kinesin nomenclature. J Cell Biol 167(1):19–22. doi:10.1083/jcb.200408113PubMedCentralPubMedGoogle Scholar
  3. 3.
    Miki H, Setou M, Kaneshiro K, Hirokawa N (2001) All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci U S A 98(13):7004–7011. doi: 10.1073/pnas.111145398 PubMedCentralPubMedGoogle Scholar
  4. 4.
    Goodson HV, Kang SJ, Endow SA (1994) Molecular phylogeny of the kinesin family of microtubule motor proteins. J Cell Sci 107(Pt 7):1875–1884Google Scholar
  5. 5.
    Lawrence CJ, Malmberg RL, Muszynski MG, Dawe RK (2002) Maximum likelihood methods reveal conservation of function among closely related kinesin families. J Mol Evol 54(1):42–53. doi: 10.1007/s00239-001-0016-y PubMedGoogle Scholar
  6. 6.
    Kuriyama R, Gustus C, Terada Y, Uetake Y, Matuliene J (2002) CHO1, a mammalian kinesin-like protein, interacts with F-actin and is involved in the terminal phase of cytokinesis. J Cell Biol 156(5):783–790. doi: 10.1083/jcb.200109090 PubMedCentralPubMedGoogle Scholar
  7. 7.
    Lai F, Fernald AA, Zhao N, Le Beau MM (2000) cDNA cloning, expression pattern, genomic structure and chromosomal location of RAB6KIFL, a human kinesin-like gene. Gene 248(1–2):117–125. doi:10.1016/S0378-1119(00)00135-9PubMedGoogle Scholar
  8. 8.
    Kamimoto T, Zama T, Aoki R, Muro Y, Hagiwara M (2001) Identification of a novel kinesin-related protein, KRMP1, as a target for mitotic peptidyl-prolyl isomerase Pin1. J Biol Chem 276(40):37520–37528. doi: 10.1074/jbc.M106207200 PubMedGoogle Scholar
  9. 9.
    Abaza A, Soleilhac JM, Westendorf J, Piel M, Crevel I, Roux A, Pirollet F (2003) M phase phosphoprotein 1 is a human plus-end-directed kinesin-related protein required for cytokinesis. J Biol Chem 278(30):27844–27852. doi: 10.1074/jbc.M304522200 PubMedCentralPubMedGoogle Scholar
  10. 10.
    Hizlan D, Mishima M, Tittmann P, Gross H, Glotzer M, Hoenger A (2006) Structural analysis of the ZEN-4/CeMKLP1 motor domain and its interaction with microtubules. J Struct Biol 153(1):73–84. doi: 10.1016/j.jsb.2005.10.007 PubMedGoogle Scholar
  11. 11.
    Wade RH (2002) Sequence landmark patterns identify and characterize protein families. Structure 10(10):1329–1336. doi: 10.1016/S0969-2126(02)00854-7 PubMedGoogle Scholar
  12. 12.
    Kikkawa M, Okada Y, Hirokawa N (2000) 15 A resolution model of the monomeric kinesin motor, KIF1A. Cell 100(2):241–252. doi: 10.1016/S0092-8674(00)81562-7 PubMedGoogle Scholar
  13. 13.
    Vale RD, Fletterick RJ (1997) The design plan of kinesin motors. Annu Rev Cell Dev Biol 13:745–777. doi: 10.1146/annurev.cellbio.13.1.745 PubMedGoogle Scholar
  14. 14.
    Wade RH, Kozielski F (2000) Structural links to kinesin directionality and movement. Nat Struct Biol 7(6):456–460. doi: 10.1038/75850 PubMedGoogle Scholar
  15. 15.
    White EA, Glotzer M (2012) Centralspindlin: at the heart of cytokinesis. Cytoskeleton (Hoboken) 69(11):882–892. doi: 10.1002/cm.21065 Google Scholar
  16. 16.
    Pavicic-Kaltenbrunner V, Mishima M, Glotzer M (2007) Cooperative assembly of CYK-4/MgcRacGAP and ZEN-4/MKLP1 to form the centralspindlin complex. Mol Biol Cell 18(12):4992–5003. doi:10.1091/mbc.E07-05-0468Google Scholar
  17. 17.
    Kuriyama R, Dragas-Granoic S, Maekawa T, Vassilev A, Khodjakov A, Kobayashi H (1994) Heterogeneity and microtubule interaction of the CHO1 antigen, a mitosis-specific kinesin-like protein. Analysis of subdomains expressed in insect sf9 cells. J Cell Sci 107(Pt 12):3485–3499PubMedGoogle Scholar
  18. 18.
    Mishima M, Pavicic V, Gruneberg U, Nigg EA, Glotzer M (2004) Cell cycle regulation of central spindle assembly. Nature 430(7002):908–913. doi: 10.1038/nature02767 PubMedGoogle Scholar
  19. 19.
    Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42(1):39–50. doi: 10.1016/S0092-8674(85)80099-4 PubMedCentralPubMedGoogle Scholar
  20. 20.
    Case RB, Pierce DW, Hom-Booher N, Hart CL, Vale RD (1997) The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell 90(5):959–966. doi: 10.1016/S0092-8674(00)80360-8 PubMedGoogle Scholar
  21. 21.
    Endow SA, Waligora KW (1998) Determinants of kinesin motor polarity. Science 281(5380):1200–1202. doi:10.1126/science.281.5380.1200PubMedGoogle Scholar
  22. 22.
    Henningsen U, Schliwa M (1997) Reversal in the direction of movement of a molecular motor. Nature 389(6646):93–96. doi: 10.1038/38022 PubMedGoogle Scholar
  23. 23.
    Rice S, Lin AW, Safer D, Hart CL, Naber N, Carragher BO, Cain SM, Pechatnikova E, Wilson-Kubalek EM, Whittaker M, Pate E, Cooke R, Taylor EW, Milligan RA, Vale RD (1999) A structural change in the kinesin motor protein that drives motility. Nature 402(6763):778–784. doi: 10.1038/45483 PubMedGoogle Scholar
  24. 24.
    Hill E, Clarke M, Barr FA (2000) The Rab6-binding kinesin, Rab6-KIFL, is required for cytokinesis. EMBO J 19(21):5711–5719. doi: 10.1093/emboj/19.21.5711 PubMedCentralPubMedGoogle Scholar
  25. 25.
    Adams RR, Tavares AA, Salzberg A, Bellen HJ, Glover DM (1998) Pavarotti encodes a kinesin-like protein required to organize the central spindle and contractile ring for cytokinesis. Genes Dev 12(10):1483–1494PubMedCentralPubMedGoogle Scholar
  26. 26.
    Powers J, Bossinger O, Rose D, Strome S, Saxton W (1998) A nematode kinesin required for cleavage furrow advancement. Curr Biol 8(20):1133–1136. doi: 10.1016/S0960-9822(98)70470-1 PubMedCentralPubMedGoogle Scholar
  27. 27.
    Raich WB, Moran AN, Rothman JH, Hardin J (1998) Cytokinesis and midzone microtubule organization in Caenorhabditis elegans require the kinesin-like protein ZEN-4. Mol Biol Cell 9(8):2037–2049. doi: 10.1091/mbc.9.8.2037 PubMedCentralPubMedGoogle Scholar
  28. 28.
    Nislow C, Sellitto C, Kuriyama R, McIntosh JR (1990) A monoclonal antibody to a mitotic microtubule-associated protein blocks mitotic progression. J Cell Biol 111(2):511–522. doi: 10.1083/jcb.111.2.511 PubMedGoogle Scholar
  29. 29.
    Fontijn RD, Goud B, Echard A, Jollivet F, van Marle J, Pannekoek H, Horrevoets AJ (2001) The human kinesin-like protein RB6K is under tight cell cycle control and is essential for cytokinesis. Mol Cell Biol 21(8):2944–2955. doi: 10.1128/MCB.21.8.2944-2955.2001 PubMedCentralPubMedGoogle Scholar
  30. 30.
    Deavours BE, Walker RA (1999) Nuclear localization of C-terminal domains of the kinesin-like protein MKLP-1. Biochem Biophys Res Commun 260(3):605–608. doi: 10.1006/bbrc.1999.0952 PubMedGoogle Scholar
  31. 31.
    Sellitto C, Kuriyama R (1988) Distribution of a matrix component of the midbody during the cell cycle in Chinese hamster ovary cells. J Cell Biol 106(2):431–439. doi: 10.1083/jcb.106.2.431
  32. 32.
    Nislow C, Lombillo VA, Kuriyama R, McIntosh JR (1992) A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles. Nature 359(6395):543–547. doi: 10.1038/359543a0 PubMedGoogle Scholar
  33. 33.
    Kanehira M, Katagiri T, Shimo A, Takata R, Shuin T, Miki T, Fujioka T, Nakamura Y (2007) Oncogenic role of MPHOSPH1, a cancer-testis antigen specific to human bladder cancer. Cancer Res 67(7):3276–3285. doi: 10.1158/0008-5472.CAN-06-3748 PubMedGoogle Scholar
  34. 34.
    Hu CK, Coughlin M, Field CM, Mitchison TJ (2008) Cell polarization during monopolar cytokinesis. J Cell Biol 181(2):195–202. doi: 10.1083/jcb.200711105 PubMedCentralPubMedGoogle Scholar
  35. 35.
    Kurasawa Y, Earnshaw WC, Mochizuki Y, Dohmae N, Todokoro K (2004) Essential roles of KIF4 and its binding partner PRC1 in organized central spindle midzone formation. EMBO J 23(16):3237–3248. doi: 10.1038/sj.emboj.7600347 PubMedCentralPubMedGoogle Scholar
  36. 36.
    Glotzer M (2009) The 3Ms of central spindle assembly: microtubules, motors and MAPs. Nat Rev Mol Cell Biol 10(1):9–20. doi: 10.1038/nrm2609 PubMedCentralPubMedGoogle Scholar
  37. 37.
    Neef R, Klein UR, Kopajtich R, Barr FA (2006) Cooperation between mitotic kinesins controls the late stages of cytokinesis. Curr Biol 16(3):301–307. doi: 10.1016/j.cub.2005.12.030 PubMedGoogle Scholar
  38. 38.
    Kitagawa M, Fung SY, Hameed UF, Goto H, Inagaki M, Lee SH (2014) Cdk1 coordinates timely activation of MKLP2 kinesin with relocation of the chromosome passenger complex for cytokinesis. Cell Rep 7(1):166–179. doi: 10.1016/j.celrep.2014.02.034 PubMedGoogle Scholar
  39. 39.
    Hummer S, Mayer TU (2009) Cdk1 negatively regulates midzone localization of the mitotic kinesin MKLP2 and the chromosomal passenger complex. Curr Biol 19(7):607–612. doi: 10.1016/j.cub.2009.02.046 PubMedGoogle Scholar
  40. 40.
    Echard A, Jollivet F, Martinez O, Lacapere JJ, Rousselet A, Janoueix-Lerosey I, Goud B (1998) Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 279(5350):580–585. doi: 10.1126/science.279.5350.580 PubMedGoogle Scholar
  41. 41.
    Fu C, Ward JJ, Loiodice I, Velve-Casquillas G, Nedelec FJ, Tran PT (2009) Phospho-regulated interaction between kinesin-6 Klp9p and microtubule bundler Ase1p promotes spindle elongation. Dev Cell 17(2):257–267. doi: 10.1016/j.devcel.2009.06.012 PubMedCentralPubMedGoogle Scholar
  42. 42.
    Nunes Bastos R, Gandhi SR, Baron RD, Gruneberg U, Nigg EA, Barr FA (2013) Aurora B suppresses microtubule dynamics and limits central spindle size by locally activating KIF4A. J Cell Biol 202(4):605–621. doi: 10.1083/jcb.201301094 PubMedCentralPubMedGoogle Scholar
  43. 43.
    Barton NR, Goldstein LS (1996) Going mobile: microtubule motors and chromosome segregation. Proc Natl Acad Sci U S A 93(5):1735–1742PubMedCentralPubMedGoogle Scholar
  44. 44.
    Wordeman L (2010) How kinesin motor proteins drive mitotic spindle function: lessons from molecular assays. Semin Cell Dev Biol 21(3):260–268. doi: 10.1016/j.semcdb.2010.01.018 PubMedCentralPubMedGoogle Scholar
  45. 45.
    Mishima M, Kaitna S, Glotzer M (2002) Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev Cell 2(1):41–54. doi: 10.1016/S1534-5807(01)00110-1 PubMedGoogle Scholar
  46. 46.
    Gruneberg U, Neef R, Honda R, Nigg EA, Barr FA (2004) Relocation of Aurora B from centromeres to the central spindle at the metaphase to anaphase transition requires MKLP2. J Cell Biol 166(2):167–172. doi: 10.1083/jcb.200403084 PubMedCentralPubMedGoogle Scholar
  47. 47.
    Yu Y, Feng YM (2010) The role of kinesin family proteins in tumorigenesis and progression: potential biomarkers and molecular targets for cancer therapy. Cancer 116(22):5150–5160. doi: 10.1002/cncr.25461 PubMedGoogle Scholar
  48. 48.
    Rath O, Kozielski F (2012) Kinesins and cancer. Nat Rev Cancer 12(8):527–539. doi: 10.1038/nrc3310 PubMedGoogle Scholar
  49. 49.
    Goldstein LS (1991) The kinesin superfamily: tails of functional redundancy. Trends Cell Biol 1(4):93–98. doi: 10.1016/0962-8924(91)90036-9 PubMedGoogle Scholar
  50. 50.
    Endow SA (1991) The emerging kinesin family of microtubule motor proteins. Trends Biochem Sci 16(6):221–225. doi: 10.1016/0968-0004(91)90089-E PubMedGoogle Scholar
  51. 51.
    Kuriyama R, Nislow C (1992) Molecular components of the mitotic spindle. Bioessays 14(2):81–88. doi: 10.1002/bies.950140203 PubMedGoogle Scholar
  52. 52.
    Matuliene J, Kuriyama R (2002) Kinesin-like protein CHO1 is required for the formation of midbody matrix and the completion of cytokinesis in mammalian cells. Mol Biol Cell 13(6):1832–1845. doi: 10.1091/mbc.01-10-0504 PubMedCentralPubMedGoogle Scholar
  53. 53.
    Zhu C, Bossy-Wetzel E, Jiang W (2005) Recruitment of MKLP1 to the spindle midzone/midbody by INCENP is essential for midbody formation and completion of cytokinesis in human cells. Biochem J 389(Pt 2):373–381. doi: 10.1042/BJ20050097 PubMedCentralPubMedGoogle Scholar
  54. 54.
    Matuliene J, Kuriyama R (2004) Role of the midbody matrix in cytokinesis: RNAi and genetic rescue analysis of the mammalian motor protein CHO1. Mol Biol Cell 15(7):3083–3094. doi: 10.1091/mbc.E03-12-0888 PubMedCentralPubMedGoogle Scholar
  55. 55.
    Toure A, Dorseuil O, Morin L, Timmons P, Jegou B, Reibel L, Gacon G (1998) MgcRacGAP, a new human GTPase-activating protein for Rac and Cdc42 similar to Drosophila rotundRacGAP gene product, is expressed in male germ cells. J Biol Chem 273(11):6019–6023PubMedGoogle Scholar
  56. 56.
    Jantsch-Plunger V, Gonczy P, Romano A, Schnabel H, Hamill D, Schnabel R, Hyman AA, Glotzer M (2000) CYK-4: a Rho family gtpase activating protein (GAP) required for central spindle formation and cytokinesis. J Cell Biol 149(7):1391–1404. doi: 10.1083/jcb.149.7.1391 PubMedCentralPubMedGoogle Scholar
  57. 57.
    Miyauchi K, Zhu X, Foong C, Hosoya H, Murata-Hori M (2007) Aurora B kinase activity is required to prevent polar cortical ingression during cytokinesis. Cell Cycle 6(20):2549–2553. doi: 10.4161/cc.6.20.4817 PubMedGoogle Scholar
  58. 58.
    White EA, Raghuraman H, Perozo E, Glotzer M (2013) Binding of the CYK-4 subunit of the centralspindlin complex induces a large scale conformational change in the kinesin subunit. J Biol Chem 288(27):19785–19795. doi: 10.1074/jbc.M113.463695 PubMedCentralPubMedGoogle Scholar
  59. 59.
    Barr FA, Gruneberg U (2007) Cytokinesis: placing and making the final cut. Cell 131(5):847–860. doi: 10.1016/j.cell.2007.11.011 PubMedGoogle Scholar
  60. 60.
    Glotzer M (2005) The molecular requirements for cytokinesis. Science 307(5716):1735–1739. doi: 10.1126/science.1096896 PubMedGoogle Scholar
  61. 61.
    Kikkawa M, Sablin EP, Okada Y, Yajima H, Fletterick RJ, Hirokawa N (2001) Switch-based mechanism of kinesin motors. Nature 411(6836):439–445. doi: 10.1038/35078000 PubMedGoogle Scholar
  62. 62.
    Parry DH, O’Farrell PH (2001) The schedule of destruction of three mitotic cyclins can dictate the timing of events during exit from mitosis. Curr Biol 11(9):671–683. doi: 10.1016/S0960-9822(01)00204-4 PubMedCentralPubMedGoogle Scholar
  63. 63.
    Wheatley SP, Hinchcliffe EH, Glotzer M, Hyman AA, Sluder G, Wang Y (1997) CDK1 inactivation regulates anaphase spindle dynamics and cytokinesis in vivo. J Cell Biol 138(2):385–393. doi: 10.1083/jcb.138.2.385 PubMedCentralPubMedGoogle Scholar
  64. 64.
    Minestrini G, Harley AS, Glover DM (2003) Localization of Pavarotti-KLP in living Drosophila embryos suggests roles in reorganizing the cortical cytoskeleton during the mitotic cycle. Mol Biol Cell 14(10):4028–4038. doi: 10.1091/mbc.E03-04-0214 PubMedCentralPubMedGoogle Scholar
  65. 65.
    Hutterer A, Glotzer M, Mishima M (2009) Clustering of centralspindlin is essential for its accumulation to the central spindle and the midbody. Curr Biol 19(23):2043–2049. doi: 10.1016/j.cub.2009.10.050 PubMedCentralPubMedGoogle Scholar
  66. 66.
    Douglas ME, Davies T, Joseph N, Mishima M (2010) Aurora B and 14-3-3 coordinately regulate clustering of centralspindlin during cytokinesis. Curr Biol 20(10):927–933. doi: 10.1016/j.cub.2010.03.055 PubMedCentralPubMedGoogle Scholar
  67. 67.
    Guse A, Mishima M, Glotzer M (2005) Phosphorylation of ZEN-4/MKLP1 by aurora B regulates completion of cytokinesis. Curr Biol 15(8):778–786. doi: 10.1016/j.cub.2005.03.041 PubMedGoogle Scholar
  68. 68.
    Schumacher JM, Golden A, Donovan PJ (1998) AIR-2: an Aurora/Ipl1-related protein kinase associated with chromosomes and midbody microtubules is required for polar body extrusion and cytokinesis in Caenorhabditis elegans embryos. J Cell Biol 143(6):1635–1646. doi: 10.1083/jcb.143.6.1635 PubMedCentralPubMedGoogle Scholar
  69. 69.
    Severson AF, Hamill DR, Carter JC, Schumacher J, Bowerman B (2000) The aurora-related kinase AIR-2 recruits ZEN-4/CeMKLP1 to the mitotic spindle at metaphase and is required for cytokinesis. Curr Biol 10(19):1162–1171. doi: 10.1016/S0960-9822(00)00715-6 PubMedGoogle Scholar
  70. 70.
    Kaitna S, Mendoza M, Jantsch-Plunger V, Glotzer M (2000) INCENP and an aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis. Curr Biol 10(19):1172–1181. doi: 10.1016/S0960-9822(00)00721-1 PubMedGoogle Scholar
  71. 71.
    Vagnarelli P, Earnshaw WC (2004) Chromosomal passengers: the four-dimensional regulation of mitotic events. Chromosoma 113(5):211–222. doi: 10.1007/s00412-004-0307-3 PubMedGoogle Scholar
  72. 72.
    Gruneberg U, Glotzer M, Gartner A, Nigg EA (2002) The CeCDC-14 phosphatase is required for cytokinesis in the Caenorhabditis elegans embryo. J Cell Biol 158(5):901–914. doi: 10.1083/jcb.200202054 PubMedCentralPubMedGoogle Scholar
  73. 73.
    Zhao WM, Seki A, Fang G (2006) Cep55, a microtubule-bundling protein, associates with centralspindlin to control the midbody integrity and cell abscission during cytokinesis. Mol Biol Cell 17(9):3881–3896. doi: 10.1091/mbc.E06-01-0015 PubMedCentralPubMedGoogle Scholar
  74. 74.
    Kamijo K, Ohara N, Abe M, Uchimura T, Hosoya H, Lee JS, Miki T (2006) Dissecting the role of Rho-mediated signaling in contractile ring formation. Mol Biol Cell 17(1):43–55. doi: 10.1091/mbc.E05-06-0569 PubMedCentralPubMedGoogle Scholar
  75. 75.
    Nishimura Y, Yonemura S (2006) Centralspindlin regulates ECT2 and RhoA accumulation at the equatorial cortex during cytokinesis. J Cell Sci 119(Pt 1):104–114. doi: 10.1242/ jcs.02737 PubMedGoogle Scholar
  76. 76.
    Yuce O, Piekny A, Glotzer M (2005) An ECT2-centralspindlin complex regulates the localization and function of RhoA. J Cell Biol 170(4):571–582. doi: 10.1083/jcb.200501097 PubMedCentralPubMedGoogle Scholar
  77. 77.
    Simon GC, Schonteich E, Wu CC, Piekny A, Ekiert D, Yu X, Gould GW, Glotzer M, Prekeris R (2008) Sequential Cyk-4 binding to ECT2 and FIP3 regulates cleavage furrow ingression and abscission during cytokinesis. EMBO J 27(13):1791–1803. doi: 10.1038/emboj.2008.112 PubMedCentralPubMedGoogle Scholar
  78. 78.
    Alsop GB, Zhang D (2003) Microtubules are the only structural constituent of the spindle apparatus required for induction of cell cleavage. J Cell Biol 162(3):383–390. doi: 10.1083/jcb.200301073 PubMedCentralPubMedGoogle Scholar
  79. 79.
    Bringmann H, Hyman AA (2005) A cytokinesis furrow is positioned by two consecutive signals. Nature 436(7051):731–734. doi: 10.1038/nature03823 PubMedGoogle Scholar
  80. 80.
    Dechant R, Glotzer M (2003) Centrosome separation and central spindle assembly act in redundant pathways that regulate microtubule density and trigger cleavage furrow formation. Dev Cell 4(3):333–344. doi: 10.1016/S1534-5807(03)00057-1 PubMedGoogle Scholar
  81. 81.
    Werner M, Munro E, Glotzer M (2007) Astral signals spatially bias cortical myosin recruitment to break symmetry and promote cytokinesis. Curr Biol 17(15):1286–1297. doi: 10.1016/j.cub.2007.06.070 PubMedCentralPubMedGoogle Scholar
  82. 82.
    Rappaport R (1985) Repeated furrow formation from a single mitotic apparatus in cylindrical sand dollar eggs. J Exp Zool 234(1):167–171. doi: 10.1002/jez.1402340120 PubMedGoogle Scholar
  83. 83.
    Bastos RN, Penate X, Bates M, Hammond D, Barr FA (2012) CYK4 inhibits Rac1-dependent PAK1 and ARHGEF7 effector pathways during cytokinesis. J Cell Biol 198(5):865–880. doi: 10.1083/jcb.201204107 PubMedCentralPubMedGoogle Scholar
  84. 84.
    Bement WM, Benink HA, von Dassow G (2005) A microtubule-dependent zone of active RhoA during cleavage plane specification. J Cell Biol 170(1):91–101. doi: 10.1083/jcb.200501131 PubMedCentralPubMedGoogle Scholar
  85. 85.
    Piekny A, Werner M, Glotzer M (2005) Cytokinesis: welcome to the Rho zone. Trends Cell Biol 15(12):651–658. doi: 10.1016/j.tcb.2005.10.006 PubMedGoogle Scholar
  86. 86.
    Miller AL, Bement WM (2009) Regulation of cytokinesis by Rho GTPase flux. Nat Cell Biol 11(1):71–77. doi: 10.1038/ncb1814 PubMedCentralPubMedGoogle Scholar
  87. 87.
    Prokopenko SN, Brumby A, O’Keefe L, Prior L, He Y, Saint R, Bellen HJ (1999) A putative exchange factor for Rho1 GTPase is required for initiation of cytokinesis in Drosophila. Genes Dev 13(17):2301–2314PubMedCentralPubMedGoogle Scholar
  88. 88.
    Tatsumoto T, Xie X, Blumenthal R, Okamoto I, Miki T (1999) Human ECT2 is an exchange factor for Rho GTPases, phosphorylated in G2/M phases, and involved in cytokinesis. J Cell Biol 147(5):921–928. doi: 10.1083/jcb.147.5.921 PubMedCentralPubMedGoogle Scholar
  89. 89.
    Zavortink M, Contreras N, Addy T, Bejsovec A, Saint R (2005) Tum/RacGAP50C provides a critical link between anaphase microtubules and the assembly of the contractile ring in Drosophila melanogaster. J Cell Sci 118(Pt 22):5381–5392. doi: 10.1242/jcs.02652 PubMedGoogle Scholar
  90. 90.
    Somers WG, Saint R (2003) A RhoGEF and Rho family GTPase-activating protein complex links the contractile ring to cortical microtubules at the onset of cytokinesis. Dev Cell 4(1):29–39. doi: 10.1016/S1534-5807(02)00402-1 PubMedGoogle Scholar
  91. 91.
    Chalamalasetty RB, Hummer S, Nigg EA, Sillje HH (2006) Influence of human Ect2 depletion and overexpression on cleavage furrow formation and abscission. J Cell Sci 119(Pt 14):3008–3019. doi: 10.1242/ jcs.03032 PubMedGoogle Scholar
  92. 92.
    Petronczki M, Glotzer M, Kraut N, Peters JM (2007) Polo-like kinase 1 triggers the initiation of cytokinesis in human cells by promoting recruitment of the RhoGEF Ect2 to the central spindle. Dev Cell 12(5):713–725. doi: 10.1016/j.devcel.2007.03.013 PubMedGoogle Scholar
  93. 93.
    Burkard ME, Maciejowski J, Rodriguez-Bravo V, Repka M, Lowery DM, Clauser KR, Zhang C, Shokat KM, Carr SA, Yaffe MB, Jallepalli PV (2009) Plk1 self-organization and priming phosphorylation of HsCYK-4 at the spindle midzone regulate the onset of division in human cells. PLoS Biol 7(5):e1000111. doi: 10.1371/journal.pbio.1000111 PubMedCentralPubMedGoogle Scholar
  94. 94.
    Wolfe BA, Takaki T, Petronczki M, Glotzer M (2009) Polo-like kinase 1 directs assembly of the HsCyk-4 RhoGAP/Ect2 RhoGEF complex to initiate cleavage furrow formation. PLoS Biol 7(5):e1000110. doi: 10.1371/journal.pbio.1000110 PubMedCentralPubMedGoogle Scholar
  95. 95.
    Saito S, Liu XF, Kamijo K, Raziuddin R, Tatsumoto T, Okamoto I, Chen X, Lee CC, Lorenzi MV, Ohara N, Miki T (2004) Deregulation and mislocalization of the cytokinesis regulator ECT2 activate the Rho signaling pathways leading to malignant transformation. J Biol Chem 279(8):7169–7179. doi: 10.1074/jbc.M306725200 PubMedGoogle Scholar
  96. 96.
    Kim JE, Billadeau DD, Chen J (2005) The tandem BRCT domains of Ect2 are required for both negative and positive regulation of Ect2 in cytokinesis. J Biol Chem 280(7):5733–5739. doi: 10.1074/jbc.M409298200 PubMedGoogle Scholar
  97. 97.
    Dvorsky R, Ahmadian MR (2004) Always look on the bright site of Rho: structural implications for a conserved intermolecular interface. EMBO Rep 5(12):1130–1136. doi: 10.1038/sj.embor.7400293 PubMedCentralPubMedGoogle Scholar
  98. 98.
    D’Avino PP, Savoian MS, Glover DM (2004) Mutations in sticky lead to defective organization of the contractile ring during cytokinesis and are enhanced by Rho and suppressed by Rac. J Cell Biol 166(1):61–71. doi: 10.1083/jcb.200402157 PubMedCentralPubMedGoogle Scholar
  99. 99.
    Mishima M, Glotzer M (2003) Cytokinesis: a logical GAP. Curr Biol 13(15):R589–R591. doi: 10.1016/S0960-9822(03)00521-9 PubMedGoogle Scholar
  100. 100.
    Glotzer M (2009) Cytokinesis: GAP gap. Curr Biol 19(4):R162–R165. doi: 10.1016/j.cub.2008.12.028 PubMedGoogle Scholar
  101. 101.
    Goldstein AY, Jan YN, Luo L (2005) Function and regulation of Tumbleweed (RacGAP50C) in neuroblast proliferation and neuronal morphogenesis. Proc Natl Acad Sci U S A 102(10):3834–3839. doi: 10.1073/pnas.0500748102 PubMedCentralPubMedGoogle Scholar
  102. 102.
    Yamada T, Hikida M, Kurosaki T (2006) Regulation of cytokinesis by mgcRacGAP in B lymphocytes is independent of GAP activity. Exp Cell Res 312(18):3517–3525. doi: 10.1016/j.yexcr.2006.07.026 PubMedGoogle Scholar
  103. 103.
    Canman JC, Lewellyn L, Laband K, Smerdon SJ, Desai A, Bowerman B, Oegema K (2008) Inhibition of Rac by the GAP activity of centralspindlin is essential for cytokinesis. Science 322(5907):1543–1546. doi: 10.1126/science.1163086
  104. 104.
    Minoshima Y, Kawashima T, Hirose K, Tonozuka Y, Kawajiri A, Bao YC, Deng X, Tatsuka M, Narumiya S, May WS Jr, Nosaka T, Semba K, Inoue T, Satoh T, Inagaki M, Kitamura T (2003) Phosphorylation by aurora B converts MgcRacGAP to a RhoGAP during cytokinesis. Dev Cell 4(4):549–560. doi: 10.1016/S1534-5807(03)00089-3 PubMedGoogle Scholar
  105. 105.
    Hu CK, Coughlin M, Mitchison TJ (2012) Midbody assembly and its regulation during cytokinesis. Mol Biol Cell 23(6):1024–1034. doi: 10.1091/mbc.E11-08-0721 PubMedCentralPubMedGoogle Scholar
  106. 106.
    Boman AL, Kuai J, Zhu X, Chen J, Kuriyama R, Kahn RA (1999) Arf proteins bind to mitotic kinesin-like protein 1 (MKLP1) in a GTP-dependent fashion. Cell Motil Cytoskeleton 44(2):119–132. doi: 10.1002/(SICI)1097-0169(199910)44:2<119::AID-CM4>3.0.CO;2-C PubMedGoogle Scholar
  107. 107.
    Lekomtsev S, Su KC, Pye VE, Blight K, Sundaramoorthy S, Takaki T, Collinson LM, Cherepanov P, Divecha N, Petronczki M (2012) Centralspindlin links the mitotic spindle to the plasma membrane during cytokinesis. Nature 492(7428):276–279. doi: 10.1038/nature11773 PubMedGoogle Scholar
  108. 108.
    D’Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7(5):347–358. doi: 10.1038/nrm1910 PubMedGoogle Scholar
  109. 109.
    Makyio H, Ohgi M, Takei T, Takahashi S, Takatsu H, Katoh Y, Hanai A, Ueda T, Kanaho Y, Xie Y, Shin HW, Kamikubo H, Kataoka M, Kawasaki M, Kato R, Wakatsuki S, Nakayama K (2012) Structural basis for Arf6-MKLP1 complex formation on the Flemming body responsible for cytokinesis. EMBO J 31(11):2590–2603. doi: 10.1038/emboj.2012.89 PubMedCentralPubMedGoogle Scholar
  110. 110.
    Joseph N, Hutterer A, Poser I, Mishima M (2012) ARF6 GTPase protects the post-mitotic midbody from 14-3-3-mediated disintegration. EMBO J 31(11):2604–2614. doi:  10.1038/emboj.2012.139 PubMedCentralPubMedGoogle Scholar
  111. 111.
    D’Avino PP, Takeda T, Capalbo L, Zhang W, Lilley KS, Laue ED, Glover DM (2008) Interaction between Anillin and RacGAP50C connects the actomyosin contractile ring with spindle microtubules at the cell division site. J Cell Sci 121(Pt 8):1151–1158. doi: 10.1242/ jcs.026716 PubMedGoogle Scholar
  112. 112.
    Frenette P, Haines E, Loloyan M, Kinal M, Pakarian P, Piekny A (2012) An anillin-Ect2 complex stabilizes central spindle microtubules at the cortex during cytokinesis. PLoS One 7(4):e34888. doi: 10.1371/journal.pone.0034888 PubMedCentralPubMedGoogle Scholar
  113. 113.
    Fabbro M, Zhou BB, Takahashi M, Sarcevic B, Lal P, Graham ME, Gabrielli BG, Robinson PJ, Nigg EA, Ono Y, Khanna KK (2005) Cdk1/Erk2- and Plk1-dependent phosphorylation of a centrosome protein, Cep55, is required for its recruitment to midbody and cytokinesis. Dev Cell 9(4):477–488. doi: 10.1016/j.devcel.2005.09.003 PubMedGoogle Scholar
  114. 114.
    Carlton JG, Martin-Serrano J (2007) Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316(5833):1908–1912. doi: 10.1126/science.1143422 PubMedGoogle Scholar
  115. 115.
    Morita E, Sandrin V, Chung HY, Morham SG, Gygi SP, Rodesch CK, Sundquist WI (2007) Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J 26(19):4215–4227. doi: 10.1038/sj.emboj.7601850 PubMedCentralPubMedGoogle Scholar
  116. 116.
    Elia N, Sougrat R, Spurlin TA, Hurley JH, Lippincott-Schwartz J (2011) Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission. Proc Natl Acad Sci U S A 108(12):4846–4851. doi: 10.1073/pnas.1102714108 PubMedCentralPubMedGoogle Scholar
  117. 117.
    Guizetti J, Schermelleh L, Mantler J, Maar S, Poser I, Leonhardt H, Muller-Reichert T, Gerlich DW (2011) Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331(6024):1616–1620. doi: 10.1126/science.1201847 PubMedGoogle Scholar
  118. 118.
    Bastos RN, Barr FA (2010) Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission. J Cell Biol 191(4):751–760. doi: 10.1083/jcb.201008108 PubMedCentralPubMedGoogle Scholar
  119. 119.
    Mullins JM, Biesele JJ (1977) Terminal phase of cytokinesis in D-98 s cells. J Cell Biol 73(3):672–684. doi: 10.1083/jcb.73.3.672 PubMedCentralPubMedGoogle Scholar
  120. 120.
    Kuo TC, Chen CT, Baron D, Onder TT, Loewer S, Almeida S, Weismann CM, Xu P, Houghton JM, Gao FB, Daley GQ, Doxsey S (2011) Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat Cell Biol 13(10):1214–1223. doi: 10.1038/ncb2332 PubMedCentralPubMedGoogle Scholar
  121. 121.
    Gromley A, Yeaman C, Rosa J, Redick S, Chen CT, Mirabelle S, Guha M, Sillibourne J, Doxsey SJ (2005) Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell 123(1):75–87. doi: 10.1016/j.cell.2005.07.027 PubMedGoogle Scholar
  122. 122.
    Pohl C, Jentsch S (2009) Midbody ring disposal by autophagy is a post-abscission event of cytokinesis. Nat Cell Biol 11(1):65–70. doi: 10.1038/ncb1813 PubMedGoogle Scholar
  123. 123.
    Goss JW, Toomre DK (2008) Both daughter cells traffic and exocytose membrane at the cleavage furrow during mammalian cytokinesis. J Cell Biol 181(7):1047–1054. doi: 10.1083/jcb.200712137 PubMedCentralPubMedGoogle Scholar
  124. 124.
    Valk K, Vooder T, Kolde R, Reintam MA, Petzold C, Vilo J, Metspalu A (2010) Gene expression profiles of non-small cell lung cancer: survival prediction and new biomarkers. Oncology 79(3–4):283–292. doi: 10.1159/000322116 PubMedGoogle Scholar
  125. 125.
    Takahashi S, Fusaki N, Ohta S, Iwahori Y, Iizuka Y, Inagawa K, Kawakami Y, Yoshida K, Toda M (2012) Downregulation of KIF23 suppresses glioma proliferation. J Neurooncol 106(3):519–529. doi: 10.1007/s11060-011-0706-2 PubMedGoogle Scholar
  126. 126.
    Cifola I, Pietrelli A, Consolandi C, Severgnini M, Mangano E, Russo V, De Bellis G, Battaglia C (2013) Comprehensive genomic characterization of cutaneous malignant melanoma cell lines derived from metastatic lesions by whole-exome sequencing and SNP array profiling. PLoS One 8(5):e63597. doi: 10.1371/journal.pone.0063597 PubMedCentralPubMedGoogle Scholar
  127. 127.
    DeRycke MS, Gunawardena SR, Middha S, Asmann YW, Schaid DJ, McDonnell SK, Riska SM, Eckloff BW, Cunningham JM, Fridley BL, Serie DJ, Bamlet WR, Cicek MS, Jenkins MA, Duggan DJ, Buchanan D, Clendenning M, Haile RW, Woods MO, Gallinger SN, Casey G, Potter JD, Newcomb PA, Le Marchand L, Lindor NM, Thibodeau SN, Goode EL (2013) Identification of novel variants in colorectal cancer families by high-throughput exome sequencing. Cancer Epidemiol Biomarkers Prev 22(7):1239–1251. doi: 10.1158/1055-9965.EPI-12-1226 PubMedCentralPubMedGoogle Scholar
  128. 128.
    Liljeholm M, Irvine AF, Vikberg AL, Norberg A, Month S, Sandstrom H, Wahlin A, Mishima M, Golovleva I (2013) Congenital dyserythropoietic anemia type III (CDA III) is caused by a mutation in kinesin family member, KIF23. Blood 121(23):4791–4799. doi: 10.1182/blood-2012-10-461392 PubMedGoogle Scholar
  129. 129.
    Sandstrom H, Wahlin A, Eriksson M, Bergstrom I, Wickramasinghe SN (1994) Intravascular haemolysis and increased prevalence of myeloma and monoclonal gammopathy in congenital dyserythropoietic anaemia, type III. Eur J Haematol 52(1):42–46. doi: 10.1111/j.1600-0609.1994.tb01283.x PubMedGoogle Scholar
  130. 130.
    Fischer M, Grundke I, Sohr S, Quaas M, Hoffmann S, Knorck A, Gumhold C, Rother K (2013) p53 and cell cycle dependent transcription of kinesin family member 23 (KIF23) is controlled via a CHR promoter element bound by DREAM and MMB complexes. PLoS One 8(5):e63187. doi: 10.1371/journal.pone.0063187 PubMedCentralPubMedGoogle Scholar
  131. 131.
    Lyberopoulou A, Venieris E, Mylonis I, Chachami G, Pappas I, Simos G, Bonanou S, Georgatsou E (2007) MgcRacGAP interacts with HIF-1alpha and regulates its transcriptional activity. Cell Physiol Biochem 20(6):995–1006. doi: 10.1159/000110460 PubMedGoogle Scholar
  132. 132.
    Jones WM, Chao AT, Zavortink M, Saint R, Bejsovec A (2010) Cytokinesis proteins Tum and Pav have a nuclear role in Wnt regulation. J Cell Sci 123(Pt 13):2179–2189. doi: 10.1242/ jcs.067868 PubMedCentralPubMedGoogle Scholar
  133. 133.
    Ferhat L, Cook C, Chauviere M, Harper M, Kress M, Lyons GE, Baas PW (1998) Expression of the mitotic motor protein Eg5 in postmitotic neurons: implications for neuronal development. J Neurosci 18(19):7822–7835PubMedGoogle Scholar
  134. 134.
    Van de Putte T, Zwijsen A, Lonnoy O, Rybin V, Cozijnsen M, Francis A, Baekelandt V, Kozak CA, Zerial M, Huylebroeck D (2001) Mice with a homozygous gene trap vector insertion in mgcRacGAP die during pre-implantation development. Mech Dev 102(1–2):33–44. doi: 10.1016/S0925-4773(01)00279-9 PubMedGoogle Scholar
  135. 135.
    Ferhat L, Kuriyama R, Lyons GE, Micales B, Baas PW (1998) Expression of the mitotic motor protein CHO1/MKLP1 in postmitotic neurons. Eur J Neurosci 10(4):1383–1393. doi: 10.1046/j.1460-9568.1998.00159.x PubMedGoogle Scholar
  136. 136.
    Sharp DJ, Yu W, Ferhat L, Kuriyama R, Rueger DC, Baas PW (1997) Identification of a microtubule-associated motor protein essential for dendritic differentiation. J Cell Biol 138(4):833–843. doi: 10.1083/jcb.138.4.833 PubMedCentralPubMedGoogle Scholar
  137. 137.
    Yu W, Sharp DJ, Kuriyama R, Mallik P, Baas PW (1997) Inhibition of a mitotic motor compromises the formation of dendrite-like processes from neuroblastoma cells. J Cell Biol 136(3):659–668. doi: 10.1083/jcb.136.3.659 PubMedCentralPubMedGoogle Scholar
  138. 138.
    Yu W, Cook C, Sauter C, Kuriyama R, Kaplan PL, Baas PW (2000) Depletion of a microtubule-associated motor protein induces the loss of dendritic identity. J Neurosci 20(15):5782–5791.PubMedGoogle Scholar
  139. 139.
    Baas PW, Black MM, Banker GA (1989) Changes in microtubule polarity orientation during the development of hippocampal neurons in culture. J Cell Biol 109(6 Pt 1):3085–3094. doi: 10.1083/jcb.109.6.3085 PubMedGoogle Scholar
  140. 140.
    Baas PW, Deitch JS, Black MM, Banker GA (1988) Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc Natl Acad Sci U S A 85(21):8335–8339PubMedCentralPubMedGoogle Scholar
  141. 141.
    Sharp DJ, Kuriyama R, Essner R, Baas PW (1997) Expression of a minus-end-directed motor protein induces Sf9 cells to form axon-like processes with uniform microtubule polarity orientation. J Cell Sci 110(Pt 19):2373–2380PubMedGoogle Scholar
  142. 142.
    Xu X, He C, Zhang Z, Chen Y (2006) MKLP1 requires specific domains for its dendritic targeting. J Cell Sci 119(Pt 3):452–458. doi: 10.1242/ jcs.02750 PubMedGoogle Scholar
  143. 143.
    Kobayashi N, Reiser J, Kriz W, Kuriyama R, Mundel P (1998) Nonuniform microtubular polarity established by CHO1/MKLP1 motor protein is necessary for process formation of podocytes. J Cell Biol 143(7):1961–1970. doi: 10.1083/jcb.143.7.1961 PubMedCentralPubMedGoogle Scholar
  144. 144.
    Smith KR, Kieserman EK, Wang PI, Basten SG, Giles RH, Marcotte EM, Wallingford JB (2011) A role for central spindle proteins in cilia structure and function. Cytoskeleton (Hoboken) 68(2):112–124. doi: 10.1002/cm.20498 Google Scholar
  145. 145.
    Portereiko MF, Saam J, Mango SE (2004) ZEN-4/MKLP1 is required to polarize the foregut epithelium. Curr Biol 14(11):932–941. doi: 10.1016/j.cub.2004.05.052 PubMedGoogle Scholar
  146. 146.
    Hardin J, King R, Thomas-Virnig C, Raich WB (2008) Zygotic loss of ZEN-4/MKLP1 results in disruption of epidermal morphogenesis in the C. elegans embryo. Dev Dyn 237(3):830–836. doi: 10.1002/dvdy.21455 PubMedGoogle Scholar
  147. 147.
    Haglund K, Nezis IP, Stenmark H (2011) Structure and functions of stable intercellular bridges formed by incomplete cytokinesis during development. Commun Integr Biol 4(1):1–9. doi: 10.4161/cib.4.1.13550 PubMedCentralPubMedGoogle Scholar
  148. 148.
    Echard A, Opdam FJ, de Leeuw HJ, Jollivet F, Savelkoul P, Hendriks W, Voorberg J, Goud B, Fransen JA (2000) Alternative splicing of the human Rab6A gene generates two close but functionally different isoforms. Mol Biol Cell 11(11):3819–3833. doi: 10.1091/mbc.11.11.3819 PubMedCentralPubMedGoogle Scholar
  149. 149.
    Neef R, Preisinger C, Sutcliffe J, Kopajtich R, Nigg EA, Mayer TU, Barr FA (2003) Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. J Cell Biol 162(5):863–875. doi: 10.1083/jcb.200306009 PubMedCentralPubMedGoogle Scholar
  150. 150.
    Neef R, Gruneberg U, Kopajtich R, Li X, Nigg EA, Sillje H, Barr FA (2007) Choice of Plk1 docking partners during mitosis and cytokinesis is controlled by the activation state of Cdk1. Nat Cell Biol 9(4):436–444. doi: 10.1038/ncb1557 PubMedGoogle Scholar
  151. 151.
    Elia AE, Cantley LC, Yaffe MB (2003) Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science 299(5610):1228–1231. doi: 10.1126/science.1079079 PubMedGoogle Scholar
  152. 152.
    Elia AE, Rellos P, Haire LF, Chao JW, Ivins FJ, Hoepker K, Mohammad D, Cantley LC, Smerdon SJ, Yaffe MB (2003) The molecular basis for phosphodependent substrate targeting and regulation of Plks by the polo-box domain. Cell 115(1):83–95. doi: 10.1016/S0092-8674(03)00725-6 PubMedGoogle Scholar
  153. 153.
    Liu X, Zhou T, Kuriyama R, Erikson RL (2004) Molecular interactions of polo-like-kinase 1 with the mitotic kinesin-like protein CHO1/MKLP-1. J Cell Sci 117(Pt 15):3233–3246. doi: 10.1242/jcs.01173 PubMedGoogle Scholar
  154. 154.
    Li J, Wang J, Jiao H, Liao J, Xu X (2010) Cytokinesis and cancer: polo loves ROCK‘n’ Rho(A). J Genet Genomics 37(3):159–172. doi: 10.1016/S1673-8527(09)60034-5 PubMedGoogle Scholar
  155. 155.
    Lowery DM, Clauser KR, Hjerrild M, Lim D, Alexander J, Kishi K, Ong SE, Gammeltoft S, Carr SA, Yaffe MB (2007) Proteomic screen defines the polo-box domain interactome and identifies Rock2 as a Plk1 substrate. EMBO J 26(9):2262–2273. doi: 10.1038/sj.emboj.7601683 PubMedCentralPubMedGoogle Scholar
  156. 156.
    Wheatley SP, Carvalho A, Vagnarelli P, Earnshaw WC (2001) INCENP is required for proper targeting of Survivin to the centromeres and the anaphase spindle during mitosis. Curr Biol 11(11):886–890. doi: 10.1016/S0960-9822(01)00238-X PubMedGoogle Scholar
  157. 157.
    Adams RR, Maiato H, Earnshaw WC, Carmena M (2001) Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J Cell Biol 153(4):865–880. doi: 10.1083/jcb.153.4.865 PubMedCentralPubMedGoogle Scholar
  158. 158.
    Bolton MA, Lan W, Powers SE, McCleland ML, Kuang J, Stukenberg PT (2002) Aurora B kinase exists in a complex with survivin and INCENP and its kinase activity is stimulated by survivin binding and phosphorylation. Mol Biol Cell 13(9):3064–3077. doi: 10.1091/mbc.E02-02-0092 PubMedCentralPubMedGoogle Scholar
  159. 159.
    Sessa F, Mapelli M, Ciferri C, Tarricone C, Areces LB, Schneider TR, Stukenberg PT, Musacchio A (2005) Mechanism of Aurora B activation by INCENP and inhibition by hesperadin. Mol Cell 18(3):379–391. doi: 10.1016/j.molcel.2005.03.031 PubMedGoogle Scholar
  160. 160.
    Jeyaprakash AA, Klein UR, Lindner D, Ebert J, Nigg EA, Conti E (2007) Structure of a Survivin-Borealin-INCENP core complex reveals how chromosomal passengers travel together. Cell 131(2):271–285. doi: 10.1016/j.cell.2007.07.045 PubMedGoogle Scholar
  161. 161.
    Xu Z, Ogawa H, Vagnarelli P, Bergmann JH, Hudson DF, Ruchaud S, Fukagawa T, Earnshaw WC, Samejima K (2009) INCENP-aurora B interactions modulate kinase activity and chromosome passenger complex localization. J Cell Biol 187(5):637–653. doi: 10.1083/jcb.200906053 PubMedCentralPubMedGoogle Scholar
  162. 162.
    Lee SH, McCormick F, Saya H (2010) Mad2 inhibits the mitotic kinesin MKLP2. J Cell Biol 191(6):1069–1077. doi: 10.1083/jcb.201003095 PubMedCentralPubMedGoogle Scholar
  163. 163.
    Fuller BG, Lampson MA, Foley EA, Rosasco-Nitcher S, Le KV, Tobelmann P, Brautigan DL, Stukenberg PT, Kapoor TM (2008) Midzone activation of aurora B in anaphase produces an intracellular phosphorylation gradient. Nature 453(7198):1132–1136. doi: 10.1038/nature06923 PubMedCentralPubMedGoogle Scholar
  164. 164.
    Carmena M, Wheelock M, Funabiki H, Earnshaw WC (2012) The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nat Rev Mol Cell Biol 13(12):789–803. doi: 10.1038/nrm3474 PubMedCentralPubMedGoogle Scholar
  165. 165.
    van der Horst A, Lens SM (2014) Cell division: control of the chromosomal passenger complex in time and space. Chromosoma 123(1–2):25–42. doi: 10.1007/s00412-013-0437-6 PubMedCentralPubMedGoogle Scholar
  166. 166.
    Uehara R, Tsukada Y, Kamasaki T, Poser I, Yoda K, Gerlich DW, Goshima G (2013) Aurora B and Kif2A control microtubule length for assembly of a functional central spindle during anaphase. J Cell Biol 202(4):623–636. doi: 10.1083/jcb.201302123 PubMedCentralPubMedGoogle Scholar
  167. 167.
    Lewellyn L, Carvalho A, Desai A, Maddox AS, Oegema K (2011) The chromosomal passenger complex and centralspindlin independently contribute to contractile ring assembly. J Cell Biol 193(1):155–169. doi: 10.1083/jcb.201008138 PubMedCentralPubMedGoogle Scholar
  168. 168.
    Birkenfeld J, Nalbant P, Bohl BP, Pertz O, Hahn KM, Bokoch GM (2007) GEF-H1 modulates localized RhoA activation during cytokinesis under the control of mitotic kinases. Dev Cell 12(5):699–712. doi: 10.1016/j.devcel.2007.03.014 PubMedCentralPubMedGoogle Scholar
  169. 169.
    Kitagawa M, Fung SY, Onishi N, Saya H, Lee SH (2013) Targeting Aurora B to the equatorial cortex by MKLP2 is required for cytokinesis. PLoS One 8(6):e64826. doi: 10.1371/journal.pone.0064826 PubMedCentralPubMedGoogle Scholar
  170. 170.
    Norden C, Mendoza M, Dobbelaere J, Kotwaliwale CV, Biggins S, Barral Y (2006) The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell 125(1):85–98. doi: 10.1016/j.cell.2006.01.045 PubMedGoogle Scholar
  171. 171.
    Mendoza M, Norden C, Durrer K, Rauter H, Uhlmann F, Barral Y (2009) A mechanism for chromosome segregation sensing by the NoCut checkpoint. Nat Cell Biol 11(4):477–483. doi: 10.1038/ncb1855 PubMedGoogle Scholar
  172. 172.
    Steigemann P, Wurzenberger C, Schmitz MH, Held M, Guizetti J, Maar S, Gerlich DW (2009) Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 136(3):473–484. doi: 10.1016/j.cell.2008.12.020 PubMedGoogle Scholar
  173. 173.
    Capalbo L, Montembault E, Takeda T, Bassi ZI, Glover DM, D’Avino PP (2012) The chromosomal passenger complex controls the function of endosomal sorting complex required for transport-III Snf7 proteins during cytokinesis. Open Biol 2(5):120070. doi: 10.1098/rsob.120070 PubMedCentralPubMedGoogle Scholar
  174. 174.
    Carlton JG, Caballe A, Agromayor M, Kloc M, Martin-Serrano J (2012) ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science 336(6078):220–225. doi: 10.1126/science.1217180 PubMedCentralPubMedGoogle Scholar
  175. 175.
    Thoresen SB, Campsteijn C, Vietri M, Schink KO, Liestol K, Andersen JS, Raiborg C, Stenmark H (2014) ANCHR mediates Aurora-B-dependent abscission checkpoint control through retention of VPS4. Nat Cell Biol 16(6):550–560. doi: 10.1038/ncb2959 PubMedGoogle Scholar
  176. 176.
    Taniuchi K, Nakagawa H, Nakamura T, Eguchi H, Ohigashi H, Ishikawa O, Katagiri T, Nakamura Y (2005) Down-regulation of RAB6KIFL/KIF20A, a kinesin involved with membrane trafficking of discs large homologue 5, can attenuate growth of pancreatic cancer cell. Cancer Res 65(1):105–112PubMedGoogle Scholar
  177. 177.
    Lu Y, Liu P, Wen W, Grubbs CJ, Townsend RR, Malone JP, Lubet RA, You M (2010) Cross-species comparison of orthologous gene expression in human bladder cancer and carcinogen-induced rodent models. Am J Transl Res 3(1):8–27PubMedCentralPubMedGoogle Scholar
  178. 178.
    Claerhout S, Lim JY, Choi W, Park YY, Kim K, Kim SB, Lee JS, Mills GB, Cho JY (2011) Gene expression signature analysis identifies vorinostat as a candidate therapy for gastric cancer. PLoS One 6(9):e24662. doi: 10.1371/journal.pone.0024662 PubMedCentralPubMedGoogle Scholar
  179. 179.
    Gasnereau I, Boissan M, Margall-Ducos G, Couchy G, Wendum D, Bourgain-Guglielmetti F, Desdouets C, Lacombe ML, Zucman-Rossi J, Sobczak-Thepot J (2012) KIF20A mRNA and its product MKLP2 are increased during hepatocyte proliferation and hepatocarcinogenesis. Am J Pathol 180(1):131–140. doi: 10.1016/j.ajpath.2011.09.040 PubMedGoogle Scholar
  180. 180.
    Yamashita J, Fukushima S, Jinnin M, Honda N, Makino K, Sakai K, Masuguchi S, Inoue Y, Ihn H (2012) Kinesin family member 20A is a novel melanoma-associated antigen. Acta Derm Venereol 92(6):593–597. doi: 10.2340/00015555-1416 PubMedGoogle Scholar
  181. 181.
    List A, Kurtin S, Roe DJ, Buresh A, Mahadevan D, Fuchs D, Rimsza L, Heaton R, Knight R, Zeldis JB (2005) Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med 352(6):549–557. doi: 10.1056/NEJMoa041668 PubMedGoogle Scholar
  182. 182.
    Matsuoka A, Tochigi A, Kishimoto M, Nakahara T, Kondo T, Tsujioka T, Tasaka T, Tohyama Y, Tohyama K (2010) Lenalidomide induces cell death in an MDS-derived cell line with deletion of chromosome 5q by inhibition of cytokinesis. Leukemia 24(4):748–755. doi: 10.1038/leu.2009.296 PubMedGoogle Scholar
  183. 183.
    Groth-Pedersen L, Aits S, Corcelle-Termeau E, Petersen NH, Nylandsted J, Jaattela M (2012) Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells. PLoS One 7(10):e45381. doi: 10.1371/journal.pone.0045381 PubMedCentralPubMedGoogle Scholar
  184. 184.
    Yan GR, Zou FY, Dang BL, Zhang Y, Yu G, Liu X, He QY (2012) Genistein-induced mitotic arrest of gastric cancer cells by downregulating KIF20A, a proteomics study. Proteomics 12(14):2391–2399. doi: 10.1002/pmic.201100652 PubMedGoogle Scholar
  185. 185.
    Zou JX, Duan Z, Wang J, Sokolov A, Xu J, Chen CZ, Li JJ, Chen HW (2014) Kinesin family deregulation coordinated by bromodomain protein ANCCA and histone methyltransferase MLL for breast cancer cell growth, survival, and tamoxifen resistance. Mol Cancer Res 12(4):539–549. doi: 10.1158/1541-7786.MCR-13-0459 PubMedGoogle Scholar
  186. 186.
    Tcherniuk S, Skoufias DA, Labriere C, Rath O, Gueritte F, Guillou C, Kozielski F (2010) Relocation of Aurora B and survivin from centromeres to the central spindle impaired by a kinesin-specific MKLP-2 inhibitor. Angew Chem Int Ed Engl 49(44):8228–8231. doi: 10.1002/anie.201003254 PubMedGoogle Scholar
  187. 187.
    Liu J, Wang QC, Cui XS, Wang ZB, Kim NH, Sun SC (2013) MKLP2 inhibitior paprotrain affects polar body extrusion during mouse oocyte maturation. Reprod Biol Endocrinol 11:117. doi: 10.1186/1477-7827-11-117 PubMedCentralPubMedGoogle Scholar
  188. 188.
    Nakayama Y, Saito Y, Soeda S, Iwamoto E, Ogawa S, Yamagishi N, Kuga T, Yamaguchi N (2014) Genistein induces cytokinesis failure through RhoA delocalization and anaphase chromosome bridging. J Cell Biochem 115(4):763–771. doi: 10.1002/jcb.24720 PubMedGoogle Scholar
  189. 189.
    Imai K, Hirata S, Irie A, Senju S, Ikuta Y, Yokomine K, Harao M, Inoue M, Tomita Y, Tsunoda T, Nakagawa H, Nakamura Y, Baba H, Nishimura Y (2011) Identification of HLA-A2-restricted CTL epitopes of a novel tumour-associated antigen, KIF20A, overexpressed in pancreatic cancer. Br J Cancer 104(2):300–307. doi: 10.1038/sj.bjc.6606052 PubMedCentralPubMedGoogle Scholar
  190. 190.
    Osawa R, Tsunoda T, Yoshimura S, Watanabe T, Miyazawa M, Tani M, Takeda K, Nakagawa H, Nakamura Y, Yamaue H (2012) Identification of HLA-A24-restricted novel T Cell epitope peptides derived from P-cadherin and kinesin family member 20A. J Biomed Biotechnol 2012:848042. doi: 10.1155/2012/848042 PubMedCentralPubMedGoogle Scholar
  191. 191.
    Asahara S, Takeda K, Yamao K, Maguchi H, Yamaue H (2013) Phase I/II clinical trial using HLA-A24-restricted peptide vaccine derived from KIF20A for patients with advanced pancreatic cancer. J Transl Med 11(1):291. doi: 10.1186/1479-5876-11-291 PubMedCentralPubMedGoogle Scholar
  192. 192.
    Suzuki N, Hazama S, Ueno T, Matsui H, Shindo Y, Iida M, Yoshimura K, Yoshino S, Takeda K, Oka M (2014) A phase I clinical trial of vaccination with KIF20A-derived peptide in combination with gemcitabine for patients with advanced pancreatic cancer. J Immunother 37(1):36–42. doi: 10.1097/CJI.0000000000000012 PubMedCentralPubMedGoogle Scholar
  193. 193.
    Okuyama R, Aruga A, Hatori T, Takeda K, Yamamoto M (2013) Immunological responses to a multi-peptide vaccine targeting cancer-testis antigens and VEGFRs in advanced pancreatic cancer patients. Oncoimmunology 2(11):e27010. doi: 10.4161/onci.27010 PubMedCentralPubMedGoogle Scholar
  194. 194.
    Aruga A, Takeshita N, Kotera Y, Okuyama R, Matsushita N, Ohta T, Takeda K, Yamamoto M (2014) Phase I clinical trial of multiple-peptide vaccination for patients with advanced biliary tract cancer. J Transl Med 12:61. doi: 10.1186/1479-5876-12-61 PubMedCentralPubMedGoogle Scholar
  195. 195.
    Tomita Y, Yuno A, Tsukamoto H, Senju S, Kuroda Y, Hirayama M, Irie A, Kawahara K, Yatsuda J, Hamada A, Jono H, Yoshida K, Tsunoda T, Kohrogi H, Yoshitake Y, Nakamura Y, Shinohara M, Nishimura Y (2013) Identification of promiscuous KIF20A long peptides bearing both CD4+ and CD8+ T-cell epitopes: KIF20A-specific CD4+ T-cell immunity in patients with malignant tumor. Clin Cancer Res 19(16):4508–4520. doi: 10.1158/1078-0432.CCR-13-0197 PubMedGoogle Scholar
  196. 196.
    Melief CJ, van der Burg SH (2008) Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat Rev Cancer 8(5):351–360. doi: 10.1038/nrc2373 PubMedGoogle Scholar
  197. 197.
    Reichert N, Wurster S, Ulrich T, Schmitt K, Hauser S, Probst L, Gotz R, Ceteci F, Moll R, Rapp U, Gaubatz S (2010) Lin9, a subunit of the mammalian DREAM complex, is essential for embryonic development, for survival of adult mice, and for tumor suppression. Mol Cell Biol 30(12):2896–2908. doi: 10.1128/MCB.00028-10 PubMedCentralPubMedGoogle Scholar
  198. 198.
    Wonsey DR, Follettie MT (2005) Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Res 65(12):5181–5189. doi: 10.1158/0008-5472.CAN-04-4059 PubMedGoogle Scholar
  199. 199.
    Westendorf JM, Rao PN, Gerace L (1994) Cloning of cDNAs for M-phase phosphoproteins recognized by the MPM2 monoclonal antibody and determination of the phosphorylated epitope. Proc Natl Acad Sci U S A 91(2):714–718PubMedCentralPubMedGoogle Scholar
  200. 200.
    Matsumoto-Taniura N, Pirollet F, Monroe R, Gerace L, Westendorf JM (1996) Identification of novel M phase phosphoproteins by expression cloning. Mol Biol Cell 7(9):1455–1469. doi: 10.1091/mbc.7.9.1455 PubMedCentralPubMedGoogle Scholar
  201. 201.
    Janisch KM, Vock VM, Fleming MS, Shrestha A, Grimsley-Myers CM, Rasoul BA, Neale SA, Cupp TD, Kinchen JM, Liem KF Jr, Dwyer ND (2013) The vertebrate-specific Kinesin-6, Kif20b, is required for normal cytokinesis of polarized cortical stem cells and cerebral cortex size. Development 140(23):4672–4682. doi: 10.1242/dev.093286 PubMedCentralPubMedGoogle Scholar
  202. 202.
    Zhu C, Zhao J, Bibikova M, Leverson JD, Bossy-Wetzel E, Fan JB, Abraham RT, Jiang W (2005) Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol Biol Cell 16(7):3187–3199. doi: 10.1091/mbc.E05-02-0167 PubMedCentralPubMedGoogle Scholar
  203. 203.
    Ryo A, Liou YC, Lu KP, Wulf G (2003) Prolyl isomerase Pin1: a catalyst for oncogenesis and a potential therapeutic target in cancer. J Cell Sci 116(Pt 5):773–783. doi: 10.1242/jcs.00276 PubMedGoogle Scholar
  204. 204.
    van der Horst A, Khanna KK (2009) The peptidyl-prolyl isomerase Pin1 regulates cytokinesis through Cep55. Cancer Res 69(16):6651–6659. doi:0.1158/0008-5472.CAN-09-0825Google Scholar
  205. 205.
    Nishiu M, Yanagawa R, Nakatsuka S, Yao M, Tsunoda T, Nakamura Y, Aozasa K (2002) Microarray analysis of gene-expression profiles in diffuse large B-cell lymphoma: identification of genes related to disease progression. Jpn J Cancer Res 93(8):894–901. doi:10.1111/j.1349-7006.2002.tb01335.xPubMedGoogle Scholar
  206. 206.
    Liu XR, Cai Y, Cao X, Wei RC, Li HL, Zhou XM, Zhang KJ, Wu S, Qian QJ, Cheng B, Huang K, Liu XY (2012) A new oncolytic adenoviral vector carrying dual tumour suppressor genes shows potent anti-tumour effect. J Cell Mol Med 16(6):1298–1309. doi: 10.1111/j.1582-4934.2011.01396.x PubMedGoogle Scholar
  207. 207.
    Bao L, Kimzey A, Sauter G, Sowadski JM, Lu KP, Wang DG (2004) Prevalent overexpression of prolyl isomerase Pin1 in human cancers. Am J Pathol 164(5):1727–1737. doi: 10.1016/S0002-9440(10)63731-5 PubMedCentralPubMedGoogle Scholar
  208. 208.
    Obara W, Ohsawa R, Kanehira M, Takata R, Tsunoda T, Yoshida K, Takeda K, Katagiri T, Nakamura Y, Fujioka T (2012) Cancer peptide vaccine therapy developed from oncoantigens identified through genome-wide expression profile analysis for bladder cancer. Jpn J Clin Oncol 42(7):591–600. doi: 10.1093/jjco/hys069 PubMedGoogle Scholar
  209. 209.
    Sapir T, Levy T, Sakakibara A, Rabinkov A, Miyata T, Reiner O (2013) Shootin1 acts in concert with KIF20B to promote polarization of migrating neurons. J Neurosci 33(29):11932–11948. doi: 10.1523/JNEUROSCI.5425-12.2013 PubMedGoogle Scholar
  210. 210.
    Fritzler MJ, Kerfoot SM, Feasby TE, Zochodne DW, Westendorf JM, Dalmau JO, Chan EK (2000) Autoantibodies from patients with idiopathic ataxia bind to M-phase phosphoprotein-1 (MPP1). J Investig Med 48(1):28–39PubMedGoogle Scholar
  211. 211.
    Liu F, Arias-Vasquez A, Sleegers K, Aulchenko YS, Kayser M, Sanchez-Juan P, Feng BJ, Bertoli-Avella AM, van Swieten J, Axenovich TI, Heutink P, van Broeckhoven C, Oostra BA, van Duijn CM (2007) A genomewide screen for late-onset alzheimer disease in a genetically isolated Dutch population. Am J Hum Genet 81(1):17–31. doi: 10.1086/518720
  212. 212.
    Zochodne DW, Auer R, Fritzler MJ (2003) Longstanding ataxic demyelinating polyneuronopathy with a novel autoantibody. Neurology 60(1):127–129. doi: 10.1212/01.WNL.0000040660.76868.3C PubMedGoogle Scholar
  213. 213.
    Blagosklonny MV (2007) Mitotic arrest and cell fate: why and how mitotic inhibition of transcription drives mutually exclusive events. Cell Cycle 6(1):70–74. doi: 10.4161/cc.6.1.3682 PubMedGoogle Scholar
  214. 214.
    Casenghi M, Mangiacasale R, Tuynder M, Caillet-Fauquet P, Elhajouji A, Lavia P, Mousset S, Kirsch-Volders M, Cundari E (1999) p53-independent apoptosis and p53-dependent block of DNA rereplication following mitotic spindle inhibition in human cells. Exp Cell Res 250(2):339–350. doi: 10.1006/excr.1999.4554 PubMedGoogle Scholar
  215. 215.
    Sagona AP, Stenmark H (2010) Cytokinesis and cancer. FEBS Lett 584(12):2652–2661. doi: 10.1016/j.febslet.2010.03.044
  216. 216.
    Hayashi MT, Karlseder J (2013) DNA damage associated with mitosis and cytokinesis failure. Oncogene 32(39):4593–4601. doi: 10.1038/onc.2012.615 PubMedCentralPubMedGoogle Scholar
  217. 217.
    Lacroix B, Maddox AS (2012) Cytokinesis, ploidy and aneuploidy. J Pathol 226(2):338–351. doi: 10.1002/path.3013 PubMedGoogle Scholar
  218. 218.
    Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D (2005) Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437(7061):1043–1047. doi: 10.1038/nature04217 PubMedGoogle Scholar
  219. 219.
    Lv L, Zhang T, Yi Q, Huang Y, Wang Z, Hou H, Zhang H, Zheng W, Hao Q, Guo Z, Cooke HJ, Shi Q (2012) Tetraploid cells from cytokinesis failure induce aneuploidy and spontaneous transformation of mouse ovarian surface epithelial cells. Cell Cycle 11(15):2864–2875. doi: 10.4161/cc.21196 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Molecular and Clinical Cancer MedicineUniversity of LiverpoolLiverpoolUK
  2. 2.Department of BiochemistryUniversity of OxfordOxfordUK

Personalised recommendations