The Kinesin Superfamily

  • Kristen J. VerheyEmail author
  • Jared C. Cochran
  • Claire E. Walczak


Kinesins are enzymes that use the energy of ATP hydrolysis to generate force and/or motility along microtubule polymers. A large number of kinesin enzymes are involved in mitosis with important roles in spindle assembly, chromosome congression, chromosome segregation, and cytokinesis. In this chapter, we begin with a description of the kinesin motor domain and the general principles of chemomechanical coupling. We then discuss general principles of kinesin organization and regulation. Finally, we provide a brief description of the kinesins that are known to function in mitosis, which will be the focus of the later chapters of this book.


Motor Domain Coiled Coil Spindle Bipolarity Kinesin Motor Kinesin Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brady ST (1985) A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317:73–75PubMedGoogle Scholar
  2. 2.
    Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50PubMedCentralPubMedGoogle Scholar
  3. 3.
    Lawrence CJ et al (2004) A standardized kinesin nomenclature. J Cell Biol 167:19–22PubMedCentralPubMedGoogle Scholar
  4. 4.
    Miki H, Okada Y, Hirokawa N (2005) Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 15:467–476PubMedGoogle Scholar
  5. 5.
    Wickstead B, Gull K (2006) A “holistic” kinesin phylogeny reveals new kinesin families and predicts protein functions. Mol Biol Cell 17:1734–1743PubMedCentralPubMedGoogle Scholar
  6. 6.
    Kull FJ, Sablin EP, Lau R, Fletterick RJ, Vale RD (1996) Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380:550–555PubMedCentralPubMedGoogle Scholar
  7. 7.
    Rayment I et al (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58PubMedGoogle Scholar
  8. 8.
    Kull FJ (2000) Motor proteins of the kinesin superfamily: structure and mechanism. Essays Biochem 35:61–73PubMedGoogle Scholar
  9. 9.
    Kull FJ, Endow SA (2002) Kinesin: switch I & II and the motor mechanism. J Cell Sci 115:15–23PubMedGoogle Scholar
  10. 10.
    Marx A, Hoenger A, Mandelkow E (2009) Structures of kinesin motor proteins. Cell Motil Cytoskeleton 66:958–966PubMedCentralPubMedGoogle Scholar
  11. 11.
    Woehlke G (2001) A look into kinesin’s powerhouse. FEBS Lett 508:291–294PubMedGoogle Scholar
  12. 12.
    Hua W, Young EC, Fleming ML, Gelles J (1997) Coupling of kinesin steps to ATP hydrolysis. Nature 388:390–393PubMedGoogle Scholar
  13. 13.
    Schnitzer MJ, Block SM (1997) Kinesin hydrolyses one ATP per 8-nm step. Nature 388:386–390PubMedGoogle Scholar
  14. 14.
    Schnitzer MJ, Visscher K, Block SM (2000) Force production by single kinesin motors. Nat Cell Biol 2:718–723PubMedGoogle Scholar
  15. 15.
    Vale RD et al (1996) Direct observation of single kinesin molecules moving along microtubules. Nature 380:451–453PubMedCentralPubMedGoogle Scholar
  16. 16.
    Svoboda K, Block SM (1994) Force and velocity measured for single kinesin molecules. Cell 77:773–784PubMedGoogle Scholar
  17. 17.
    Visscher K, Schnitzer MJ, Block SM (1999) Single kinesin molecules studied with a molecular force clamp. Nature 400:184–189PubMedGoogle Scholar
  18. 18.
    Yildiz A, Tomishige M, Vale RD, Selvin PR (2004) Kinesin walks hand-over-hand. Science 303:676–678PubMedGoogle Scholar
  19. 19.
    Valentine MT, Fordyce PM, Krzysiak TC, Gilbert SP, Block SM (2006) Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro. Nat Cell Biol 8:470–476PubMedCentralPubMedGoogle Scholar
  20. 20.
    Yardimci H, van Duffelen M, Mao Y, Rosenfeld SS, Selvin PR (2008) The mitotic kinesin CENP-E is a processive transport motor. Proc Natl Acad Sci U S A 105:6016–6021PubMedCentralPubMedGoogle Scholar
  21. 21.
    Rice S et al (1999) A structural change in the kinesin motor protein that drives motility. Nature 402:778–784PubMedGoogle Scholar
  22. 22.
    Schief WR, Howard J (2001) Conformational changes during kinesin motility. Curr Opin Cell Biol 13:19–28PubMedGoogle Scholar
  23. 23.
    Guydosh NR, Block SM (2006) Backsteps induced by nucleotide analogs suggest the front head of kinesin is gated by strain. Proc Natl Acad Sci U S A 103:8054–8059PubMedCentralPubMedGoogle Scholar
  24. 24.
    Hwang W, Lang MJ (2009) Mechanical design of translocating motor proteins. Cell Biochem Biophys 54:11–22PubMedGoogle Scholar
  25. 25.
    Hyeon C, Onuchic JN (2007) Internal strain regulates the nucleotide binding site of the kinesin leading head. Proc Natl Acad Sci U S A 104:2175–2180PubMedCentralPubMedGoogle Scholar
  26. 26.
    Jaud J, Bathe F, Schliwa M, Rief M, Woehlke G (2006) Flexibility of the neck domain enhances kinesin-1 motility under load. Biophys J 91:1407–1412PubMedCentralPubMedGoogle Scholar
  27. 27.
    Miyazono Y, Hayashi M, Karagiannis P, Harada Y, Tadakuma H (2010) Strain through the neck linker ensures processive runs: a DNA-kinesin hybrid nanomachine study. EMBO J 29:93–106PubMedCentralPubMedGoogle Scholar
  28. 28.
    Rosenfeld SS, Fordyce PM, Jefferson GM, King PH, Block SM (2003) Stepping and stretching. How kinesin uses internal strain to walk processively. J Biol Chem 278:18550–18556PubMedCentralPubMedGoogle Scholar
  29. 29.
    Shastry S, Hancock WO (2010) Neck linker length determines the degree of processivity in kinesin-1 and kinesin-2 motors. Curr Biol 20:939–943PubMedCentralPubMedGoogle Scholar
  30. 30.
    Yildiz A, Tomishige M, Gennerich A, Vale RD (2008) Intramolecular strain coordinates kinesin stepping behavior along microtubules. Cell 134:1030–1041PubMedCentralPubMedGoogle Scholar
  31. 31.
    Khalil AS et al (2008) Kinesin’s cover-neck bundle folds forward to generate force. Proc Natl Acad Sci U S A 105:19247–19252PubMedCentralPubMedGoogle Scholar
  32. 32.
    Hwang W, Lang MJ, Karplus M (2008) Force generation in kinesin hinges on cover-neck bundle formation. Structure 16:62–71PubMedGoogle Scholar
  33. 33.
    Sosa H et al (1997) A model for the microtubule-Ncd motor protein complex obtained by cryo-electron microscopy and image analysis. Cell 90:217–224PubMedGoogle Scholar
  34. 34.
    Woehlke G et al (1997) Microtubule interaction site of the kinesin motor. Cell 90:207–216PubMedGoogle Scholar
  35. 35.
    Block SM (2007) Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. Biophys J 92:2986–2995PubMedCentralPubMedGoogle Scholar
  36. 36.
    Zhao YC, Kull FJ, Cochran JC (2010) Modulation of the kinesin ATPase cycle by neck linker docking and microtubule binding. J Biol Chem 285:25213–25220PubMedCentralPubMedGoogle Scholar
  37. 37.
    Cochran JC et al (2009) ATPase cycle of the nonmotile kinesin NOD allows microtubule end tracking and drives chromosome movement. Cell 136:110–122PubMedCentralPubMedGoogle Scholar
  38. 38.
    Ogawa T, Nitta R, Okada Y, Hirokawa N (2004) A common mechanism for microtubule destabilizers-M type kinesins stabilize curling of the protofilament using the class-specific neck and loops. Cell 116:591–602PubMedGoogle Scholar
  39. 39.
    Sindelar CV, Downing KH (2007) The beginning of kinesin’s force-generating cycle visualized at 9-A resolution. J Cell Biol 177:377–385PubMedCentralPubMedGoogle Scholar
  40. 40.
    Vale RD, Milligan RA (2000) The way things move: looking under the hood of molecular motor proteins. Science 288:88–95PubMedGoogle Scholar
  41. 41.
    Gigant B et al (2013) Structure of a kinesin-tubulin complex and implications for kinesin motility. Nat Struct Mol Biol 20:1001–1007PubMedGoogle Scholar
  42. 42.
    Kikkawa M et al (2001) Switch-based mechanism of kinesin motors. Nature 411:439–445PubMedGoogle Scholar
  43. 43.
    Block SM, Asbury CL, Shaevitz JW, Lang MJ (2003) Probing the kinesin reaction cycle with a 2D optical force clamp. Proc Natl Acad Sci U S A 100:2351–2356PubMedCentralPubMedGoogle Scholar
  44. 44.
    Klumpp LM, Hoenger A, Gilbert SP (2004) Kinesin’s second step. Proc Natl Acad Sci U S A 101:3444–3449PubMedCentralPubMedGoogle Scholar
  45. 45.
    Hancock WO, Howard J (1999) Kinesin’s processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains. Proc Natl Acad Sci U S A 96:13147–13152PubMedCentralPubMedGoogle Scholar
  46. 46.
    Spudich JA (2006) Molecular motors take tension in stride. Cell 126:242–244PubMedGoogle Scholar
  47. 47.
    Nitta R, Okada Y, Hirokawa N (2008) Structural model for strain-dependent microtubule activation of Mg-ADP release from kinesin. Nat Struct Mol Biol 15:1067–1075PubMedGoogle Scholar
  48. 48.
    Kaan HY et al (2010) Structural basis for inhibition of Eg5 by dihydropyrimidines: stereoselectivity of antimitotic inhibitors enastron, dimethylenastron and fluorastrol. J Med Chem 53:5676–5683PubMedGoogle Scholar
  49. 49.
    Maliga Z et al (2006) A pathway of structural changes produced by monastrol binding to Eg5. J Biol Chem 281:7977–7982PubMedGoogle Scholar
  50. 50.
    Talapatra SK, Schuttelkopf AW, Kozielski F (2012) The structure of the ternary Eg5-ADP-ispinesib complex. Acta Crystallogr D Biol Crystallogr 68:1311–1319PubMedCentralPubMedGoogle Scholar
  51. 51.
    Yan Y et al (2004) Inhibition of a mitotic motor protein: where, how, and conformational consequences. J Mol Biol 335:547–554PubMedGoogle Scholar
  52. 52.
    Brier S, Lemaire D, Debonis S, Forest E, Kozielski F (2004) Identification of the protein binding region of S-trityl-L-cysteine, a new potent inhibitor of the mitotic kinesin Eg5. Biochemistry 43:13072–13082PubMedGoogle Scholar
  53. 53.
    Cochran JC, Gatial JE 3rd, Kapoor TM, Gilbert SP (2005) Monastrol inhibition of the mitotic kinesin Eg5. J Biol Chem 280:12658–12667PubMedCentralPubMedGoogle Scholar
  54. 54.
    Behnke-Parks WM et al (2011) Loop L5 acts as a conformational latch in the mitotic kinesin Eg5. J Biol Chem 286:5242–5253PubMedCentralPubMedGoogle Scholar
  55. 55.
    Waitzman JS et al (2011) The loop 5 element structurally and kinetically coordinates dimers of the human kinesin-5, Eg5. Biophys J 101:2760–2769PubMedCentralPubMedGoogle Scholar
  56. 56.
    Parke CL, Wojcik EJ, Kim S, Worthylake DK (2010) ATP hydrolysis in Eg5 kinesin involves a catalytic two-water mechanism. J Biol Chem 285:5859–5867PubMedCentralPubMedGoogle Scholar
  57. 57.
    Du Y, English CA, Ohi R (2010) The kinesin-8 Kif18A dampens microtubule plus-end dynamics. Curr Biol 20:374–380PubMedGoogle Scholar
  58. 58.
    Gupta ML Jr, Carvalho P, Roof DM, Pellman D (2006) Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle. Nat Cell Biol 8:913–923PubMedGoogle Scholar
  59. 59.
    Varga V et al (2006) Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat Cell Biol 8:957–962PubMedGoogle Scholar
  60. 60.
    Peters C et al (2010) Insight into the molecular mechanism of the multitasking kinesin-8 motor. EMBO J 29:3437–3447PubMedCentralPubMedGoogle Scholar
  61. 61.
    Walczak CE, Gayek S, Ohi R (2013) Microtubule-depolymerizing kinesins. Annu Rev Cell Dev Biol 29:417–441PubMedGoogle Scholar
  62. 62.
    Shipley K et al (2004) Structure of a kinesin microtubule depolymerization machine. EMBO J 23:1422–1432PubMedCentralPubMedGoogle Scholar
  63. 63.
    Tan D, Rice WJ, Sosa H (2008) Structure of the kinesin13-microtubule ring complex. Structure 16:1732–1739PubMedGoogle Scholar
  64. 64.
    Huang TG, Suhan J, Hackney DD (1994) Drosophila kinesin motor domain extending to amino acid position 392 is dimeric when expressed in Escherichia coli. J Biol Chem 269:16502–16507PubMedGoogle Scholar
  65. 65.
    Kozielski F, De Bonis S, Burmeister WP, Cohen-Addad C, Wade RH (1999) The crystal structure of the minus-end-directed microtubule motor protein ncd reveals variable dimer conformations. Structure 7:1407–1416PubMedGoogle Scholar
  66. 66.
    Kozielski F et al (1997) The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell 91:985–994PubMedGoogle Scholar
  67. 67.
    Hizlan D et al (2006) Structural analysis of the ZEN-4/CeMKLP1 motor domain and its interaction with microtubules. J Struct Biol 153:73–84PubMedGoogle Scholar
  68. 68.
    Rashid DJ, Bononi J, Tripet BP, Hodges RS, Pierce DW (2005) Monomeric and dimeric states exhibited by the kinesin-related motor protein KIF1A. J Pept Res 65:538–549PubMedGoogle Scholar
  69. 69.
    Shimizu Y, Morii H, Arisaka F, Tanokura M (2005) Stalk region of kinesin-related protein Unc104 has moderate ability to form coiled-coil dimer. Biochem Biophys Res Commun 337:868–874PubMedGoogle Scholar
  70. 70.
    Hammond JW et al (2009) Mammalian kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition. PLoS Biol 7:e72PubMedGoogle Scholar
  71. 71.
    Huckaba TM, Gennerich A, Wilhelm JE, Chishti AH, Vale RD (2011) Kinesin-73 is a processive motor that localizes to Rab5-containing organelles. J Biol Chem 286:7457–7467PubMedCentralPubMedGoogle Scholar
  72. 72.
    Huo L et al (2012) The CC1-FHA tandem as a central hub for controlling the dimerization and activation of kinesin-3 KIF1A. Structure 20:1550–1561PubMedGoogle Scholar
  73. 73.
    Mayr MI, Storch M, Howard J, Mayer TU (2011) A non-motor microtubule binding site is essential for the high processivity and mitotic function of kinesin-8 Kif18A. PLoS One 6:e27471PubMedCentralPubMedGoogle Scholar
  74. 74.
    Erent M, Drummond DR, Cross RA (2012) S. pombe kinesins-8 promote both nucleation and catastrophe of microtubules. PLoS One 7:e30738PubMedCentralPubMedGoogle Scholar
  75. 75.
    Tokai-Nishizumi N, Ohsugi M, Suzuki E, Yamamoto T (2005) The chromokinesin Kid is required for maintenance of proper metaphase spindle size. Mol Biol Cell 16:5455–5463PubMedCentralPubMedGoogle Scholar
  76. 76.
    Kondo S et al (1994) KIF3A is a new microtubule-based anterograde motor in the nerve axon. J Cell Biol 125:1095–1107PubMedGoogle Scholar
  77. 77.
    Yamazaki H, Nakata T, Okada Y, Hirokawa N (1995) KIF3A/B: a heterodimeric kinesin superfamily protein that works as a microtubule plus end-directed motor for membrane organelle transport. J Cell Biol 130:1387–1399PubMedGoogle Scholar
  78. 78.
    Yamazaki H, Nakata T, Okada Y, Hirokawa N (1996) Cloning and characterization of KAP3: a novel kinesin superfamily-associated protein of KIF3A/3B. Proc Natl Acad Sci U S A 93:8443–8448PubMedCentralPubMedGoogle Scholar
  79. 79.
    Muresan V et al (1998) KIF3C and KIF3A form a novel neuronal heteromeric kinesin that associates with membrane vesicles. Mol Biol Cell 9:637–652PubMedCentralPubMedGoogle Scholar
  80. 80.
    Muthukrishnan G, Zhang Y, Shastry S, Hancock WO (2009) The processivity of kinesin-2 motors suggests diminished front-head gating. Curr Biol 19:442–447PubMedCentralPubMedGoogle Scholar
  81. 81.
    Yang Z, Goldstein LS (1998) Characterization of the KIF3C neural kinesin-like motor from mouse. Mol Biol Cell 9:249–261PubMedCentralPubMedGoogle Scholar
  82. 82.
    Chana M, Tripet BP, Mant CT, Hodges RS (2002) The role of unstructured highly charged regions on the stability and specificity of dimerization of two-stranded alpha-helical coiled-coils: analysis of the neck-hinge region of the kinesin-like motor protein Kif3A. J Struct Biol 137:206–219PubMedGoogle Scholar
  83. 83.
    Chana MS, Tripet B, Mant CT, Hodges RS (2008) Stability and specificity of heterodimer formation for the coiled-coil neck regions of the motor proteins Kif3A and Kif3B: the role of unstructured oppositely charged regions. J Pept Res 65:209–220Google Scholar
  84. 84.
    De Marco V, Burkhard P, Le Bot N, Vernos I, Hoenger A (2001) Analysis of heterodimer formation by Xklp3A/B, a newly cloned kinesin-II from Xenopus laevis. EMBO J 20:3370–3379PubMedCentralPubMedGoogle Scholar
  85. 85.
    De Marco V, De Marco A, Goldie KN, Correia JJ, Hoenger A (2003) Dimerization properties of a Xenopus laevis kinesin-II carboxy-terminal stalk fragment. EMBO Rep 4:717–722PubMedCentralPubMedGoogle Scholar
  86. 86.
    Vukajlovic M, Dietz H, Schliwa M, Okten Z (2011) How kinesin-2 forms a stalk. Mol Biol Cell 22:4279–4287PubMedCentralPubMedGoogle Scholar
  87. 87.
    Doodhi H, Jana SC, Devan P, Mazumdar S, Ray K (2012) Biochemical and molecular dynamic simulation analysis of a weak coiled coil association between kinesin-II stalks. PLoS One 7:e45981PubMedCentralPubMedGoogle Scholar
  88. 88.
    Rashid DJ, Wedaman KP, Scholey JM (1995) Heterodimerization of the two motor subunits of the heterotrimeric kinesin, KRP85/95. J Mol Biol 252:157–162PubMedGoogle Scholar
  89. 89.
    Brunnbauer M et al (2012) Torque generation of kinesin motors is governed by the stability of the neck domain. Mol Cell 46:147–158PubMedGoogle Scholar
  90. 90.
    Pan X, Acar S, Scholey JM (2010) Torque generation by one of the motor subunits of heterotrimeric kinesin-2. Biochem Biophys Res Commun 401:53–57PubMedCentralPubMedGoogle Scholar
  91. 91.
    Allingham JS, Sproul LR, Rayment I, Gilbert SP (2007) Vik1 modulates microtubule-Kar3 interactions through a motor domain that lacks an active site. Cell 128:1161–1172PubMedCentralPubMedGoogle Scholar
  92. 92.
    Chen CJ, Rayment I, Gilbert SP (2011) Kinesin Kar3Cik1 ATPase pathway for microtubule cross-linking. J Biol Chem 286:29261–29272PubMedCentralPubMedGoogle Scholar
  93. 93.
    Rank KC et al (2012) Kar3Vik1, a member of the kinesin-14 superfamily, shows a novel kinesin microtubule binding pattern. J Cell Biol 197:957–970PubMedCentralPubMedGoogle Scholar
  94. 94.
    Sproul LR, Anderson DJ, Mackey AT, Saunders WS, Gilbert SP (2005) Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends. Curr Biol 15:1420–1427PubMedCentralPubMedGoogle Scholar
  95. 95.
    DeBoer SR et al (2008) Conventional kinesin holoenzymes are composed of heavy and light chain homodimers. Biochemistry 47:4535–4543PubMedCentralPubMedGoogle Scholar
  96. 96.
    Hackney DD, Levitt JD, Wagner DD (1991) Characterization of alpha 2 beta 2 and alpha 2 forms of kinesin. Biochem Biophys Res Commun 174:810–815PubMedGoogle Scholar
  97. 97.
    Cole DG, Saxton WM, Sheehan KB, Scholey JM (1994) A “slow” homotetrameric kinesin-related motor protein purified from Drosophila embryos. J Biol Chem 269:22913–22916PubMedCentralPubMedGoogle Scholar
  98. 98.
    Kashina AS et al (1996) A bipolar kinesin. Nature 379:270–272PubMedCentralPubMedGoogle Scholar
  99. 99.
    Tao L et al (2006) A homotetrameric kinesin-5, KLP61F, bundles microtubules and antagonizes Ncd in motility assays. Curr Biol 16:2293–2302PubMedGoogle Scholar
  100. 100.
    Acar S et al (2013) The bipolar assembly domain of the mitotic motor kinesin-5. Nat Commun 4:1343PubMedCentralPubMedGoogle Scholar
  101. 101.
    Kapitein LC et al (2005) The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435:114–118PubMedGoogle Scholar
  102. 102.
    van den Wildenberg SM et al (2008) The homotetrameric kinesin-5 KLP61F preferentially crosslinks microtubules into antiparallel orientations. Curr Biol 18:1860–1864PubMedCentralPubMedGoogle Scholar
  103. 103.
    Mishima M, Kaitna S, Glotzer M (2002) Central spindle assembly and cytokinesis require a kinesin-like protein/RhoGAP complex with microtubule bundling activity. Dev Cell 2:41–54PubMedGoogle Scholar
  104. 104.
    Somers WG, Saint R (2003) A RhoGEF and Rho family GTPase-activating protein complex links the contractile ring to cortical microtubules at the onset of cytokinesis. Dev Cell 4:29–39PubMedGoogle Scholar
  105. 105.
    Pavicic-Kaltenbrunner V, Mishima M, Glotzer M (2007) Cooperative assembly of CYK-4/MgcRacGAP and ZEN-4/MKLP1 to form the centralspindlin complex. Mol Biol Cell 18:4992–5003PubMedCentralPubMedGoogle Scholar
  106. 106.
    Cai D, Hoppe AD, Swanson JA, Verhey KJ (2007) Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells. J Cell Biol 176:51–63PubMedCentralPubMedGoogle Scholar
  107. 107.
    Coy DL, Hancock WO, Wagenbach M, Howard J (1999) Kinesin’s tail domain is an inhibitory regulator of the motor domain. Nat Cell Biol 1:288–292PubMedGoogle Scholar
  108. 108.
    Dietrich KA et al (2008) The kinesin-1 motor protein is regulated by a direct interaction of its head and tail. Proc Natl Acad Sci U S A 105:8938–8943PubMedCentralPubMedGoogle Scholar
  109. 109.
    Friedman DS, Vale RD (1999) Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain. Nat Cell Biol 1:293–297PubMedGoogle Scholar
  110. 110.
    Hackney DD, Baek N, Snyder AC (2009) Half-site inhibition of dimeric kinesin head domains by monomeric tail domains. Biochemistry 48:3448–3456PubMedCentralPubMedGoogle Scholar
  111. 111.
    Hackney DD, Levitt JD, Suhan J (1992) Kinesin undergoes a 9 S to 6 S conformational transition. J Biol Chem 267:8696–8701PubMedGoogle Scholar
  112. 112.
    Hackney DD, Stock MF (2000) Kinesin’s IAK tail domain inhibits initial microtubule-stimulated ADP release. Nat Cell Biol 2:257–260PubMedGoogle Scholar
  113. 113.
    Hackney DD, Stock MF (2008) Kinesin tail domains and Mg2+ directly inhibit release of ADP from head domains in the absence of microtubules. Biochemistry 47:7770–7778PubMedGoogle Scholar
  114. 114.
    Kaan HY, Hackney DD, Kozielski F (2011) The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition. Science 333:883–885PubMedCentralPubMedGoogle Scholar
  115. 115.
    Verhey KJ et al (1998) Light chain-dependent regulation of Kinesin’s interaction with microtubules. J Cell Biol 143:1053–1066PubMedCentralPubMedGoogle Scholar
  116. 116.
    Wong YL, Rice SE (2010) Kinesin’s light chains inhibit the head- and microtubule-binding activity of its tail. Proc Natl Acad Sci U S A 107:11781–11786PubMedCentralPubMedGoogle Scholar
  117. 117.
    Hammond JW, Blasius TL, Soppina V, Cai D, Verhey KJ (2010) Autoinhibition of the kinesin-2 motor KIF17 via dual intramolecular mechanisms. J Cell Biol 189:1013–1025PubMedCentralPubMedGoogle Scholar
  118. 118.
    Imanishi M, Endres NF, Gennerich A, Vale RD (2006) Autoinhibition regulates the motility of the C. elegans intraflagellar transport motor OSM-3. J Cell Biol 174:931–937PubMedCentralPubMedGoogle Scholar
  119. 119.
    Yamada KH, Hanada T, Chishti AH (2007) The effector domain of human Dlg tumor suppressor acts as a switch that relieves autoinhibition of kinesin-3 motor GAKIN/KIF13B. Biochemistry 46:10039–10045PubMedCentralPubMedGoogle Scholar
  120. 120.
    Lee JR et al (2004) An intramolecular interaction between the FHA domain and a coiled coil negatively regulates the kinesin motor KIF1A. EMBO J 23:1506–1515PubMedCentralPubMedGoogle Scholar
  121. 121.
    Espeut J et al (2008) Phosphorylation relieves autoinhibition of the kinetochore motor Cenp-E. Mol Cell 29:637–643PubMedGoogle Scholar
  122. 122.
    Stumpff J et al (2011) A tethering mechanism controls the processivity and kinetochore-microtubule plus-end enrichment of the kinesin-8 Kif18A. Mol Cell 43:764–775PubMedCentralPubMedGoogle Scholar
  123. 123.
    Antonio C et al (2000) Xkid, a chromokinesin required for chromosome alignment on the metaphase plate. Cell 102:425–435PubMedGoogle Scholar
  124. 124.
    Vernos I et al (1995) Xklp1, a chromosomal Xenopus kinesin-like protein essential for spindle organization and chromosome positioning. Cell 81:117–127PubMedGoogle Scholar
  125. 125.
    Brown KD, Wood KW, Cleveland DW (1996) The kinesin-like protein CENP-E is kinetochore-associated throughout poleward chromosome segregation during anaphase-A. J Cell Sci 109:961–969PubMedGoogle Scholar
  126. 126.
    Tokai N et al (1996) Kid, a novel kinesin-like DNA binding protein, is localized to chromosomes and the mitotic spindle. EMBO J 15:457–467PubMedCentralPubMedGoogle Scholar
  127. 127.
    Levesque AA, Compton DA (2001) The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J Cell Biol 154:1135–1146PubMedCentralPubMedGoogle Scholar
  128. 128.
    Goshima G, Vale RD (2005) Cell cycle-dependent dynamics and regulation of mitotic kinesins in Drosophila S2 cells. Mol Biol Cell 16:3896–3907PubMedCentralPubMedGoogle Scholar
  129. 129.
    Liu X, Erikson RL (2007) The nuclear localization signal of mitotic kinesin-like protein Mklp-1: effect on Mklp-1 function during cytokinesis. Biochem Biophys Res Commun 353:960–964PubMedGoogle Scholar
  130. 130.
    Cai S, Weaver LN, Ems-McClung SC, Walczak CE (2009) Kinesin-14 family proteins HSET/XCTK2 control spindle length by cross-linking and sliding microtubules. Mol Biol Cell 20:1348–1359PubMedCentralPubMedGoogle Scholar
  131. 131.
    Liao H, Li G, Yen TJ (1994) Mitotic regulation of microtubule cross-linking activity of CENP-E kinetochore protein. Science 265:394–398PubMedGoogle Scholar
  132. 132.
    Blangy A et al (1995) Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83:1159–1169PubMedGoogle Scholar
  133. 133.
    Sawin KE, Mitchison TJ (1995) Mutations in the kinesin-like protein Eg5 disrupting localization to the mitotic spindle. Proc Natl Acad Sci U S A 92:4289–4293PubMedCentralPubMedGoogle Scholar
  134. 134.
    Ohsugi M et al (2003) Cdc2-mediated phosphorylation of Kid controls its distribution to spindle and chromosomes. EMBO J 22:2091–2103PubMedCentralPubMedGoogle Scholar
  135. 135.
    Cahu J et al (2008) Phosphorylation by Cdk1 increases the binding of Eg5 to microtubules in vitro and in Xenopus egg extract spindles. PLoS One 3:e3936PubMedCentralPubMedGoogle Scholar
  136. 136.
    Severson AF, Hamill DR, Carter JC, Schumacher J, Bowerman B (2000) The aurora-related kinase AIR-2 recruits ZEN-4/CeMKLP1 to the mitotic spindle at metaphase and is required for cytokinesis. Curr Biol 10:1162–1171PubMedGoogle Scholar
  137. 137.
    Andrews PD et al (2004) Aurora B regulates MCAK at the mitotic centromere. Dev Cell 6:253–268PubMedGoogle Scholar
  138. 138.
    Lan W et al (2004) Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr Biol 14:273–286PubMedGoogle Scholar
  139. 139.
    Ohi R, Sapra T, Howard J, Mitchison TJ (2004) Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol Biol Cell 15:2895–2906PubMedCentralPubMedGoogle Scholar
  140. 140.
    Knowlton AL, Lan W, Stukenberg PT (2006) Aurora B is enriched at merotelic attachment sites, where it regulates MCAK. Curr Biol 16:1705–1710PubMedGoogle Scholar
  141. 141.
    Zhang X, Lan W, Ems-McClung SC, Stukenberg PT, Walczak CE (2007) Aurora B phosphorylates multiple sites on mitotic centromere-associated kinesin to spatially and temporally regulate its function. Mol Biol Cell 18:3264–3276PubMedCentralPubMedGoogle Scholar
  142. 142.
    Kim Y, Holland AJ, Lan W, Cleveland DW (2010) Aurora kinases and protein phosphatase 1 mediate chromosome congression through regulation of CENP-E. Cell 142:444–455PubMedCentralPubMedGoogle Scholar
  143. 143.
    Tanenbaum ME et al (2011) A complex of Kif18b and MCAK promotes microtubule depolymerization and is negatively regulated by Aurora kinases. Curr Biol 21:1356–1365PubMedGoogle Scholar
  144. 144.
    Lee YM et al (2010) Cell cycle-regulated expression and subcellular localization of a kinesin-8 member human KIF18B. Gene 466:16–25PubMedGoogle Scholar
  145. 145.
    Mayr MI et al (2007) The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Curr Biol 17:488–498PubMedGoogle Scholar
  146. 146.
    Brown KD, Coulson RM, Yen TJ, Cleveland DW (1994) Cyclin-like accumulation and loss of the putative kinetochore motor CENP-E results from coupling continuous synthesis with specific degradation at the end of mitosis. J Cell Biol 125:1303–1312PubMedGoogle Scholar
  147. 147.
    Funabiki H, Murray AW (2000) The Xenopus chromokinesin Xkid is essential for metaphase chromosome alignment and must be degraded to allow anaphase chromosome movement. Cell 102:411–424PubMedGoogle Scholar
  148. 148.
    Fontijn RD et al (2001) The human kinesin-like protein RB6K is under tight cell cycle control and is essential for cytokinesis. Mol Cell Biol 21:2944–2955PubMedCentralPubMedGoogle Scholar
  149. 149.
    Carvalho P, Gupta ML Jr, Hoyt MA, Pellman D (2004) Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation. Dev Cell 6:815–829PubMedGoogle Scholar
  150. 150.
    Feine O, Zur A, Mahbubani H, Brandeis M (2007) Human Kid is degraded by the APC/C(Cdh1) but not by the APC/C(Cdc20). Cell Cycle 6:2516–2523PubMedGoogle Scholar
  151. 151.
    Ganguly A, Bhattacharya R, Cabral F (2008) Cell cycle dependent degradation of MCAK: evidence against a role in anaphase chromosome movement. Cell Cycle 7:3187–3193PubMedCentralPubMedGoogle Scholar
  152. 152.
    Seguin L et al (2009) CUX1 and E2F1 regulate coordinated expression of the mitotic complex genes Ect2, MgcRacGAP, and MKLP1 in S phase. Mol Cell Biol 29:570–581PubMedCentralPubMedGoogle Scholar
  153. 153.
    Sedgwick GG et al (2013) Mechanisms controlling the temporal degradation of Nek2A and Kif18A by the APC/C-Cdc20 complex. EMBO J 32:303–314PubMedCentralPubMedGoogle Scholar
  154. 154.
    Wittmann T, Boleti H, Antony C, Karsenti E, Vernos I (1998) Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J Cell Biol 143:673–685PubMedCentralPubMedGoogle Scholar
  155. 155.
    Tahara K et al (2008) Importin-beta and the small guanosine triphosphatase Ran mediate chromosome loading of the human chromokinesin Kid. J Cell Biol 180:493–506PubMedCentralPubMedGoogle Scholar
  156. 156.
    Trieselmann N, Armstrong S, Rauw J, Wilde A (2003) Ran modulates spindle assembly by regulating a subset of TPX2 and Kid activities including Aurora A activation. J Cell Sci 116:4791–4798PubMedGoogle Scholar
  157. 157.
    Ems-McClung SC, Zheng Y, Walczak CE (2004) Importin alpha/beta and Ran-GTP regulate XCTK2 microtubule binding through a bipartite nuclear localization signal. Mol Biol Cell 15:46–57PubMedCentralPubMedGoogle Scholar
  158. 158.
    Wilbur JD, Heald R (2013) Mitotic spindle scaling during Xenopus development by kif2a and importin alpha. Elife 2:e00290PubMedCentralPubMedGoogle Scholar
  159. 159.
    Manning BD, Barrett JG, Wallace JA, Granok H, Snyder M (1999) Differential regulation of the Kar3p kinesin-related protein by two associated proteins, Cik1p and Vik1p. J Cell Biol 144:1219–1233PubMedCentralPubMedGoogle Scholar
  160. 160.
    Benanti JA, Matyskiela ME, Morgan DO, Toczyski DP (2009) Functionally distinct isoforms of Cik1 are differentially regulated by APC/C-mediated proteolysis. Mol Cell 33:581–590PubMedCentralPubMedGoogle Scholar
  161. 161.
    Atherton J, Houdusse A, Moores C (2013) Mapping out distribution routes for kinesin couriers. Biol Cell 105:465–487PubMedGoogle Scholar
  162. 162.
    Peris L et al (2009) Motor-dependent microtubule disassembly driven by tubulin tyrosination. J Cell Biol 185:1159–1166PubMedCentralPubMedGoogle Scholar
  163. 163.
    Sturgill EG, Ohi R (2013) Kinesin-12 differentially affects spindle assembly depending on its microtubule substrate. Curr Biol 23:1280–1290PubMedCentralPubMedGoogle Scholar
  164. 164.
    Segbert C et al (2003) KLP-18, a Klp2 kinesin, is required for assembly of acentrosomal meiotic spindles in Caenorhabditis elegans. Mol Biol Cell 14:4458–4469PubMedCentralPubMedGoogle Scholar
  165. 165.
    Enos AP, Morris NR (1990) Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in A. nidulans. Cell 60:1019–1027PubMedGoogle Scholar
  166. 166.
    Hoyt MA, He L, Loo KK, Saunders WS (1992) Two Saccharomyces cerevisiae kinesin-related gene products required for mitotic spindle assembly. J Cell Biol 118:109–120PubMedGoogle Scholar
  167. 167.
    Roof DM, Meluh PB, Rose MD (1992) Kinesin-related proteins required for assembly of the mitotic spindle. J Cell Biol 118:95–108PubMedGoogle Scholar
  168. 168.
    Roostalu J et al (2011) Directional switching of the kinesin Cin8 through motor coupling. Science 332:94–99PubMedGoogle Scholar
  169. 169.
    Gerson-Gurwitz A et al (2011) Directionality of individual kinesin-5 Cin8 motors is modulated by loop 8, ionic strength and microtubule geometry. EMBO J 30:4942–4954PubMedCentralPubMedGoogle Scholar
  170. 170.
    Fridman V et al (2013) Kinesin-5 Kip1 is a bi-directional motor that stabilizes microtubules and tracks their plus-ends in vivo. J Cell Sci 126:4147–4159PubMedGoogle Scholar
  171. 171.
    Ferenz NP, Gable A, Wadsworth P (2010) Mitotic functions of kinesin-5. Semin Cell Dev Biol 21:255–259PubMedCentralPubMedGoogle Scholar
  172. 172.
    Kapoor TM, Mayer TU, Coughlin ML, Mitchison TJ (2000) Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J Cell Biol 150:975–988PubMedCentralPubMedGoogle Scholar
  173. 173.
    Saunders AM, Powers J, Strome S, Saxton WM (2007) Kinesin-5 acts as a brake in anaphase spindle elongation. Curr Biol 17:R453–R454PubMedCentralPubMedGoogle Scholar
  174. 174.
    Tikhonenko I, Nag DK, Martin N, Koonce MP (2008) Kinesin-5 is not essential for mitotic spindle elongation in Dictyostelium. Cell Motil Cytoskeleton 65:853–862PubMedGoogle Scholar
  175. 175.
    Sakowicz R et al (1998) A marine natural product inhibitor of kinesin motors. Science 280:292–295PubMedGoogle Scholar
  176. 176.
    Liu L, Parameswaran S, Liu J, Kim S, Wojcik EJ (2011) Loop 5-directed compounds inhibit chimeric kinesin-5 motors: implications for conserved allosteric mechanisms. J Biol Chem 286:6201–6210PubMedCentralPubMedGoogle Scholar
  177. 177.
    Rath O, Kozielski F (2012) Kinesins and cancer. Nat Rev Cancer 12:527–539PubMedGoogle Scholar
  178. 178.
    Tanenbaum ME et al (2009) Kif15 cooperates with eg5 to promote bipolar spindle assembly. Curr Biol 19:1703–1711PubMedGoogle Scholar
  179. 179.
    Boleti H, Karsenti E, Vernos I (1996) Xklp2, a novel Xenopus centrosomal kinesin-like protein required for centrosome separation during mitosis. Cell 84:49–59PubMedGoogle Scholar
  180. 180.
    Vanneste D, Takagi M, Imamoto N, Vernos I (2009) The role of Hklp2 in the stabilization and maintenance of spindle bipolarity. Curr Biol 19:1712–1717PubMedGoogle Scholar
  181. 181.
    Yen TJ et al (1991) CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J 10:1245–1254PubMedCentralPubMedGoogle Scholar
  182. 182.
    Yen TJ, Li G, Schaar BT, Szilak I, Cleveland DW (1992) CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature 359:536–539PubMedGoogle Scholar
  183. 183.
    Schaar BT, Chan GK, Maddox P, Salmon ED, Yen TJ (1997) CENP-E function at kinetochores is essential for chromosome alignment. J Cell Biol 139:1373–1382PubMedCentralPubMedGoogle Scholar
  184. 184.
    Wood KW, Sakowicz R, Goldstein LS, Cleveland DW (1997) CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91:357–366PubMedGoogle Scholar
  185. 185.
    Yao X, Anderson KL, Cleveland DW (1997) The microtubule-dependent motor centromere-associated protein E (CENP-E) is an integral component of kinetochore corona fibers that link centromeres to spindle microtubules. J Cell Biol 139:435–447PubMedCentralPubMedGoogle Scholar
  186. 186.
    Chan GK, Schaar BT, Yen TJ (1998) Characterization of the kinetochore binding domain of CENP-E reveals interactions with the kinetochore proteins CENP-F and hBUBR1. J Cell Biol 143:49–63PubMedCentralPubMedGoogle Scholar
  187. 187.
    Abrieu A, Kahana JA, Wood KW, Cleveland DW (2000) CENP-E as an essential component of the mitotic checkpoint in vitro. Cell 102:817–826PubMedGoogle Scholar
  188. 188.
    Yao X, Abrieu A, Zheng Y, Sullivan KF, Cleveland DW (2000) CENP-E forms a link between attachment of spindle microtubules to kinetochores and the mitotic checkpoint. Nat Cell Biol 2:484–491PubMedGoogle Scholar
  189. 189.
    Weaver BA, Silk AD, Montagna C, Verdier-Pinard P, Cleveland DW (2007) Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11:25–36PubMedGoogle Scholar
  190. 190.
    Wood KW et al (2010) Antitumor activity of an allosteric inhibitor of centromere-associated protein-E. Proc Natl Acad Sci U S A 107:5839–5844PubMedCentralPubMedGoogle Scholar
  191. 191.
    Meluh PB, Rose MD (1990) KAR3, a kinesin-related gene required for yeast nuclear fusion. Cell 60:1029–1041PubMedGoogle Scholar
  192. 192.
    Hoyt MA, He L, Totis L, Saunders WS (1993) Loss of function of Saccharomyces cerevisiae kinesin-related CIN8 and KIP1 is suppressed by KAR3 motor domain mutations. Genetics 135:35–44PubMedCentralPubMedGoogle Scholar
  193. 193.
    O’Connell MJ, Meluh PB, Rose MD, Morris NR (1993) Suppression of the bimC4 mitotic spindle defect by deletion of klpA, a gene encoding a KAR3-related kinesin-like protein in Aspergillus nidulans. J Cell Biol 120:153–162PubMedGoogle Scholar
  194. 194.
    McDonald HB, Stewart RJ, Goldstein LS (1990) The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell 63:1159–1165PubMedGoogle Scholar
  195. 195.
    Chandra R, Salmon ED, Erickson HP, Lockhart A, Endow SA (1993) Structural and functional domains of the Drosophila ncd microtubule motor protein. J Biol Chem 268:9005–9013PubMedGoogle Scholar
  196. 196.
    Janson ME et al (2007) Crosslinkers and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast. Cell 128:357–368PubMedGoogle Scholar
  197. 197.
    Oladipo A, Cowan A, Rodionov V (2007) Microtubule motor Ncd induces sliding of microtubules in vivo. Mol Biol Cell 18:3601–3606PubMedCentralPubMedGoogle Scholar
  198. 198.
    Fink G et al (2009) The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding. Nat Cell Biol 11:717–723PubMedGoogle Scholar
  199. 199.
    Gaglio T et al (1996) Opposing motor activities are required for the organization of the mammalian mitotic spindle pole. J Cell Biol 135:399–414PubMedGoogle Scholar
  200. 200.
    Mountain V et al (1999) The kinesin-related protein, HSET, opposes the activity of Eg5 and cross-links microtubules in the mammalian mitotic spindle. J Cell Biol 147:351–366PubMedCentralPubMedGoogle Scholar
  201. 201.
    Zhu C et al (2005) Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol Biol Cell 16:3187–3199PubMedCentralPubMedGoogle Scholar
  202. 202.
    Kwon M et al (2008) Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev 22:2189–2203PubMedCentralPubMedGoogle Scholar
  203. 203.
    Kleylein-Sohn J et al (2012) Acentrosomal spindle organization renders cancer cells dependent on the kinesin HSET. J Cell Sci 125:5391–5402PubMedGoogle Scholar
  204. 204.
    Wu J et al (2013) Discovery and mechanistic study of a small molecule inhibitor for motor protein KIFC1. ACS Chem Biol 8:2201–2208PubMedGoogle Scholar
  205. 205.
    Watts CA, Richards FM, Bender A, Bond PJ, Korb O, Kern O, Riddick M, Owen P, Myers RM, Raff J, Gergely F, Jodrell DI, Ley SV (2013) Design, synthesis, and biological evaluation of an allosteric inhibitor of HSET that targets cancer cells with supernumerary centrosomes. Chem Biol 20(11):1399–1410Google Scholar
  206. 206.
    Yang B, Lamb ML, Zhang T, Hennessy EJ, Grewal G, Sha L, Zambrowski M, Block MH, Dowling JE, Su N, Wu J, Deegan T, Mikule K, Wang W, Kaspera R, Chuaqui C, Chen H (2014) Discovery of potent KIFC1 inhibitors using a method of integrated high-throughput synthesis and screening. J Med Chem 57(23):9958–9970Google Scholar
  207. 207.
    Grinberg-Rashi H et al (2009) The expression of three genes in primary non-small cell lung cancer is associated with metastatic spread to the brain. Clin Cancer Res 15:1755–1761PubMedGoogle Scholar
  208. 208.
    Ems-McClung SC, Walczak CE (2010) Kinesin-13s in mitosis: key players in the spatial and temporal organization of spindle microtubules. Semin Cell Dev Biol 21:276–282PubMedCentralPubMedGoogle Scholar
  209. 209.
    Desai A, Verma S, Mitchison TJ, Walczak CE (1999) Kin I kinesins are microtubule-destabilizing enzymes. Cell 96:69–78PubMedGoogle Scholar
  210. 210.
    Hunter AW et al (2003) The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol Cell 11:445–457PubMedGoogle Scholar
  211. 211.
    Kline-Smith SL, Walczak CE (2002) The microtubule-destabilizing kinesin XKCM1 regulates microtubule dynamic instability in cells. Mol Biol Cell 13:2718–2731PubMedCentralPubMedGoogle Scholar
  212. 212.
    Rizk RS et al (2009) MCAK and paclitaxel have differential effects on spindle microtubule organization and dynamics. Mol Biol Cell 20:1639–1651PubMedCentralPubMedGoogle Scholar
  213. 213.
    Kline-Smith SL, Khodjakov A, Hergert P, Walczak CE (2004) Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments. Mol Biol Cell 15:1146–1159PubMedCentralPubMedGoogle Scholar
  214. 214.
    Moore AT et al (2005) MCAK associates with the tips of polymerizing microtubules. J Cell Biol 169:391–397PubMedCentralPubMedGoogle Scholar
  215. 215.
    Zhang X, Ems-McClung SC, Walczak CE (2008) Aurora A phosphorylates MCAK to control ran-dependent spindle bipolarity. Mol Biol Cell 19:2752–2765PubMedCentralPubMedGoogle Scholar
  216. 216.
    Ganem NJ, Compton DA (2004) The KinI kinesin Kif2a is required for bipolar spindle assembly through a functional relationship with MCAK. J Cell Biol 166:473–478PubMedCentralPubMedGoogle Scholar
  217. 217.
    Rogers GC et al (2004) Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature 427:364–370PubMedGoogle Scholar
  218. 218.
    Maney T, Hunter AW, Wagenbach M, Wordeman L (1998) Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J Cell Biol 142:787–801PubMedCentralPubMedGoogle Scholar
  219. 219.
    Wordeman L, Wagenbach M, von Dassow G (2007) MCAK facilitates chromosome movement by promoting kinetochore microtubule turnover. J Cell Biol 179:869–879PubMedCentralPubMedGoogle Scholar
  220. 220.
    Shimo A et al (2008) Involvement of kinesin family member 2C/mitotic centromere-associated kinesin overexpression in mammary carcinogenesis. Cancer Sci 99:62–70PubMedGoogle Scholar
  221. 221.
    Huang R et al (2013) Intracellular targets for a phosphotyrosine peptidomimetic include the mitotic kinesin, MCAK. Biochem Pharmacol 86:597–611PubMedCentralPubMedGoogle Scholar
  222. 222.
    Maeda N et al (2005) Effects of DNA polymerase inhibitory and antitumor activities of lipase-hydrolyzed glycolipid fractions from spinach. J Nutr Biochem 16:121–128PubMedGoogle Scholar
  223. 223.
    Talje L, Ben E, Kadhi K, Atchia K, Tremblay-Boudreault T, Carreno S, Kwok BH (2014) DHTP is an allosteric inhibitor of the kinesin-13 family of microtubule depolymerases. FEBS Lett 588(14):2315–2320Google Scholar
  224. 224.
    Ishikawa K et al (2008) Mitotic centromere-associated kinesin is a novel marker for prognosis and lymph node metastasis in colorectal cancer. Br J Cancer 98:1824–1829PubMedCentralPubMedGoogle Scholar
  225. 225.
    Nakamura Y et al (2007) Clinicopathological and biological significance of mitotic centromere-associated kinesin overexpression in human gastric cancer. Br J Cancer 97:543–549PubMedCentralPubMedGoogle Scholar
  226. 226.
    Vanneste D, Ferreira V, Vernos I (2011) Chromokinesins: localization-dependent functions and regulation during cell division. Biochem Soc Trans 39:1154–1160PubMedGoogle Scholar
  227. 227.
    Yajima J et al (2003) The human chromokinesin Kid is a plus end-directed microtubule-based motor. EMBO J 22:1067–1074PubMedCentralPubMedGoogle Scholar
  228. 228.
    Sekine Y et al (1994) A novel microtubule-based motor protein (KIF4) for organelle transports, whose expression is regulated developmentally. J Cell Biol 127:187–201PubMedGoogle Scholar
  229. 229.
    Bieling P, Telley IA, Surrey T (2010) A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps. Cell 142:420–432PubMedGoogle Scholar
  230. 230.
    Bringmann H et al (2004) A kinesin-like motor inhibits microtubule dynamic instability. Science 303:1519–1522PubMedGoogle Scholar
  231. 231.
    Zhang P, Knowles BA, Goldstein LS, Hawley RS (1990) A kinesin-like protein required for distributive chromosome segregation in Drosophila. Cell 62:1053–1062PubMedGoogle Scholar
  232. 232.
    Mazumdar M, Sundareshan S, Misteli T (2004) Human chromokinesin KIF4A functions in chromosome condensation and segregation. J Cell Biol 166:613–620PubMedCentralPubMedGoogle Scholar
  233. 233.
    Williams BC, Riedy MF, Williams EV, Gatti M, Goldberg ML (1995) The Drosophila kinesin-like protein KLP3A is a midbody component required for central spindle assembly and initiation of cytokinesis. J Cell Biol 129:709–723PubMedGoogle Scholar
  234. 234.
    Mazumdar M et al (2006) Tumor formation via loss of a molecular motor protein. Curr Biol 16:1559–1564PubMedCentralPubMedGoogle Scholar
  235. 235.
    Cottingham FR, Hoyt MA (1997) Mitotic spindle positioning in Saccharomyces cerevisiae is accomplished by antagonistically acting microtubule motor proteins. J Cell Biol 138:1041–1053PubMedCentralPubMedGoogle Scholar
  236. 236.
    Garcia MA, Koonrugsa N, Toda T (2002) Two kinesin-like Kin I family proteins in fission yeast regulate the establishment of metaphase and the onset of anaphase A. Curr Biol 12:610–621PubMedGoogle Scholar
  237. 237.
    Stumpff J, von Dassow G, Wagenbach M, Asbury C, Wordeman L (2008) The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Dev Cell 14:252–262PubMedCentralPubMedGoogle Scholar
  238. 238.
    Stout JR et al (2011) Kif18B interacts with EB1 and controls astral microtubule length during mitosis. Mol Biol Cell 22:3070–3080PubMedCentralPubMedGoogle Scholar
  239. 239.
    Su X et al (2011) Mechanisms underlying the dual-mode regulation of microtubule dynamics by Kip3/kinesin-8. Mol Cell 43:751–763PubMedCentralPubMedGoogle Scholar
  240. 240.
    Weaver LN et al (2011) Kif18A uses a microtubule binding site in the tail for plus-end localization and spindle length regulation. Curr Biol 21:1500–1506PubMedCentralPubMedGoogle Scholar
  241. 241.
    Nagahara M et al (2011) Kinesin 18A expression: clinical relevance to colorectal cancer progression. Int J Cancer 129:2543–2552PubMedGoogle Scholar
  242. 242.
    Zhang C et al (2010) Kif18A is involved in human breast carcinogenesis. Carcinogenesis 31:1676–1684PubMedGoogle Scholar
  243. 243.
    Catarinella M, Gruner T, Strittmatter T, Marx A, Mayer TU (2009) BTB-1: a small molecule inhibitor of the mitotic motor protein Kif18A. Angew Chem Int Ed Engl 48:9072–9076PubMedGoogle Scholar
  244. 244.
    Braun J, Möckel MM, Strittmatter T, Marx A, Groth U, Mayer TU (2014) Synthesis and biological evaluation of optimized inhibitors of the mitotic kinesin Kif18A. ACS Chem Biol [Epub ahead of print]Google Scholar
  245. 245.
    Glotzer M (2009) The 3Ms of central spindle assembly: microtubules, motors and MAPs. Nat Rev Mol Cell Biol 10:9–20PubMedCentralPubMedGoogle Scholar
  246. 246.
    Gruneberg U et al (2006) KIF14 and citron kinase act together to promote efficient cytokinesis. J Cell Biol 172:363–372PubMedCentralPubMedGoogle Scholar
  247. 247.
    Jantsch-Plunger V et al (2000) CYK-4: a Rho family gtpase activating protein (GAP) required for central spindle formation and cytokinesis. J Cell Biol 149:1391–1404PubMedCentralPubMedGoogle Scholar
  248. 248.
    Nislow C, Lombillo VA, Kuriyama R, McIntosh JR (1992) A plus-end-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles. Nature 359:543–547PubMedGoogle Scholar
  249. 249.
    Gasnereau I et al (2012) KIF20A mRNA and its product MKlp2 are increased during hepatocyte proliferation and hepatocarcinogenesis. Am J Pathol 180:131–140PubMedGoogle Scholar
  250. 250.
    Imai K et al (2011) Identification of HLA-A2-restricted CTL epitopes of a novel tumour-associated antigen, KIF20A, overexpressed in pancreatic cancer. Br J Cancer 104:300–307PubMedCentralPubMedGoogle Scholar
  251. 251.
    Taniuchi K et al (2005) Down-regulation of RAB6KIFL/KIF20A, a kinesin involved with membrane trafficking of discs large homologue 5, can attenuate growth of pancreatic cancer cell. Cancer Res 65:105–112PubMedGoogle Scholar
  252. 252.
    Tcherniuk S et al (2010) Relocation of Aurora B and survivin from centromeres to the central spindle impaired by a kinesin-specific MKLP-2 inhibitor. Angew Chem Int Ed Engl 49:8228–8231PubMedGoogle Scholar
  253. 253.
    Alphey L et al (1997) KLP38B: a mitotic kinesin-related protein that binds PP1. J Cell Biol 138:395–409PubMedCentralPubMedGoogle Scholar
  254. 254.
    Molina I et al (1997) A chromatin-associated kinesin-related protein required for normal mitotic chromosome segregation in Drosophila. J Cell Biol 139:1361–1371PubMedCentralPubMedGoogle Scholar
  255. 255.
    Ohkura H et al (1997) Mutation of a gene for a Drosophila kinesin-like protein, Klp38B, leads to failure of cytokinesis. J Cell Sci 110:945–954PubMedGoogle Scholar
  256. 256.
    Ruden DM, Cui W, Sollars V, Alterman M (1997) A Drosophila kinesin-like protein, Klp38B, functions during meiosis, mitosis, and segmentation. Dev Biol 191:284–296PubMedGoogle Scholar
  257. 257.
    Carleton M et al (2006) RNA interference-mediated silencing of mitotic kinesin KIF14 disrupts cell cycle progression and induces cytokinesis failure. Mol Cell Biol 26:3853–3863PubMedCentralPubMedGoogle Scholar
  258. 258.
    Basavarajappa HD, Corson TW (2012) KIF14 as an oncogene in retinoblastoma: a target for novel therapeutics? Future Med Chem 4:2149–2152PubMedGoogle Scholar
  259. 259.
    Corson TW et al (2007) KIF14 messenger RNA expression is independently prognostic for outcome in lung cancer. Clin Cancer Res 13:3229–3234PubMedGoogle Scholar
  260. 260.
    Corson TW, Gallie BL (2006) KIF14 mRNA expression is a predictor of grade and outcome in breast cancer. Int J Cancer 119:1088–1094PubMedGoogle Scholar
  261. 261.
    Corson TW, Huang A, Tsao MS, Gallie BL (2005) KIF14 is a candidate oncogene in the 1q minimal region of genomic gain in multiple cancers. Oncogene 24:4741–4753PubMedGoogle Scholar
  262. 262.
    Madhavan J et al (2007) High expression of KIF14 in retinoblastoma: association with older age at diagnosis. Invest Ophthalmol Vis Sci 48:4901–4906PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Kristen J. Verhey
    • 1
    Email author
  • Jared C. Cochran
    • 2
  • Claire E. Walczak
    • 3
  1. 1.Department of Cell and Developmental BiologyUniversity of Michigan Medical SchoolAnn ArborUSA
  2. 2.Department of Molecular and Cellular BiochemistryIndiana UniversityBloomingtonUSA
  3. 3.Medical SciencesIndiana UniversityBloomingtonUSA

Personalised recommendations