Advertisement

Engineering G Protein-Coupled Receptors for Drug Design

  • Miles CongreveEmail author
  • Andrew S. Doré
  • Ali Jazayeri
  • Rebecca Nonoo
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

G protein-coupled receptors (GPCRs) play a crucial role in many diseases and are the site of action of 25–30 % of current drugs (Overington et al., Nat Rev Drug Discov 5(12):993–996, 2006). As such GPCRs represent a major area of interest for the pharmaceutical industry. Despite the rich history of this target class there remain many opportunities for clinical intervention and there is a scarcity of high quality drug-like molecules for many receptors. High-throughput screening has often failed to unlock the potential of members of this superfamily and new, complementary approaches to GPCR drug discovery are required. However, the instability of GPCRs when removed from the cell membrane has severely limited the application of the techniques of structure-based and fragment-based drug discovery. The Heptares approach is successfully overcoming this fundamental challenge and facilitates both biophysical and biochemical fragment screening and also the generation of structural information. Heptares uses its StaR® technology to thermostabilise GPCRs using mutations in precisely defined biologically-relevant conformations (Robertson et al., Neuropharmacology 60(1):36–44, 2011). StaR proteins are amenable to techniques that cannot be readily used with wild-type GPCRs, including fragment screening, biophysical kinetic profiling and X-ray crystallography. Crystal structures of multiple GPCRs have been solved using this approach in the last 5 years (Doré et al., Structure 19(9):1283–1293, 2011; Doré et al., Nature 511:557–562, 2014; Hollenstein et al., Nature 499(7459):438–443, 2013).

A description of the StaR engineering approach, with several examples of how it has been applied, will be presented here. Three examples of how the StaR technology has impacted drug design are outlined. Firstly, X-ray structures of the adenosine A2AR StaR in the antagonist conformation have allowed identification of a clinical candidate progressing into phase 1 clinical trials for the treatment of attention deficit hyperactivity disorder (ADHD) and with potential for the treatment of Parkinson’s disease. Secondly, the first Class B GPCR to be crystallized with a small molecule antagonist ligand, Corticotropin-releasing factor 1 (CRF1R) is presented. Finally, a Class C GPCR, metabotropic glutamate receptor 5 (mGlu5) has been crystallised with a negative allosteric modulator (NAM). Again in this case fragment and structure based drug design has been used to identify a pre-clinical candidate for the potential treatment of a range of CNS disorders.

Keywords

Surface Plasmon Resonance StaR Protein Fragment Screening Lipidic Cubic Phase Radiolabelled Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Rosenbaum DM, Rasmussen SGF, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Congreve M, Langmead CJ, Mason JS et al (2011) Progress in structure based drug design for G protein-coupled receptors. J Med Chem 54(13):4283–4311CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Leeson PD, Springthorpe B (2007) The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 6:881–890CrossRefPubMedGoogle Scholar
  4. 4.
    Congreve M, Murray CW, Blundell TL (2005) Structural biology and drug discovery. Drug Discov Today 10(13):895–907CrossRefPubMedGoogle Scholar
  5. 5.
    Congreve M, Dias JM, Marshall FH (2013) Structure-based drug design for G protein-coupled receptors. In: Progress in medicinal chemistry, vol 53. Elsevier, Amsterdam, p 1Google Scholar
  6. 6.
    Robertson N, Jazayeri A, Errey J et al (2011) The properties of thermostabilised G protein-coupled receptors (StaRs) and their use in drug discovery. Neuropharmacology 60(1):36–44CrossRefPubMedGoogle Scholar
  7. 7.
    Kawate T, Gouaux E (2006) Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Stucture 14(4):673–681CrossRefGoogle Scholar
  8. 8.
    Lundstrom K, Wagner R, Reinhart C et al (2006) Structural genomics on membrane proteins: comparison of more than 100 GPCRs in 3 expression systems. J Struct Funct Genomics 7(2):77–91CrossRefPubMedGoogle Scholar
  9. 9.
    Congreve M, Chessari G, Tisi D et al (2008) Recent developments in fragment-based drug discovery. J Med Chem 51(13):3661–3680CrossRefPubMedGoogle Scholar
  10. 10.
    Erlanson DA, McDowell RS, O’Brien T (2004) Fragment-based drug discovery. J Med Chem 47(14):3463–3482CrossRefPubMedGoogle Scholar
  11. 11.
    Congreve M, Rich RL, Myszka DG et al (2011) Fragment screening of stabilized G-protein-coupled receptors using biophysical methods. Methods Enzymol 493:115–136CrossRefPubMedGoogle Scholar
  12. 12.
    Zhukov A, Andrews SP, Errey JC et al (2011) Biophysical mapping of the adenosine A2A receptor. J Med Chem 54(13):4312–4323CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Chen D, Errey JC, Heitman LH et al (2012) Fragment screening of GPCRs using biophysical methods: identification of ligands of the adenosine A2A receptor with novel biological activity. ACS Chem Biol 7:2064–2073CrossRefPubMedGoogle Scholar
  14. 14.
    Albert JS, Blomberg N, Breeze AL et al (2007) An integrated approach to fragment-based lead generation: philosophy, strategy and case studies from AstraZeneca’s drug discovery programmes. Curr Top Med Chem 7(16):1600–1629CrossRefPubMedGoogle Scholar
  15. 15.
    Tate CG (2010) Practical considerations of membrane protein instability during purification and crystallization. Methods Mol Biol 601:187–203CrossRefPubMedGoogle Scholar
  16. 16.
    Caffrey M, Cherezov V (2009) Crystallizing membrane proteins using lipidic mesophases. Nat Protoc 4:706–731CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Caffrey M, Li D, Dukkipati A (2012) Membrane protein structure determination using crystallography and lipidic mesophases: recent advances and successes. Biochemistry 51(32):6266–6288CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Caffrey M (2009) Crystallizing membrane proteins for structure determination: use of lipidic mesophases. Annu Rev Biophys 38:29–51CrossRefPubMedGoogle Scholar
  19. 19.
    Chun E, Thompson AA, Liu W et al (2012) Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20:967–976CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Jaakola VP, Griffith MT, Hanson MA et al (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Cherezov V, Rosenbaum DM, Hanson MA et al (2007) High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318:1258–1265CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Wu B, Chien EY, Mol CD et al (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Chien EY, Liu W, Zhao Q et al (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330:1091–1095CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Rasmussen SG, Choi HJ, Rosenbaum DM et al (2007) Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450:383–387CrossRefPubMedGoogle Scholar
  25. 25.
    Day PW, Rasmussen SGF, Parnot C et al (2007) A monoclonal antibody for G protein-coupled receptor crystallography. Nat Methods 4:927–929CrossRefPubMedGoogle Scholar
  26. 26.
    Gomes CV, Kaster MP, Tomé AR et al (2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta 1808:1380–1399CrossRefPubMedGoogle Scholar
  27. 27.
    Shah U, Hodgson R (2010) Recent progress in the discovery of adenosine A2A receptor antagonists for the treatment of Parkinson’s disease. Curr Opin Drug Discov Devel 13:466–480PubMedGoogle Scholar
  28. 28.
    Hodgson RA, Bedard PJ, Varty GB et al (2010) Preladenant, a selective A2A receptor antagonist, is active in primate models of movement disorders. Exp Neurol 225:384–390CrossRefPubMedGoogle Scholar
  29. 29.
    Salamone JD (2010) Preladenant, a novel adenosine A2A receptor antagonist for the potential treatment of Parkinsonism and other disorders. Drugs 13:723–731Google Scholar
  30. 30.
    Takahashi RN, Pamplona FA, Prediger RD (2008) Adenosine receptor antagonists for cognitive dysfunction: a review of animal studies. Front Biosci 13:2614–2632CrossRefPubMedGoogle Scholar
  31. 31.
    Xu F, Wu H, Katritch V et al (2011) Structure of an agonist-bound human A2A adenosine receptor. Science 332:322–327CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Doré AS, Robertson N, Errey JC et al (2011) Structure of the adenosine A2A receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 19(9):1283–1293CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Lebon G, Warne T, Edwards PC et al (2011) Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474:521–525CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Hino T, Arakawa T, Iwanari H et al (2012) G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482:237–240PubMedCentralPubMedGoogle Scholar
  35. 35.
    Liu W, Chun E, Thompson AA et al (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232–236CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    de Zwart M, Vollinga RC, Beukers MW et al (1999) Potent antagonists for the human adenosine A2B receptor. Derivative of the triazolotriazine adenosine receptor antagonist ZM241385 with high affinity. Drug Dev Res 48:95–103CrossRefGoogle Scholar
  37. 37.
    Congreve M, Andrews SP, Doré AS et al (2012) Discovery of 1,2,4-triazine derivatives as adenosine A2A antagonists using structure based drug design. J Med Chem 55:1898–1903CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Alexander SPH, Benson HE, Faccenda E et al (2013) The concise guide to pharmacology 2013/14: G protein-coupled receptors. Br J Pharmacol 170:1459–1581CrossRefPubMedGoogle Scholar
  39. 39.
    Pal K, Melcher K, Xu HE (2012) Structure and mechanism for recognition of peptide hormones by Class B G-protein-coupled receptors. Acta Pharmacol Sin 33:300–311CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Bale TL, Vale WW (2004) CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol 44:525–557CrossRefPubMedGoogle Scholar
  41. 41.
    Zorrilla EP, Heilig M, de Wit H et al (2013) Behavioral, biological, and chemical perspectives on targeting CRF1 receptor antagonists to treat alcoholism. Drug Alcohol Depend 128:175–186CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Yang LZ, Tovote P, Rayner M et al (2010) Corticotropin-releasing factor receptors and urocortins, links between the brain and the heart. Eur J Pharmacol 632:1–6CrossRefPubMedGoogle Scholar
  43. 43.
    Li C, Chen P, Vaughan J et al (2007) Urocortin 3 regulates glucose-stimulated insulin secretion and energy homeostasis. Proc Natl Acad Sci U S A 104:4206–4211CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Devetzis V, Zarogoulidis P, Kakolyris S et al (2013) The corticotropin releasing factor system in the kidney: perspectives for novel therapeutic intervention in nephrology. Med Res Rev 33:847–872CrossRefPubMedGoogle Scholar
  45. 45.
    Chen YL, Obach RS, Braselton J et al (2008) 2-Aryloxy-4-alkylaminopyridines: discovery of novel corticotropin-releasing factor 1 antagonists. J Med Chem 51:1385–1392CrossRefPubMedGoogle Scholar
  46. 46.
    Hollenstein K, Kean J, Bortolato A et al (2013) Structure of class B G-protein-coupled receptor corticotropin-releasing factor receptor 1. Nature 499(7459):438–443CrossRefPubMedGoogle Scholar
  47. 47.
    Siu FY, He M, de Graaf C et al (2013) Structure of the human glucagon class B G protein-coupled receptor. Nature 499:444–449CrossRefPubMedGoogle Scholar
  48. 48.
    Venkatakrishnan AJ, Deupi X, Lebon G et al (2013) Molecular signatures of G-protein-coupled receptors. Nature 494:185–194CrossRefPubMedGoogle Scholar
  49. 49.
    Hoare SRJ, Brown BT, Santos MA et al (2006) Single amino acid residue determinants of non-peptide antagonist binding to the corticotropin-releasing factor1 (CRF1) receptor. Biochem Pharmacol 72:244–255CrossRefPubMedGoogle Scholar
  50. 50.
    Schipani E, Jensen GS, Pincus J et al (1997) Constitutive activation of the cyclic adenosine 3’,5’-monophosphate signaling pathway by parathyroid hormone (PTH)/PTH-related peptide receptors mutated at the two loci for Jansen’s metaphyseal chondrodysplasia. Mol Endocrinol 11:851–858PubMedGoogle Scholar
  51. 51.
    Mason JS, Bortolato A, Congreve M et al (2012) New insights from structural biology into the druggability of G protein-coupled receptors. Trends Pharmacol Sci 33:249–260CrossRefPubMedGoogle Scholar
  52. 52.
    Yasuhara A, Chaki S (2010) Metabotropic glutamate receptors: potential drug targets for psychiatric disorders. Open Med Chem J 4:20–36CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Wu H, Wang C, Gregory KJ et al (2014) Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344:58–64CrossRefPubMedGoogle Scholar
  54. 54.
    Doré AS, Okrasa K, Patel JC et al (2014) Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature 511:557–562CrossRefPubMedGoogle Scholar
  55. 55.
    Goudet C, Gaven F, Kniazeff J et al (2004) Heptahelical domain of metabotropic glutamate receptor 5 behaves like rhodopsin-like receptors. Proc Natl Acad Sci U S A 101:378–383CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Palczewski K, Kumasaka T, Hori T et al (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745CrossRefPubMedGoogle Scholar
  57. 57.
    O’Brien JA, Lemaire W, Chen TB et al (2003) A family of highly selective allosteric modulators of the metabotropic glutamate receptor subtype 5. Mol Pharmacol 64:731–740CrossRefPubMedGoogle Scholar
  58. 58.
    Gregory KJ, Nguyen ED, Reiff SD et al (2013) Probing the metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulator (PAM) binding pocket: discovery of point mutations that engender a “molecular switch” in PAM pharmacology. Mol Pharmacol 83:991–1006CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Christopher JA, Aves SJ, Bennett KA et al (2014) Fragment-based GPCR drug discovery using a stabilised receptor (StaR): identification of an mGlu5 negative allosteric modulator (NAM) pre-clinical candidate. Abstracts of papers, 247th ACS national meeting & exposition, Dallas, TX, USA, 16–20 March, MEDI-281Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Miles Congreve
    • 1
    Email author
  • Andrew S. Doré
    • 1
  • Ali Jazayeri
    • 1
  • Rebecca Nonoo
    • 1
  1. 1.Heptares Therapeutics Ltd., BioparkWelwyn Garden CityUK

Personalised recommendations