Skip to main content

Preparation of Liposomes with Dual Fluorophores to Follow Real-Time Content Release In Vivo

  • Chapter
Book cover Handbook of Vascular Biology Techniques
  • 1695 Accesses

Abstract

Unilamellar liposomes are well established carriers of chemotherapeutics. Most of the clinically approved liposome formulations for cancer treatment tend to rely on passive targeting of the tumour site, enabled by the leaky vasculature supplying the tumour tissue. This chapter deals with a method of preparing liposomes having two different fluorophores encapsulated in separate compartments; the lipid bilayer buries the non-exchangeable fluorophore while the aqueous interior (lumen) encapsulates the releasable payload. Such preparations can be used to quantitatively assess the ability of a particular formulation to release payload by deciphering the effects of accumulation and plasma clearance from actual content release within the microvasculature in live tissues and in real-time. The emphasis here is on liposome preparation by the technique of extrusion through polycarbonate membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    Article  CAS  PubMed  Google Scholar 

  2. Ruiz-Esparza GU, Flores-Arredondo JH, Segura-Ibarra V, Torre-Amione G, Ferrari M, Blanco E, Serda RE (2013) The physiology of cardiovascular disease and innovative liposomal platforms for therapy. Int J Nanomedicine 8:629–640

    PubMed Central  PubMed  Google Scholar 

  3. Dvir T, Bauer M, Schroeder A, Tsui JH, Anderson DG, Langer R, Liao R, Kohane DS (2011) Nanoparticles for targeting the infarcted heart. Nano Lett 11:4411–4414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hermanson GT (2013) Bioconjugate techniques, 3rd ed Chapter 21. Liposome conjugates and derivatives. Academic Press, pp 921–949

    Google Scholar 

  5. Torchilin VP, Weissig V (2003) Liposomes: practical approach, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  6. Edwards KA, Baeumner AJ (2006) Analysis of liposomes. Talanta 68:1432–1441

    Article  CAS  PubMed  Google Scholar 

  7. New RRC (1990) Liposomes: a practical approach. IRL Press, Oxford

    Google Scholar 

  8. Stewart JC (1980) Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem 104:10–14

    Article  CAS  PubMed  Google Scholar 

  9. Xu X, Khanb MA, Burgessa DJ (2012) Predicting hydrophilic drug encapsulation inside unilamellar liposomes. Int J Pharm 423:410–418

    Article  CAS  PubMed  Google Scholar 

  10. Sjoerd H, Reitan NK, Haraldseth O, de Lange Davies C (2010) Intravital microscopy in window chambers: a unique tool to study tumor angiogenesis and delivery of nanoparticles. Angiogenesis 13:113–130

    Article  Google Scholar 

  11. Wu NZ, Braun RD, Gaber MH, Lin GM, Ong ET, Shan S, Papahadjopoulos D, Dewhirst MW (1997) Simultaneous measurement of liposome extravasation and content release in tumors. Microcirculation 4:83–101

    Article  CAS  PubMed  Google Scholar 

  12. Laschke MW, Vollmar B, Menger MD (2011) The dorsal skinfold chamber: window into the dynamic interaction of biomaterials with their surrounding host tissue. Eur Cell Mater 22:147–164

    CAS  PubMed  Google Scholar 

  13. Djanashvili K, ten Hagen TLM, Blangé R, Schipper D, Peters JA, Koning GA (2011) Development of a liposomal delivery system for temperature-triggered release of a tumor targeting agent, Ln(III)-DOTA-phenylboronate. Bioorg Med Chem 19:112–1130

    Google Scholar 

  14. Pink DBS, Schulte W, Parseghian MH, Zijlstra A, Lewis JD (2012) Real-time visualization and quantitation of vascular permeability in vivo: implications for drug delivery. PLoS One 7:e33760. doi:10.1371/journal.pone.0033760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Gaber MH, Wu NZ, Hong K, Huang SK, Dewhirst MW, Papahadjopoulos D (1996) Thermosensitive liposomes: extravasation and release of contents in tumor microvascular networks. Int J Radiat Oncol Biol Phys 36:1177–1187

    Article  CAS  PubMed  Google Scholar 

  16. Offerman SC, Verma AK, Telfer BA, Berk DA, Clarke DJ, Aojula HS (2014) Ability of co-administered peptide liposome nanoparticles to exploit tumour acidity for drug delivery. RSC Adv 4:10779–10790

    Article  CAS  Google Scholar 

  17. Oude BE, Mastrobattista E, Schiffelers RM (2013) Strategies for triggered drug release from tumor targeted liposomes. Expert Opin Drug Deliv 10:1399–1410

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harmesh Singh Aojula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aojula, H.S. (2015). Preparation of Liposomes with Dual Fluorophores to Follow Real-Time Content Release In Vivo. In: Slevin, M., McDowell, G. (eds) Handbook of Vascular Biology Techniques. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9716-0_26

Download citation

Publish with us

Policies and ethics