Skip to main content

Quantum Information Technology Based on Diamond: A Step Towards Secure Information Transfer

  • Conference paper
  • First Online:
Nanoscience Advances in CBRN Agents Detection, Information and Energy Security

Abstract

The new field of quantum information technology uses qubits (quantum bits) instead of classical bits to carry out certain computation operations or for secure transfer of information (quantum cryptography). There are a number of physical systems that can act as qubits including a wide range of materials and technologies, e.g. ions in traps, local defect states in crystal lattices, superconducting junctions, etc. All these material systems offer different challenges and opportunities for the creation of qubit-based quantum devices. The search for defect states in solids with a capability to store and manipulate quantum information represents a exciting area of research. One of the most promising (and maybe the best studied) defects are the so-called nitrogen-vacancy (NV) centers in diamond, which are perspective candidates for a number of applications, including quantum computation and cryptography. A NV center represents a nitrogen atom in the diamond crystalline lattice adjacent to a vacancy, i.e. a site with a missing carbon atom. The attractiveness of this system stems from the long-lived quantum coherence, which can be initialized, acted upon, and measured using readily available techniques. A particularly exciting feature of these defects is the persistence of long coherence times even at room temperature. Single NV centers can be patterned on demand, and much like atomic defects surrounded by a stable environment (the crystalline lattice), they have highly reproducible properties. In order to exploit the outstanding properties of NV centers by increasing both the photon emission yield and the collection efficiency of the emitted photons, they should be embedded in an optical cavity, e.g. in all-diamond devices like nanopillars, photonic crystals, microrings, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eckstein JN, Levy J (2013) MRS Bull 38:783

    Article  Google Scholar 

  2. Kulisch W (1999) Deposition of superhard diamond-like materials, Springer, tracts on modern physics. Springer, Heidelberg/Berlin

    Google Scholar 

  3. Breeding CM, Shigley JE (2009) Gems Gemol 45:96

    Article  Google Scholar 

  4. Kulisch W, Popov C (2006) Phys Status Solidi (A) 203:203

    Article  ADS  Google Scholar 

  5. Nemanich RJ, Glass JT, Lucovsky G, Schroder RE (1988) J Vac Sci Technol A 6:1783

    Article  ADS  Google Scholar 

  6. Messier R, Badzian AR, Badzian T, Spear KE, Bachman P, Roy R (1987) Thin Solid Films 153:1

    Article  ADS  Google Scholar 

  7. Zaitzev A (2001) Optical properties of diamond. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  8. Doherty MW, Manson NB, Delaney P, Jelezko F, Wrachtrup J, Hollenberg LCL (2013) Phys Rep 528:1

    Article  ADS  Google Scholar 

  9. Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, von Borczyskowski C (1997) Science 276:2012

    Article  Google Scholar 

  10. Balasubramanian G, Chan IY, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer PR, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F, Wrachtrup J (2008) Nature 455:648

    Article  ADS  Google Scholar 

  11. Maze JR, Stanwix PL, Hodges JS, Hong S, Taylor JM, Cappellaro P, Jiang L, Gurudev Dutt MV, Togan E, Zibrov AS, Yacoby A, Walsworth RL, Lukin MD (2008) Nature 455:644

    Article  ADS  Google Scholar 

  12. Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuoschi N, Isoya J, Achard J, Beck J, Tissler J, Jacques V, Hemmer PR, Jelezko F, Wrachtrup J (2009) Nat Mater 8:383

    Article  ADS  Google Scholar 

  13. Kurtsiefer C, Mayer S, Zarda P, Weinfurter H (2000) Phys Rev Lett 85:290

    Article  ADS  Google Scholar 

  14. http://qcvictoria.com/content/download/418/1785/file/SPS%201.01%20prouct%20brochure.pdf

  15. Tamarat P, Gaebel T, Rabeau JR, Khan M, Greentree AD, Wilson H, Hollenberg LCL, Prawer S, Hemmer P, Jelezko F, Wrachtrup J (2006) Phys Rev Lett 97:083002

    Article  ADS  Google Scholar 

  16. Bernien H, Childress L, Robledo L, Markham M, Twitchen D, Hanson R (2012) Phys Rev Lett 108:043604

    Article  ADS  Google Scholar 

  17. Bernien H, Hensen B, Pfaff W, Koolstra G, Blok MS, Robledo L, Taminiau TH, Markham M, Twitchen D, Childress L, Hanson R (2013) Nature 497:86

    Article  ADS  Google Scholar 

  18. Hausmann B, Babinec T, Choy J, Hodges J, Hong S, Bulu I, Yacoby A, Lukin M, Lončar M (2011) New J Phys 13:045004

    Article  Google Scholar 

  19. Riedrich-Möller J, Kipfstuhl L, Hepp C, Neu E, Pauly C, Mücklich F, Baur A, Wandt M, Wolff S, Fischer M, Gsell S, Schreck M, Becher C (2012) Nat Nanotechnol 7:69

    Article  ADS  Google Scholar 

  20. Faraon A, Barclay PE, Santori C, Fu KMC, Beausoleil RG (2011) Nat Photonics 5:301

    Article  ADS  Google Scholar 

  21. Yang Y, Wang X, Ren C, Lu P, Wang P (1999) Diamond Relat Mater 8:1834

    Article  ADS  Google Scholar 

  22. Leech P, Reeves G, Holland A, Shanks F (2002) Diamond Relat Mater 11:833

    Article  ADS  Google Scholar 

  23. Leech P, Reeves G, Holland A (2001) J Mater Sci 36:3453

    Article  ADS  Google Scholar 

  24. Otterbach R, Hilleringmann U (2002) Diamond Relat Mater 11:841

    Article  ADS  Google Scholar 

  25. Pearton S, Katz A, Ren F, Lothian J (1992) Electron Lett 28:822

    Article  ADS  Google Scholar 

  26. Karlsson M, Hjort K, Nikolajeff F (2001) Opt Lett 26:1752

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the German Federal Ministry of Education and Research (BMBF) for the financial support under the Project “Q.com”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Popov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Popov, C. et al. (2015). Quantum Information Technology Based on Diamond: A Step Towards Secure Information Transfer. In: Petkov, P., Tsiulyanu, D., Kulisch, W., Popov, C. (eds) Nanoscience Advances in CBRN Agents Detection, Information and Energy Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9697-2_54

Download citation

Publish with us

Policies and ethics