Skip to main content

Structural, Optical and Electrical Properties of ZnO Thin Films Doped with Al, V and Nb, Deposited by r.f. Magnetron Sputtering

  • Conference paper
  • First Online:
Nanoscience Advances in CBRN Agents Detection, Information and Energy Security

Abstract

Structural, optical and electrical properties of ZnO thin films doped with different elements (Al, Al + H, V, Nb), deposited by r.f. magnetron sputtering on glass substrates at different temperature Ts between 50 and 500 °C are studied. XRD spectra demonstrate a preferential (002) crystallographic orientation with the c-axis perpendicular to the substrate surface and grains sizes of about 19–29 nm. The value of band gap energy Eg is in the range of 3.49–3.58 eV for ZnO:Al, 3.51–3.58 eV for ZnO:Al:H, 3.44–3.47 eV for ZnO:V, and 3.28–3.44 eV for ZnO:Nb. The deposited ZnO films doped with Al, H, V and Nb have low resistivities of 1.6–2.2⋅10−3 Ωcm. The transparency of the studied films is about 85–90 % in the visible region. The obtained transparent conductive ZnO thin films can be applied in solar cells and other optoelectronic devices as TCO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li Y, Gong J, McCune M, He G, Deng Y (2010) Synth Met 160:499

    Article  Google Scholar 

  2. Seshadri R (2005) Curr Opinion Solid State Mater Sci 9:1

    Article  ADS  Google Scholar 

  3. Minami T (2005) Semicond Sci Technol 20:S35

    Article  ADS  Google Scholar 

  4. Koshizaki N, Oyama T (2000) Sensors Actuators B 66:119

    Article  Google Scholar 

  5. Saeki H, Tabata H, Kawai T (2001) Solid State Commun 120:439

    Article  ADS  Google Scholar 

  6. Fukumura T, Jin Z, Ohtomo A, Koinuma H, Kawasaki M (2000) Appl Phys Lett 75:3366

    Article  ADS  Google Scholar 

  7. Yin Z, Chen N, Yang F, Song S, Chai C, Zhong J, Qian H, Ibrahim K (2005) Solid State Commun 135:430

    Article  ADS  Google Scholar 

  8. Dimova-Malinovska D, Angelov O, Nichev H, Kamenova M, Pivin JC (2007) J Optoelectron Adv Mater 9:2512

    Google Scholar 

  9. Pankove J (1971) Optical processes in semiconductors. Prentice-Hall, Inc., Englewood Cliffs

    Google Scholar 

  10. Dragoman D, Dragoman M (2002) Optical characterization of solids. Springer, Heidelberg

    Book  Google Scholar 

  11. Girtan M, Folsher G (2003) Surf Coat Technol 172:242

    Article  Google Scholar 

  12. Swanepoel R (1983) J Phys E Sci Instrum 16:1214

    Article  ADS  Google Scholar 

  13. Van der Walle GC (2000) Phys Rev Lett 85:1012

    Article  ADS  Google Scholar 

  14. Mollwo E (1954) Z Phys 138:478

    Article  ADS  Google Scholar 

  15. Seraphin BO (1979) Solar energy conversion. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  16. Roth A, Williams D (1981) J Appl Phys 52:6685

    Article  ADS  Google Scholar 

  17. Lovchinov K, Nichev H, Angelov O, Sendova-Vassileva M, Dimova-Malinovska D, Mikli V (2010) J Phys Conf Ser 253:012030

    Article  ADS  Google Scholar 

  18. Dimova-Malinovska D, Nichev H, Angelov O (2009) Phys Status Solidi 5:3353

    Article  Google Scholar 

  19. Burstein E (1954) Phys Rev 93:632

    Article  ADS  Google Scholar 

  20. Mott N, Davis E (1979) Electronic processes in noncrystalline materials. Oxford, Clarendon, p 289

    Google Scholar 

  21. Saito N (1985) J Appl Phys 58:3504

    Article  ADS  Google Scholar 

  22. Miyata T, Suzuki S, Ishii M, Minami T (2002) Thin Solid Films 411:76

    Article  ADS  Google Scholar 

  23. Hickenell FS (1975) J Vac Sci Technol 12:879

    Article  ADS  Google Scholar 

  24. Dimova-Malinovska D, Nichev H, Angelov O, Grigorov V, Kamenova M (2007) Superlattice Microst 42:123

    Article  ADS  Google Scholar 

  25. Tzolov M, Tzenov N, Dimova-Malinovska D, Kalitzova M, Pizzuto C, Vitali G, Zollo G, Ivanov I (2000) Thin Solid Films 379:28

    Article  ADS  Google Scholar 

  26. Ke X, Zou C, Li M, Liu C, Guo L, Fu D (2010) Jpn J Appl Phys 49:033001

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Lovchinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Lovchinov, K., Petrov, M., Angelov, O., Nichev, H., Mikli, V., Dimova-Malinovska, D. (2015). Structural, Optical and Electrical Properties of ZnO Thin Films Doped with Al, V and Nb, Deposited by r.f. Magnetron Sputtering. In: Petkov, P., Tsiulyanu, D., Kulisch, W., Popov, C. (eds) Nanoscience Advances in CBRN Agents Detection, Information and Energy Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9697-2_29

Download citation

Publish with us

Policies and ethics