Skip to main content

Microwave Electrical Properties of Nanocomposites

  • Conference paper
  • First Online:
Nanoscience Advances in CBRN Agents Detection, Information and Energy Security
  • 1163 Accesses

Abstract

Several techniques have been proposed for the measurement of the complex dielectric permittivity at microwave frequencies. The cavity resonant method presents good accuracy, in particular for low loss materials, using the small perturbation theory. In this method, the resonance peak frequency and the quality factor of the cavity, with and without a sample, can be used to obtain the complex dielectric permittivity of the material. We measure the shift in the resonant frequency of the cavity Δf caused by the insertion of the sample, which can be related to the real part of the complex permittivity ε′ and the change in the inverse of the quality factor of the cavity, Δ(1/Q), which gives the imaginary part, ε″. The relations are simple when we consider only the first order perturbation in the electric field caused by the sample. This technique is presented to study polymer nanocomposites that will be used in microwave oven doors, which purpose is to confine the energy to the cavity, where the microwave leakage must be strictly controlled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meng B, Booske J, Cooper R (1995) IEEE Trans Microw Theory Tech 43:2633

    Article  ADS  Google Scholar 

  2. Klein O, Donovan S, Dressel M, Griiner G (1993) Int J Infrared Millimeter Waves 14:2423

    Article  ADS  Google Scholar 

  3. André P, Costa LC, Devesa S (2004) Microw Opt Technol Lett 43:106

    Article  Google Scholar 

  4. Montgomery GA (1947) Techniques of microwave measurements. McGraw-Hill, New York

    Google Scholar 

  5. Altschuler HM (1963) Handbook of microwave measurements, vol 2, Brooklyn, Polytechnic Press, New York

    Google Scholar 

  6. Waldron RA (1960) Perturbation theory of resonant cavities. Proc IEEE 107:272

    MathSciNet  Google Scholar 

  7. Waldron RA (1961) Ferrites: an introduction for microwaves engineers, Marconi series. D. Van Nostrand Comp Ltd, London

    Google Scholar 

  8. Subramanian V, Sobhanadri J (1994) Rev Sci Instrum 65:453

    Article  ADS  Google Scholar 

  9. Zhu SC, Chen HY, Wen FP (1992) IEEE Trans Magn 28:3213

    Article  ADS  Google Scholar 

  10. Verma A, Saxena AK, Dube DC (2003) J Magn Magn Mater 263:228

    Article  ADS  Google Scholar 

  11. Chen L, Ong CK, Tan BTG (1996) Meas Sci Technol 7:1255

    Article  ADS  Google Scholar 

  12. Costa LC, Devesa S, André P, Henry F (2005) Microw Opt Technol Lett 46:61

    Article  Google Scholar 

  13. Costa LC, Correia A, Viegas A, Sousa J, Henry F (2005) Mater Sci Forum 480:161

    Article  Google Scholar 

  14. Kraszewski AW, Nelson SO (1992) IEEE Trans Microw Theory Tech 40:151

    Article  ADS  Google Scholar 

  15. Chen LF, Ong CK, Neo CP, Varadan VV, Varadan VK (2004) Microwave electronics: measurement and materials characterization. Wiley, San Francisco

    Book  Google Scholar 

  16. Pozar DM (2004) Microwave engineering. Wiley, San Francisco

    Google Scholar 

  17. Fuller AJB (1987) Ferrites at microwave frequencies. P. Peregrinus on behalf of the Institution of Electrical Engineers, London

    Book  Google Scholar 

  18. Mathew KT, Nair RU (1993) Microw Opt Technol Lett 6(2):104

    Article  Google Scholar 

  19. Henry F (1982) Développement de la métrologie hyperfréquences et application à l’étude de l’ hydratation et la diffusion de l’eau dans les matériaux macromoléculaires, Ph.D. thesis, Paris

    Google Scholar 

  20. Costa LC, Henry F (2012) Int J Microw Sci Technol 2012:628237

    Article  Google Scholar 

  21. Brosseau C, Boulic F, Queffelec P, Bourbigot C, Le Meste Y, Loaec J, Beroual A (1997) J Appl Phys 81:882

    Article  ADS  Google Scholar 

  22. Krupa I, Chodak I (2001) Eur Polym J 37:2159

    Article  Google Scholar 

  23. Chen G, Wu D, Weng W, Bin H, Yan W (2001) Polym Int 50:980

    Article  Google Scholar 

  24. Costa LC, Valente MA, Henry F, Ramanitra L (1998) J Chim Phys 95:1453

    Article  Google Scholar 

  25. Khoroshilov AA, Koroleva I, Bolodin Y (2000) Russ J Appl Chem 73:1918

    Google Scholar 

  26. Costa LC, Henry F, André A (1996) Proceedings of Journées Polymères Conducteurs. Collonges la Rouge, France

    Google Scholar 

  27. Street G (1986) Handbook of conducting polymers. Dekker, New York

    Google Scholar 

  28. Roichman Y, Silverstein M, Siegmann A, Narkis M (1999) J Macromol Sci Phys 38:145

    Article  Google Scholar 

  29. Valente MA, Costa LC, Mendiratta S, Henry F, Ramanitra L (1999) Solid State Commun 112:67

    Article  ADS  Google Scholar 

  30. Rubinger CPL, Costa LC (2007) Microw Opt Technol Lett 49:1687

    Article  Google Scholar 

  31. Teflon PTFE (1996) Properties handbook. DuPont Fluoroproducts, Washington

    Google Scholar 

  32. Copson DA (1975) Microwave heating. AVI Publishing Company, Connecticut

    Google Scholar 

  33. Johnson C, Hilton G (1988) Acrylonitrile-Butadiene-Styrenes, AMS international, engineered materials handbook, vol 2, AMS International, Ohio

    Google Scholar 

  34. Haynes WM (2014) CRC handbook of chemistry and physics. CRC Press, Cleveland

    Google Scholar 

  35. Vishn S (1984) Handbook of plastics testing technologies. Wiley Intersciences, New York

    Google Scholar 

  36. Henry F, Costa LC (2005) Microw Opt Technol Lett 45:335

    Article  Google Scholar 

  37. McCrum N, Read B, Williams G (1991) Anelastic dielectric effects in polymer solids. Dover Pub. Inc., New York

    Google Scholar 

  38. McLachlan DS, Blaskiewic M, Newnham RE (1990) J Am Ceram Soc 73:2187

    Article  Google Scholar 

  39. Balberg I, Anderson CH, Alexander S, Wagner N (1984) Phys Rev B 30:3933

    Article  ADS  Google Scholar 

  40. Looyenga H (1965) Physica 31:401

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author acknowledges Fundação para a Ciência e Tecnologia, Portugal, for the financial funding from the PEst-C/CTM/LA0025/2011 project, and to TEKA and Quiminova, which prepared the materials under study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Costa, L.C. (2015). Microwave Electrical Properties of Nanocomposites. In: Petkov, P., Tsiulyanu, D., Kulisch, W., Popov, C. (eds) Nanoscience Advances in CBRN Agents Detection, Information and Energy Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9697-2_23

Download citation

Publish with us

Policies and ethics