Skip to main content

ZnO Nanowires: Growth, Properties and Advantages

  • Conference paper
  • First Online:
Nanoscience Advances in CBRN Agents Detection, Information and Energy Security

Abstract

One-dimensional anisotropic nanostructures, and in particular nanowires, are under intensive investigations over the last decade owing to their unique physical properties and their documented performance in a wide range of opto-electronic and nano-photonic devices. Here, we present a short overview of the main assets of nanowire arrays with particular emphasis as materials for solar energy harvesting and conversion. A brief survey on the main growth techniques of ZnO nanowires, i.e. chemical vapor deposition and solution chemistry is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vajtai R (ed) (2013) Springer handbook of nanomaterials. Springer, Berlin

    Google Scholar 

  2. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538

    Article  ADS  Google Scholar 

  3. Yazawa M, Koguchi M, Hiruma K (1991) Appl Phys Lett 58:1080

    Article  ADS  Google Scholar 

  4. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) Adv Mater 15:353

    Article  Google Scholar 

  5. Ko SH, Lee D, Kang HW, Nam KH, Yeo JY, Hong SJ, Grigoropoulos CP, Sung HJ (2011) Nano Lett 11:666

    Article  ADS  Google Scholar 

  6. Hochbaum AI, Yang PD (2010) Chem Rev 110:527

    Article  Google Scholar 

  7. Garnett EC, Brongersma ML, Cui Y, McGehee MD (2011) Ann Rev Mater Res 41:269

    Article  ADS  Google Scholar 

  8. Lee Y-J, Ruby DS, Peters DW, McKenzie BB, Hsu JWP (2008) Nano Lett 8:1501

    Article  ADS  Google Scholar 

  9. Garnett E, Yang PD (2010) Nano Lett 10:1082

    Article  ADS  Google Scholar 

  10. Diedenhofen SL, Vecchi G, Algra RE, Artsuiker A, Muskens OL, Immink G, Bakkers EPAM, Vos WL, Gomez Rivas J (2009) Adv Mater 21:973

    Article  Google Scholar 

  11. Zhu J, Yu Z, Burkhard GF, Hsu C-M, Connor ST, Xu Y, Wang Q, McGehee M, Fan S, Cui Y (2009) Nano Lett 9:279

    Article  ADS  Google Scholar 

  12. Ferber J, Luther J (1998) Sol Energy Mater Sol Cells 54:265

    Article  Google Scholar 

  13. Zhang Q, Chou TP, Russo B, Jenekhe SA, Cao G (2008) Adv Funct Mater 18:1654

    Article  Google Scholar 

  14. Tan B, Wu Y (2006) J Phys Chem B 110:15932

    Article  Google Scholar 

  15. Kφnig D, Casalenuovo K, Takeda Y, Conibeer G, Guillemoles JF, Patterson R, Huang LM, Green MA (2010) Phys E 42:2862

    Article  Google Scholar 

  16. Kuykendall T, Ulrich P, Aloni S, Yang PD (2007) Nat Mater 6:951

    Article  ADS  Google Scholar 

  17. Kayes BM, Atwater HA, Lewis NS (2005) J Appl Phys 97:114302

    Article  ADS  Google Scholar 

  18. Law M, Greene LE, Johnson JC, Saykally R, Yang PD (2005) Nat Mater 4:455

    Article  ADS  Google Scholar 

  19. Wang ZL (2009) Mater Sci Eng R 64:33

    Article  Google Scholar 

  20. Jagadish J, Pearton SJ (eds) (2006) Zinc oxide bulk, thin film and nanostructures. Elsevier, Amsterdam

    Google Scholar 

  21. Wang ZL (2004) Mater Today 7:26

    Article  Google Scholar 

  22. Li Z, Yang R, Yu M, Bai F, Li C, Wang ZL (2008) J Phys Chem C 112:20114

    Article  Google Scholar 

  23. Yang PD, Lieber CM (1996) Science 273:1836

    Article  ADS  Google Scholar 

  24. Dasgupta NP, Sun J, Liu C, Brittman S, Andrews SC, Lim J, Gao H, Yan R, Yang P (2014) Adv Mater 26:2137

    Article  Google Scholar 

  25. Pan ZW, Dai ZR, Wang ZL (2001) Science 291:1947

    Article  ADS  Google Scholar 

  26. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang PD (2001) Science 292:1897

    Article  ADS  Google Scholar 

  27. Wu WZ, Wei Y, Wang ZL (2010) Adv Mater 22:4711

    Article  Google Scholar 

  28. Xu S, Qin Y, Xu C, Wei Y, Yang R, Wang ZL (2010) Nat Nanotechnol 5:366

    Article  ADS  Google Scholar 

  29. Weintraub B, Wei YG, Wang ZL (2009) Ang Chem Int Ed 48:1

    Article  Google Scholar 

  30. Zhang ZH, Wang X, Xu JB, Muller S, Ronning C, Li Q (2009) Nat Nanotechnol 4:523

    Article  ADS  Google Scholar 

  31. Wagner RS, Ellis WC (1964) Appl Phys Lett 4:89

    Article  ADS  Google Scholar 

  32. Zhang G, Tateno K, Gotoh H, Sogawa T (2010) NTT Tech Rev 8:1

    MATH  Google Scholar 

  33. Wang XD, Song JH, Li P, Ryou JH, Dupuis RD, Summers CJ, Wang ZL (2005) J Am Chem Soc 127:7920

    Article  Google Scholar 

  34. Cao YY, Yang GW (2012) J Phys Chem C 116:6233

    Article  Google Scholar 

  35. Song JH, Wang XD, Riedo E, Wang ZL (2005) J Phys Chem B 109:9869

    Article  Google Scholar 

  36. Wang X, Song J, Summers CJ, Ryou J-H, Li P, Dupuis RD, Wang ZL (2006) J Phys Chem B 110:7720

    Article  Google Scholar 

  37. Govatsi K, Chrissanthopoulos A, Dracopoulos V, Yannopoulos SN (2014) Nanotechnology 25:215601

    Article  ADS  Google Scholar 

  38. Shi Z-F, Zhang Y-T, Cai X-P, Wang H, Wu B, Zhang J-X, Cui X-J, Dong X, Liang H-W, Zhang B-L, Dua G-T (2014) CrystEngComm 16:455

    Article  Google Scholar 

  39. Xu S, Wang ZL (2011) Nano Res 4:1013

    Article  Google Scholar 

  40. Xu S, Lao C, Weintraub B, Wang ZL (2008) J Mater Res 23:8

    Google Scholar 

  41. Xu S, Adiga N, Ba S, Dasgupta T, Jeff Wu CF, Wang ZL (2009) ACS Nano 7:1803

    Article  Google Scholar 

Download references

Acknowledgements

This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) – Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyros N. Yannopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Govatsi, K., Chrissanthopoulos, A., Yannopoulos, S.N. (2015). ZnO Nanowires: Growth, Properties and Advantages. In: Petkov, P., Tsiulyanu, D., Kulisch, W., Popov, C. (eds) Nanoscience Advances in CBRN Agents Detection, Information and Energy Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9697-2_14

Download citation

Publish with us

Policies and ethics