Detection Techniques for Hydrogen



It is important to observe the pharmacokinetics in vivo for hydrogen bioresearch. Measuring the concentration of hydrogen is one of the key points in this study. Several methods have been developed to detect the concentration, including the gas chromatography technique, the rheophore detection technique, and the oxidimetry technique. The gas chromatography is the most classical, which is capable of quantitatively analyzing the minimum amount and even trace the amount of hydrogen. The rheophore detection measures a large scale from a minimum amount in the tissue to a high amount in the solution. The oxidimetry technique is usually used in the determination of the chemical composition of a hydrogen product. The advantages and disadvantages of these detection techniques are discussed with particular attention on the practical use.


Hydrogen detection technique The gas chromatography technique The rheophore detection technique The oxidimetry technique 


  1. 1.
    Barmenkov YO, Ortigosa-Blanch A, Diez A, Cruz JL, Andres MV. Time-domain fiber laser hydrogen sensor. Opt Lett. 2004;29(21):2461–3.CrossRefPubMedGoogle Scholar
  2. 2.
    Huang BR, Yang YK, Cheng HL. Rice-straw-like structure of silicon nanowire arrays for a hydrogen gas sensor. Nanotechnology. 2013;24(47):475–502. doi:10.1088/0957-4484/24/47/475502.Google Scholar
  3. 3.
    Kaal E, Janssen HG. Extending the molecular application range of gas chromatography. J Chromatogr A. 2008;1184(1–2):43–60. doi:10.1016/j.chroma.2007.11.114.CrossRefPubMedGoogle Scholar
  4. 4.
    Kawano T, Tsuboi N, Tsujii H, Sugiyama T, Asakura Y, Uda T. Stability test and improvement of hydrogen analyzer with trace reduction detector. J Chromatogr A. 2004;1023(1):123–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Mandelis A, Garcia J. Pd/PVDF thin film hydrogen sensor based on laser-amplitude-modulated optical-transmittance: dependence on H2 concentration and device physics. Sensors and Actuators B Chemical 1998;49(3):258–267. doi:10.1016/S0925-4005(98)00137-3.Google Scholar
  6. 6.
    Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007;13(6):688–94. doi:10.1038/nm1577.CrossRefPubMedGoogle Scholar
  7. 7.
    Ono H, Nishijima Y, Adachi N, Sakamoto M, Kudo Y, Kaneko K, Nakao A, Imaoka T. A basic study on molecular hydrogen (H2) inhalation in acute cerebral ischemia patients for safety check with physiological parameters and measurement of blood H2 level. Med Gas Res. 2012;2(1):21. doi:10.1186/2045-9912-2–21.CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Ono H, Nishijima Y, Adachi N, Sakamoto M, Kudo Y, Nakazawa J, Kaneko K, Nakao A. Hydrogen (H2) treatment for acute erythematous skin diseases. A report of 4 patients with safety data and a non-controlled feasibility study with H2 concentration measurement on two volunteers. Med Gas Res. 2012;2(1):14. doi:10.1186/2045-9912-2–14.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Park SC, Yoon SI, Lee CI, Kim YJ, Song S. A micro-thermoelectric gas sensor for detection of hydrogen and atomic oxygen. Analyst. 2009;134(2):236–242. doi:10.1039/b807882c.CrossRefPubMedGoogle Scholar
  10. 10.
    Purcaro G, Moret S, Conte L. Hyphenated liquid chromatography-gas chromatography technique: recent evolution and applications. J Chromatogr A. 2012;1255:100–11. doi:10.1016/j.chroma.2012.02.018.CrossRefPubMedGoogle Scholar
  11. 11.
    Sekimoto S, Okazaki S, Fukuda K, Asakura S, Shigemori S, Takahashi T, Nakagawa H. A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide. Sensors and Actuators B Chemical 2000;66(1/3):142–145. doi:10.1016/S0925-4005(00)00330-0.Google Scholar
  12. 12.
    Seo T, Kurokawa R, Sato B. A convenient method for determining the concentration of hydrogen in water: use of methylene blue with colloidal platinum. Med Gas Res. 2012;2:1. doi:10.1186/2045-9912-2–1.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Shukla S, Ludwig L, Cho HJ, Duarte J, Seal S. Effect of air-pressure on room temperature hydrogen sensing characteristics of nanocrystalline doped tin oxide MEMS-based sensor. J Nanosci Nanotechnol. 2005;5(11):1864–74.CrossRefPubMedGoogle Scholar
  14. 14.
    Solomons NW, Viteri FE, Hamilton LH. Application of a simple gas chromatographic technique for measuring breath hydrogen. J Lab Clin Med. 1977;90(5):856–62.PubMedGoogle Scholar
  15. 15.
    Spohr A, Guilford WG, Haslett SJ, Vibe-Petersen G. Use of breath hydrogen testing to detect experimentally induced disaccharide malabsorption in healthy adult dogs. Am J Vet Res. 1999;60(7):836–40.PubMedGoogle Scholar
  16. 16.
    Wei X, Wei T, Xiao H, Lin Y. Nano-structured Pd-long period fiber gratings integrated optical sensor for hydrogen detection. Sensors and Actuators B Chemical 2008;134(2):687–93. doi:10.1016/j.snb.2008.06.018.Google Scholar
  17. 17.
    Xu L, Du J, Chen B. Preparation and electrocatalytic activity of nanocrystalline Ni-Mo-Co alloy electrode for hydrogen evolution. J Nanosci Nanotechnol. 2013;13(3):2016–20.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Graduate Management UnitChanghai hospital affiliated to the Second Military Medical UniversityShanghaiChina
  2. 2.Department of Emergency, Disaster and Critical Care MedicineHyogo College of MedicineNishinomiyaJapan
  3. 3.Department of Navy AeromedicineSecond Military Medical UniversityShanghaiChina

Personalised recommendations