Skip to main content

Sets, Truth, and Recursion

  • Chapter
  • First Online:
Book cover Unifying the Philosophy of Truth

Part of the book series: Logic, Epistemology, and the Unity of Science ((LEUS,volume 36))

  • 969 Accesses

Abstract

We discuss some philosophical aspects of an intensional set theory based on an axiomatic truth theory. This set theory gains its justification from natural truth axioms combined with standard recursion-theoretic operations.

The work was partially supported by the ESF research project Dialogical Foundations of Semantics within the ESF Eurocores program LogICCC, LogICCC/0001/2007 and by the projects Hilbert’s Legacy in the Philosophy of Mathematics, PTDC/FIL-FCI/109991/2009, and The notion of mathematical proof, PTDCMHC-FIL/5363/2012, as well as PEst-OE/MAT/UI097/2013, all funded by the Portuguese Science Foundation, FCT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cf. the discussion in (Feferman et al. 2000) or the discussion of the set theoretic axioms in (Maddy 1997).

  2. 2.

    The partial version is usually called \({\mathsf{BON}}\)—basic theory of operations and numbers, see (Feferman and Jäger 1993; Jäger et al. 1999b) or the textbooks (Beeson 1985; Troelstra and Dalen 1988). More about applicative theories can be found in (Kahle 2007).

  3. 3.

    The designation Frege structures origins from Aczel’s aim to use a related theory to recast Frege’s (inconsistent) system from the Grundgesetze der Arithmetik (Frege 1893, 1903) by use of a partial truth predicate (Aczel 1980). Following Flagg and Myhill (1987a, b) we use here, under the same name, a more liberal account than Aczel, dispensing with a primitive notion of proposition.

  4. 4.

    For readability we employ infix notations like \(x\,{\dot{=}}\,y\) instead of the formal applicative term \({\dot{=}}\,x\,y\).

  5. 5.

    These “sets” are called propositional functions by Aczel (1980, Def. 3.4) and classes by Cantini (1996, p. 55).

  6. 6.

    See also our note (Kahle 2009).

References

  • Aczel, P. (1980) Frege structures and the notion of proposition, truth and set. In J. Barwise, H. Keisler, & K. Kunen (eds.), The Kleene symposium (pp. 31–59). Amsterdam: North-Holland.

    Google Scholar 

  • Beeson, M. (1985). Foundations of constructive mathematics. Ergebnisse der Mathematik und ihrer Grenzgebiete; 3.Folge (Bd. 6). Berlin: Springer.

    Google Scholar 

  • Cantini, A. (1990). A theory of formal truth arithmetically equivalent to \(\mbox{ID}_1\). Journal of Symbolic Logic, 55(1), 244–259.

    Article  Google Scholar 

  • Cantini, A. (1996). Logical frameworks for truth and abstraction, vol. 135 of Studies in Logic and the Foundations of Mathematics. Amsterdam: North-Holland.

    Google Scholar 

  • Cantini, A. (2015). On stratified truth. In D. Achourioti, K. Fujimoto, H. Galinon, & J. Martinez (Eds.), Unifying the philosophy of truth, volume 36. Logic, epistemology and the unity of science. Dordrecht: Springer.

    Google Scholar 

  • Eberhard, S., & Strahm, T. (2015). Unfolding feasible arithmetic and weak truth. In D. Achourioti, K. Fujimoto, H. Galinon, & J. Martinez (Eds.), Unifying the philosophy of truth, volume 36. Logic, epistemology and the unity of science. Dordrecht: Springer.

    Google Scholar 

  • Feferman, S. (1975). A language and axioms for explicit mathematics. In J. Crossley (ed.) Algebra and logic, vol. 450 of Lecture Notes in Mathematics (pp. 87–139). Berlin: Springer.

    Google Scholar 

  • Feferman,S. (1979). Constructive theories of functions and classes. In M. Boffa, D. van Dalen, & K. McAloon (eds.) Logic colloquium 78 (pp. 159–224). Amsterdam: North-Holland.

    Google Scholar 

  • Feferman, S. & Jäger, G. (1993). Systems of explicit mathematics with non-constructive μ-operator. Part I. Annals of Pure and Applied Logic, 65(3), 243–263.

    Article  Google Scholar 

  • Feferman, S. & Jäger, G. (1996). Systems of explicit mathematics with non-constructive μ-operator. Part II. Annals of Pure and Applied Logic, 79, 37–52.

    Article  Google Scholar 

  • Feferman, S., Friedman, H. M., Maddy, P., & Steel, J. R. (2000). Does mathematics need new axioms?Bulletin of Symbolic Logic, 6(4), 401–446.

    Article  Google Scholar 

  • Flagg, R. & Myhill, J. (1987a). An extension of frege structures. In D. Kueker, E. Lopez-Escobar, & C. Smith (eds.), Mathematical logic and theoretical computer science (pp. 197–217). New York: Dekker.

    Google Scholar 

  • Flagg, R. & Myhill, J. (1987b). Implication and analysis in classical frege structures. Annals of Pure and Applied Logic, 34, 33–85.

    Google Scholar 

  • Frege, G. (1893). Grundgesetze der Arithmetik; begriffschriftlich abgeleitet, vol. 1. Jena: Hermann Pohle.

    Google Scholar 

  • Frege, G. (1903). Grundgesetze der Arithmetik, begriffschriftlich abgeleitet, vol. 2. Jena: Hermann Pohle. Reprinted together with vol. 1, Hildesheim: Olms. 1966.

    Google Scholar 

  • Friedman, H., & Sheard, M. (1982). An axiomatic approach to self-referential truth. Annals of Pure and Applied Logic, 33, 1–21.

    Article  Google Scholar 

  • Fujimoto, K. (2011). Autonomous progression and transfinite iteration of self-applicable truth. Journal of Symbolic Logic, 76(3), 914–945.

    Article  Google Scholar 

  • Fujimoto, K. (2012). Classes and truths in set theory. Annals of Pure and Applied Logic, 163, 1484–1523.

    Article  Google Scholar 

  • Glaß, T. & Strahm, T. (1996). Systems of explicit mathematics with non-constructive μ-operator and join. Annals of Pure and Applied Logic, 82(2), 193–219.

    Article  Google Scholar 

  • Halbach, V. (2009). Axiomatic theories of truth. In E. N. Zalta (ed.), The stanford encyclopedia of philosophy. Winter 2009 edition. http://plato.stanford.edu/entries/truth-axiomatic/.

  • Halbach, V. & Horsten, L. (2015). Norms for theories of reflexive truth. In D. Achourioti, K. Fujimoto, H. Galinon, & J. Martinez (Eds.), Unifying the philosophy of truth, volume 36. Logic, epistemology and the unity of science. Dordrecht: Springer.

    Google Scholar 

  • Hilbert, D. (1918). Axiomatisches Denken. Mathematische Annalen, 78(3/4), 405–415.

    Google Scholar 

  • Jäger, G., Kahle, R., Setzer, A., & Strahm, T. (1999a). The proof-theoretic analysis of transfinitely iterated fixed point theories. Journal of Symbolic Logic, 64(1), 53–67.

    Google Scholar 

  • Jäger, G., Kahle, R., & Strahm, T. (1999b). On applicative theories. In A. Cantini, E. Casari, & P. Minari (eds.) Logic and foundation of mathematics. (pp. 88–92). Dordrecht: Kluwer.

    Google Scholar 

  • Jäger, G. & Strahm, T. (1995). Totality in applicative theories. Annals of Pure and Applied Logic, 74, 105–120.

    Article  Google Scholar 

  • Jäger, G. & Strahm, T. (2002). The proof-theoretic strength of the Suslin operator in applicative theories. In W. Sieg, R. Sommer, & C. Talcott (eds.) Reflections on the foundations of mathematics: Essays in honor of Solomon Feferman. Vol. 15 of Lecture Notes in Logic (pp. 270–292). ASL and AK Peters.

    Google Scholar 

  • Jäger, G., Kahle, R., & Strahm, T. (1999b). On applicative theories. In A. Cantini, E. Casari, & P. Minari (eds.) Logic and foundation of mathematics. (pp. 88–92). Kluwer. Dordrecht:

    Google Scholar 

  • Kahle, R. (1999). Frege structures for partial applicative theories. Journal of Logic and Computation, 9(5), 683–700.

    Article  Google Scholar 

  • Kahle, R. (2001). Truth in applicative theories. Studia Logica, 68(1), 103–128.

    Article  Google Scholar 

  • Kahle, R. (2003). Universes over Frege structures. Annals of Pure and Applied Logic, 119(1–3), 191–223.

    Article  Google Scholar 

  • Kahle, R. (2007). The applicative realm volume 40, of Textos de Matemática. Coimbra: Departamento de Matemática.. Coimbra

    Google Scholar 

  • Kahle, R. (2009). The universal set—a (never fought) battle between philosophy and mathematics. In O. Pombo & Á. Nepomuceno (eds.), Lógica e Filosofia da Ciência, vol. 2 of Colecção Documenta (pp. 53–65). Lisboa: Centro de Filosofia das Ciências da Universidade de Lisboa.

    Google Scholar 

  • Kahle, R. (2011). The universal set and diagonalization in Frege structures. Review of Symbolic Logic, 4(2), 205–218.

    Article  Google Scholar 

  • Kahle, R. (2015). Axioms as hypotheses. In T. Piecha & P. Schroeder-Heister (Eds.), Proceedings of the Conference on Hypothetical Reasoning, 23–24 August 2014 (pp. 47–54). Tübingen: University of Tübingen.

    Google Scholar 

  • Leigh, G. & Rathjen, M. (2010). An ordinal analysis for theories of self-referential truth. Archive for Mathematical Logic, 49, 213–247.

    Article  Google Scholar 

  • Maddy, P. (1997). Naturalism in mathematics. Oxford: Clarendon.

    Google Scholar 

  • Schlüter, A. (1995). A theory of rules for enumerated classes of functions. Archive for Mathematical Logic, 34, 47–63.

    Article  Google Scholar 

  • Scott, D. (1975). Combinators and classes. In refedC. Böhm (ed.), λ-Calculus and computer science theory. Vol. 37 of Lecture Notes in Computer Science. (pp. 1–26). Berlin: Springer.

    Google Scholar 

  • Troelstra, A. & van Dalen, D. (1988). Constructivism in mathematics, vol. II. Amsterdam: North Holland.

    Google Scholar 

  • refauvan Fraassen, B. (1968). Presupposition, implication and self-reference. Journal of Philosophy, 65, 135–152.

    Google Scholar 

  • van Fraassen, B. (1970). Inference and self-reference. Synthese, 21, 425–438.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Kahle .

Editor information

Editors and Affiliations

Appendix

Appendix

The Applicative Theory TON

\({\mathsf{TON}}\) is formulated in \({{\mathcal{L}}_t}\), the first order language of operations and numbers, comprising of individual variables x, y, z, v, w, individual constants \({\mathsf{k}}\), \({\mathsf{s}}\) (combinators), \({\mathsf{p}}\), \({\mathsf{p}_0}\), \({\mathsf{p}_1}\) (pairing and projection), 0, \({\mathsf{s}_\mathsf{N}}\), \({\mathsf{p}_\mathsf{N}}\) (zero, successor and predecessor), \({\mathsf{d}_\mathsf{N}}\) (definition by cases), a binary function symbol ⋅ for term application, and the relation symbols = and \(\mathsf{N}\). Terms (\(r,s,t,\ldots\)) are built up from individual variables and individual constants by term application. Formulas (\({\varphi},\psi,\ldots\)) are constructed from by ¬, \(\mathrel\wedge\) and \({\forall}\) in the usual manner, starting from the atomic formulas \(t = s\) and \(\mathsf{N}(t)\).

We write \(s\,t\) for \((s \cdot t)\) with the convention of association to the left. The connectives \({\vee}\), →, \({\leftrightarrow}\), and \({\exists}\) are defined as usual from the other connectives.

The logic of \({\mathsf{TON}}\) is classical first-order predicate logic with equality, formulated in a Hilbert-style calculus. The non-logical axioms of \({\mathsf{TON}}\) include:

  1. I

    Combinatory algebra.

    1. (1)

      \({\mathsf{k}}\,x\,y = x\),

    2. (2)

      \({\mathsf{s}}\,x\,y\,z = x\,z\,(y\,z)\).

  2. II

    Pairing and projection.

    1. (3)

      \({\mathsf{p}_0}\,({\mathsf{p}}\,x\,y) = x \mathrel\wedge{\mathsf{p}_1}\,({\mathsf{p}}\,x\,y) = y\).

  3. III

    Natural numbers.

    1. (4)

      \(\mathsf{N}(0) \mathrel\wedge{\forall} x. \mathsf{N}(x) \to \mathsf{N}({\mathsf{s}_\mathsf{N}}\,x)\),

    2. (5)

      \({\forall} x. \mathsf{N}(x) \to{\mathsf{s}_\mathsf{N}}\,x \not= 0 \mathrel\wedge{\mathsf{p}_\mathsf{N}}\,({\mathsf{s}_\mathsf{N}}\,x) = x\),

    3. (6)

      \({\forall} x. \mathsf{N}(x) \mathrel\wedge x \not= 0 \to \mathsf{N}({\mathsf{p}_\mathsf{N}}\,x) \mathrel\wedge{\mathsf{s}_\mathsf{N}}\,({\mathsf{p}_\mathsf{N}}\,x) = x\).

  4. IV

    Definition by cases on \(\textsf{N}\).

    1. (7)

      \(\mathsf{N}(v) \mathrel\wedge \mathsf{N}(w) \mathrel\wedge v = w \to{\mathsf{d}_\mathsf{N}}\,x\,y\,v\,w = x\),

    2. (8)

      \(\mathsf{N}(v) \mathrel\wedge \mathsf{N}(w) \mathrel\wedge v \not= w \to{\mathsf{d}_\mathsf{N}}\,x\,y\,v\,w = y\).

We may add the following natural induction scheme to \({\mathsf{TON}}\):

Formula induction on \(\mathsf{N}\) \({\mathop{({{\mathcal{L}}_t}\textsf{-}\mathrm{I}_\textrm{N})}}\)

$${\varphi}(0) \mathrel\wedge ({\forall} x. \mathsf{N}(x) \mathrel\wedge{\varphi}(x) \to{\varphi}({\mathsf{s}_\mathsf{N}}\,x)) \to{\forall} x. \mathsf{N}(x) \to{\varphi}(x).$$

\({\mathsf{TON}}+{\mathop{({{\mathcal{L}}_t}\textsf{-}\mathrm{I}_\textrm{N})}}\) is proof-theoretically equivalent to Peano arithmetic \({\mathsf{PA}}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kahle, R. (2015). Sets, Truth, and Recursion. In: Achourioti, T., Galinon, H., Martínez Fernández, J., Fujimoto, K. (eds) Unifying the Philosophy of Truth. Logic, Epistemology, and the Unity of Science, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9673-6_6

Download citation

Publish with us

Policies and ethics