Validity and Truth-Preservation

  • Julien MurziEmail author
  • Lionel Shapiro
Part of the Logic, Epistemology, and the Unity of Science book series (LEUS, volume 36)


The revisionary approach to semantic paradox is commonly thought to have a somewhat uncomfortable corollary, viz. that, on pain of triviality, we cannot affirm that all valid arguments preserve truth (Beall 2007, 2009; Field 2008, (2009b). We show that the standard arguments for this conclusion all break down once (i) the structural rule of contraction is restricted and (ii) how the premises can be aggregated—so that they can be said to jointly entail a given conclusion—is appropriately understood. In addition, we briefly rehearse some reasons for restricting structural contraction.


Truth-preservation Validity Naïve view of truth Curry’s Paradox Contraction Modus Ponens Substructural logics Incompleteness Theorems 


  1. Anderson, A., & Belnap, N. (1975). Entailment: The logic of relevance and necessity (Vol. 1). Princeton: Princeton University Press.Google Scholar
  2. Asenjo, F. G.. (1966). A calculus of antinomies. Notre Dame Journal of Formal Logic, 16, 103–105.CrossRefGoogle Scholar
  3. Asenjo, F., & Tamburino, J. (1975). Logic of antinomies. Notre Dame Journal of Formal Logic, 16, 17–44.CrossRefGoogle Scholar
  4. Avron, A. (1988). The semantics and proof theory of linear logic. Theoretical Computer Science, 57, 161–184.CrossRefGoogle Scholar
  5. Beall, J. (2007). Truth and paradox: A philosophical sketch. In D. Jacquette (ed.), Philosophy of logic (pp. 325–410). Amsterdam: Elsevier.Google Scholar
  6. Beall, J. (2009) Spandrels of truth. Oxford: Oxford University Press.CrossRefGoogle Scholar
  7. Beall, J. (2011). Multiple-conclusion LP and default classicality. Review of Symbolic Logic, 4, 326–336.CrossRefGoogle Scholar
  8. Beall, J., & Murzi, J. (2013). Two flavors of Curry’s paradox. Journal of Philosophy, 110, 143–165.Google Scholar
  9. Běhounek, L., Cintula, P., & Horčík, R. (2007). Multiplicative quantifiers in fuzzy and substructural logics. Presented at Logic Colloquium 2007, Wrocław.Google Scholar
  10. Belnap, N. (1982) Display logic. Journal of Philosophical Logic, 11, 375–417.Google Scholar
  11. Belnap, N. (1993). Life in the undistributed middle. In P. Schroeder-Heister & K. Došen (eds), Substructural logics (pp. 31–41). Oxford: Oxford University Press.Google Scholar
  12. Brady, R. (1983). The simple consistency of set theory based on the logic CSQ. Notre Dame Journal of Formal Logic, 24, 431–39.CrossRefGoogle Scholar
  13. Brady, R. (1989). The non-triviality of dialectical set theory. In Priest, G., R. Routley & J. Norman (eds), Paraconsistent logic: Essays on the inconsistent (pp. 437–71). Munich: Philosophia.Google Scholar
  14. Brady, R. (2006). Universal logic. Stanford: CSLI Publications.Google Scholar
  15. Clark, M. (2007). Paradoxes from A to Z (2nd ed.). London: Routledge.Google Scholar
  16. Cobreros, P., Egré, P., Ripley, D., van Rooij, R. (2012). Tolerant, classical, strict. Journal of Philosophical Logic, 41, pp. 347–385.Google Scholar
  17. Cook, R. (2012). The T-schema is not a logical truth. Analysis, 72, pp. 231–239.Google Scholar
  18. Cook, R. (2014). There is no paradox of logical validity! Logica Universalis, 8, pp. 447–467.Google Scholar
  19. Došen, K. (1993). A historical introduction to substructural logics. In P. Schroeder-Heister & K. Došen (eds), Substructural logics (pp. 1–30). Oxford: Oxford University Press.Google Scholar
  20. Etchemendy, J. (1990). The concept of logical consequence. Cambridge (Mass.): Harvard University Press.Google Scholar
  21. Field, H. (2003). A revenge-immune solution to the semantic paradoxes. Journal of Philosophical Logic, 32, 139–177.CrossRefGoogle Scholar
  22. Field, H. (2006). Truth and the unprovability of consistency. Mind, 115, 567–606.CrossRefGoogle Scholar
  23. Field, H. (2007). Solving the paradoxes, escaping revenge. In J. Beall (ed.), Revenge of the liar (pp. 53–144). Oxford: Oxford University Press.Google Scholar
  24. Field, H. (2008). Saving truth from paradox. Oxford: Oxford University Press.CrossRefGoogle Scholar
  25. Field, H. (2009a). Pluralism in logic. Review of Symbolic Logic, 2(2), 342–359.Google Scholar
  26. Field, H. (2009b). What is the normative role of logic? Proceedings of the Aristotelian Society, 83, 251–268.Google Scholar
  27. Field, H. (2015). Validity: Model-theoretic, proof-theoretic and genuine. Forthcoming in C. Caret & O. Hjortland (eds), Foundations of Logical Consequence. Oxford: Oxford University Press.Google Scholar
  28. Girard, J. Y. (1987). Linear logic. Theoretical Computer Science, 50, 1–102.CrossRefGoogle Scholar
  29. Harman, G. (1986). Change in view: Principles of reasoning. Cambridge (Mass.): MIT Press.Google Scholar
  30. Harman, G. (2009). Field on the normative role of logic. Proceedings of the Aristotelian Society, 109, 333–335.CrossRefGoogle Scholar
  31. Hjortland, O. T. (2012). Truth, paracompleteness and substructural logic. Unpublished manuscript.Google Scholar
  32. Horsten, L. (2009). Levity. Mind, 118, 555–581.CrossRefGoogle Scholar
  33. Kaplan, D., & Montague, R. (1960). A paradox regained. Notre Dame Journal of Formal Logic, 1, 79–90.CrossRefGoogle Scholar
  34. Ketland, J. (2012). Validity as a primitive. Analysis, 72, 421–430.CrossRefGoogle Scholar
  35. Kripke, S. (1975). Outline of a theory of truth. Journal of Philosophy, 72, 690–716.CrossRefGoogle Scholar
  36. Mares, E., & Paoli, F. (2014). Logical consequence and the paradoxes. Journal of Philosophical Logic, 43, pp. 439–469.Google Scholar
  37. Martin, R. L. (ed.) (1984). Recent essays on truth and the liar paradox. Oxford: Oxford University Press.Google Scholar
  38. Martin, R. L., & Woodruff, P. W. (1975). On representing ‘true-in-L’ in L. Philosophia, 5, 217–221. Reprinted in Martin 1984.Google Scholar
  39. McGee, V. (1991). Truth, vagueness, and paradox. Indianapolis: Hackett Publishing Company.Google Scholar
  40. Meyer, R. K., & McRobbie, M. A. (1982a). Multisets and relevant implication I. Australasian Journal of Philosophy, 60, 107–139.Google Scholar
  41. Meyer, R. K., & McRobbie, M. A. (1982b). Multisets and relevant implication II. Australasian Journal of Philosophy, 60, 265–181.Google Scholar
  42. Meyer, R. K., Routley, R., & Dunn, J. M. (1979). Curry’s paradox. Analysis, 39, 124–128.CrossRefGoogle Scholar
  43. Minc, G. (1976). Cut-elimination theorem in relevant logics. Journal of Soviet Mathematics, 6, 422–428.CrossRefGoogle Scholar
  44. Murzi, J. (2014). The inexpressibility of validity. Analysis, 74, 65–81.Google Scholar
  45. Myhill, J. (1960). Some remarks on the notion of proof. Journal of Philosophy, 57, 461–471.CrossRefGoogle Scholar
  46. O’Hearn, P., & Pym, D. (1999). The logic of bunched implications. Bulletin of Symbolic Logic, 5, 215–244.Google Scholar
  47. Paoli, F. (2002). Substructural logics: A primer. Dordrecht: Kluwer.CrossRefGoogle Scholar
  48. Paoli, F. (2005). The ambiguity of quantifiers. Philosophical Studies, 124, 313–330.CrossRefGoogle Scholar
  49. Paoli, F. (2007). Implicational paradoxes and the meaning of logical constants. Australasian Journal of Philosophy, 85, 533–579.CrossRefGoogle Scholar
  50. Priest, G. (1979). The logic of paradox. Journal of Philosophical Logic, 8, 219–241.CrossRefGoogle Scholar
  51. Priest, G. (1980). Sense, entailment, and modus ponens. Journal of Philosophical Logic, 9, 415–435.CrossRefGoogle Scholar
  52. Priest, G. (1991). Intensional paradoxes. Notre Dame Journal of Formal Logic, 32, 193–211.CrossRefGoogle Scholar
  53. Priest, G. (2006a). Doubt truth to be a liar. Oxford: Oxford University Press.Google Scholar
  54. Priest, G. (2006b). In contradiction. Oxford: Oxford University Press. Expanded edition (first published 1987).Google Scholar
  55. Priest, G. (2010). Hopes fade for saving truth. Philosophy, 85, 109–140. Critical notice of Field 2008.Google Scholar
  56. Priest, G., & Routley, R. (1982). Lessons from Pseudo-Scotus. Philosophical Studies, 42, 189–199.CrossRefGoogle Scholar
  57. Read, S. (1988). Relevant logic: A philosophical examination of inference. London: Basil Blackwell.Google Scholar
  58. Read, S. (2001). Self-reference and validity revisited. In M. Yrjönsuuri (ed.), Medieval formal logic (pp. 183–196). Dordrecht: Kluwer.Google Scholar
  59. Read, S. (2010). Field’s paradox and its medieval solution. History and Philosophy of Logic, 31, 161–176.CrossRefGoogle Scholar
  60. Restall, G. (1993). How to be really contraction free. Studia Logica, 52, 381–391.CrossRefGoogle Scholar
  61. Restall, G. (1994). On logics without contraction. PhD thesis, The University of Queensland.Google Scholar
  62. Restall, G. (2000). An introduction to substructural logics. London: Routledge.CrossRefGoogle Scholar
  63. Ripley, D. (2013). Paradoxes and failures of cut. Australasian Journal of Philosophy, 91, pp. 139–164.Google Scholar
  64. Shapiro, L. (2011). Deflating logical consequence. The Philosophical Quarterly, 61, 320–342.CrossRefGoogle Scholar
  65. Shapiro, L. (2015). Naive structure, contraction and paradox. Topoi, 34, 75–87.Google Scholar
  66. Slaney, J. (1990). A general logic. The Australasian Journal of Philosophy, 68, 74–88.CrossRefGoogle Scholar
  67. Troelstra, A. (1992). Lectures on linear logic. Stanford: CSLI.Google Scholar
  68. Weir, A. (2005). Naïve truth and sophisticated logic. In J. Beall & B. Armour-Garb (eds), Deflationism and paradox (pp. 218–249). Oxford: Oxford University Press.Google Scholar
  69. Whittle, B. (2004). Dialetheism, logical consequence and hierarchy. Analysis, 64, 318–326.CrossRefGoogle Scholar
  70. Zardini, E. (2011). Truth without contra(di)ction. Review of Symbolic Logic, 4, 498–535.CrossRefGoogle Scholar
  71. Zardini, E. (2013). Naive modus ponens. Journal of Philosophical Logic, 42, pp. 575–592.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.University of SalzburgSalzburgAustria
  2. 2.University of ConnecticutStorrsUSA

Personalised recommendations