Skip to main content

Role of Lycium Barbarum Extracts in Retinal Diseases

  • Chapter
  • First Online:
Lycium Barbarum and Human Health

Abstract

Wolfberry (Lycium barbarum) extracts have been used in the treatment of some retinal degenerative diseases, mostly associated with other antioxidants. The ones this chapter focuses on are retinitis pigmentosa and age-related macular degeneration. Hereditary retinal dystrophies are a broad (and growing) group of hereditary disorders affecting the retina. Retinitis pigmentosa is perhaps the best known of them and is sometimes (inaccurately) used as a synonym for some of the other conditions in this category. Although these two entities show completely different etiologies: The first one is a group of hereditary diseases in which photoreceptor death occurs due to different mutations, and in the second the loss of photoreceptors is associated to the aging process, in both oxidative damage has been claimed as a pathophysiological mechanism. The present chapter reviews the antioxidant chemical features of wolfberry and wolfberry extracts, the oxidative mechanisms involved in the pathophysiology of photoreceptor cell death, and the existing data on the use of wolfberry for retinal degenerations.

Dedicated to Prof. Theo van Veen on the ocassion of his 70th birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Altintas A, Kosar M, Kirimer N, Baser KHC, Dermici B. Composition of the essential oils of Lycium barbarum and L. ruthenicum fruits. Chem Nat Compd. 2006;42:24–5.

    CAS  Google Scholar 

  • Ahuja S, Ahuja-Jensen P, Johnson LE, Caffé AR, Abrahamson M, Ekström PA, van Veen T. rd1 Mouse retina shows an imbalance in the activity of cysteine protease cathepsins and their endogenous inhibitor cystatin C. Invest Ophthalmol Vis Sci. 2008;49:1089–96.

    PubMed  Google Scholar 

  • Amagase H, Nance DM. A randomized, double-blind, placebocontrolled, clinical study of the general effects of a standardized Lycium barbarum (Goji) Juice, GoChi. J Altern Complement Med. 2008;14:403–12.

    PubMed  Google Scholar 

  • Amagase H, Sun B, Borek C. Lycium barbarum (goji) juice improves in vivo antioxidant biomarkers in serum of healthy adults. Nutr Res. 2009;29:19–25.

    CAS  PubMed  Google Scholar 

  • Andreoli CM, Miller JW. Anti-vascular endothelial growth factor therapy for ocular neovascular disease. Curr Opin Ophthalmol. 2007;18:502–8.

    PubMed  Google Scholar 

  • Artus C, Maquarre E, Moubarak RS, Delettre C, Jasmin C, Susin SA, Robert-Lézénès J. CD44 ligation induces caspase-independent cell death via a novel calpain/AIF pathway in human erythroleukemia cells. Oncogene. 2006;25:5741–51.

    CAS  PubMed  Google Scholar 

  • Arrington DD, Van Vleet TR, Schnellmann RG. Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. Am J Physiol Cell Physiol. 2006;291:C1159–71.

    CAS  PubMed  Google Scholar 

  • Baynes JW, Thorpe SR. The role of oxidative stress in diabetic complications. Curr Opin Endocrinol. 1996;3:277–84.

    Google Scholar 

  • Bazan NG. Cell survival matters: docosahexaenoic acid signalling, neuroprotection and photoreceptors. Trends Neurosci. 2006;29:263–71.

    CAS  PubMed  Google Scholar 

  • Beatty S, Murray IJ, Henson DB, Carden D, Koh H, Boulton ME. Macular pigment and risk for age-related macular degeneration in subjects from a Northern European population. Invest Ophthalmol Vis Sci. 2001;42:439–46.

    CAS  PubMed  Google Scholar 

  • Berson EL, Rosner B, Sandberg MA, Hayes KC, Nicholson BW, Weigel-DiFranco C, Willett W. A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch Ophthalmol. 1993;111:761–72.

    CAS  PubMed  Google Scholar 

  • Bone RA, Landrum JT. Distribution of macular pigment components, zeaxanthin and lutein, in human retina. Methods Enzymol. 1992;213:360–6.

    CAS  PubMed  Google Scholar 

  • Bonnefont-Rousselot D. Glucose and reactive oxygen species. Curr Opin Clin Nutr Meta Care. 2002;5:561–8.

    CAS  Google Scholar 

  • Boulton M, Rozanowska M, Rozanowski B. Retinal photodamage. J Photochem Photobiol B. 2001;64:144–61.

    CAS  PubMed  Google Scholar 

  • Bowes C, Li T, Danciger M, Baxter LC, Applebury ML, Farber DB. Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase. Nature. 1990;347:677–80.

    CAS  PubMed  Google Scholar 

  • Bucheli P, Vidal K, Shen L, Gu Z, Zhang C, Miller LE, Wang J. Goji berry effects on macular characteristics and plasma antioxidant levels. Optom Vis Sci. 2011;88:257–62.

    PubMed  Google Scholar 

  • Bhutto I, Lutty G. Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Aspects Med. 2012;33:295–317.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Caldwell RB, Bartoli M, Behzadian MA, El-Remessy AE, Al-Shabrawey M, Platt DH. Vascular endothelial growth factor and diabetic retinopathy: role of oxidative stress. Curr Drug Targets. 2005;6:511–24.

    CAS  PubMed  Google Scholar 

  • Caldwell RB, Zhang W, Romero MJ, Caldwell RW. Vascular dysfunction in retinopathy-an emerging role for arginase. Brain Res Bull. 2010;81:303–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carnés JL, De Larramendi CH, Ferrer A, Huertas AJ, López-Matas MA, Pagán JA, Navarro LA, García-Abujeta JL, Vicario S, Peña M. Recently introduced foods as new allergenic sources: sensitisation to Goji berries (Lycium barbarum). Food Chem. 2013;137:130–5.

    PubMed  Google Scholar 

  • Carpentier S, Knaus M, Suh M. Associations between lutein, zeaxanthin, and age-related macular degeneration: an overview. Crit Rev Food Sci Nutr. 2009;49:313–26.

    CAS  PubMed  Google Scholar 

  • Castellano G, González-Santander JL, Lara A, Torrens F. Classification of flavonoid compounds by using entropy of information theory. Phytochemistry. 2012a;93:182–91.

    Google Scholar 

  • Castellano G, Tena J, Torrens F. Classification of phenolic compounds by chemical structural indicators and Its relation to antioxidant properties of posidonia oceanica (L.) Delile. MATCH Commun Math Comput Chem. 2012b;67:231–50.

    Google Scholar 

  • Castellano G, González-Santander JL, Lara A, Torrens F. Classification of flavonoid compounds by using entropy of information theory. Phytochemistry. 2013;93:182–91.

    CAS  PubMed  Google Scholar 

  • Chan HC, Chang RC, Koon-Ching Ip A, Chiu K, Yuen WH, Zee SY, So KF. Neuroprotective effects of Lycium barbarum Lynn on protecting retinal ganglion cells in an ocular hypertension model of glaucoma. Exp Neurol. 2007;203:269–73.

    PubMed  Google Scholar 

  • Chang RCC, So KF. Use of anti-aging herbal medicine, Lycium barbarum, against aging-associated diseases. What do we know so far?. Cell Mol Neurobiol. 2008;28:643–52.

    CAS  PubMed  Google Scholar 

  • Chen Z, Tan BKH, Chan SH. Activation of T lymphocytes by polysaccharide–protein complex from Lycium barbarum L. Int Immunopharmacol. 2008;8:1663–71.

    CAS  PubMed  Google Scholar 

  • Chiu K, Chan HC, Yeung SC, Yuen WH, Zee SY, Chang RC, So KF. Modulation of microglia by wolfberry on the survival of retinal ganglion cells in a rat ocular hypertension model. J Ocul Biol Dis Infor. 2009;2:47–56.

    PubMed Central  PubMed  Google Scholar 

  • Chiu K, Zhou Y, Yeung SC, Lok CK, Chan OO, Chang RC, So KF, Chiu JF. Up-regulation of crystallins is involved in the neuroprotective effect of wolfberry on survival of retinal ganglion cells in rat ocular hypertension model. J Cell Biochem. 2010;110:311–20.

    CAS  PubMed  Google Scholar 

  • Chong KP, Rossall S, Atong M. In vitro antimicrobial activity and fungitoxicity of syringic acid, caffeic acid and 4-hydroxybenzoic acid in Ganoderma Boninense. J Agr Sci. 2010;1:15–20.

    Google Scholar 

  • Chucair AJ, Rotstein NP, Sangiovanni JP, During A, Chew EY, Politi LE. Lutein and zeaxanthin protect photoreceptors from apoptosis induced by oxidative stress: relation with docosahexaenoic acid. Invest Ophthalmol Vis Sci. 2007;48:5168–77.

    PubMed  Google Scholar 

  • Croft KD. The chemistry and biological effects of flavonoids and phenolic acids. Ann. N Y Acad Sci. 1998;854:435–42.

    CAS  PubMed  Google Scholar 

  • Cui Y, Xu X, Bi H, Zhu Q, Wu J, Xia X, Qiushi Ren, Ho PC. Expression modification of uncoupling proteins and MnSOD in retinal endothelial cells and pericytes induced by high glucose: the role of reactive oxygen species in diabetic retinopathy. Exp Eye Res. 2006;83:807–16.

    CAS  PubMed  Google Scholar 

  • Cui, BK, Liu S, Lin XJ, Wang J, Li SH, Wang QB, Li SP. Effects of Lycium barbarum aqueous and ethanol extracts on high-fat-diet induced oxidative stress in rat liver tissue. Molecules. 2011;16:9116–28.

    CAS  PubMed  Google Scholar 

  • Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules. 2010;15:7313–52.

    CAS  PubMed  Google Scholar 

  • Ding X, Patel M, Chan CC. Molecular pathology of age-related macular degeneration. Prog Retin Eye Res. 2009;28:1–18.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dong J Z, Lu DY, Wang Y. Analysis of flavonoids from leaves of cultivated Lycium barbarum L. Plant Foods Hum Nutr. 2009;64:199–204.

    CAS  PubMed  Google Scholar 

  • Du Y, Miller CM, Kern TS. Hyperglycemia increases mitochondrial superoxide in retina and retinal cells. Free Radic Biol Med. 2003;35:1491–9.

    CAS  PubMed  Google Scholar 

  • Ellis EA, Guberski DL, Somogyi-Mann M, Grant MB. Increased H2O2, vascular endothelial growth factor and receptors in the retina of the BBZ/WOR diabetic rat. Free Radic Biol Med. 2000;28:91–101.

    CAS  PubMed  Google Scholar 

  • Erlund I. Rewiew of the flavonoids quercetin, hespetin and naringernin: dietary sources, bioactivities, bioavailability and epidemiology. Nutr Res. 2004;24:851–74.

    CAS  Google Scholar 

  • Evans JR. Ginkgo biloba extract for age-related macular degeneration. Cochrane Database Syst Rev. 2013;1:CD001775.

    PubMed  Google Scholar 

  • Fies P, Dienel A. Ginkgo extract in impaired vision–treatment with special extract EGb 761 of impaired vision due to dry senile macular degeneration. Wien Med Wochenschr. 2002;152:423–6.

    CAS  PubMed  Google Scholar 

  • Friedman DS, O’Colmain BJ, Munoz B, Tomany SC, McCarty C, de Jong PT, Nemesure B, Mitchell P, Kempen J. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol. 2004;122:564–72.

    PubMed  Google Scholar 

  • Ganea E, Harding JJ. Glutathione-related enzymes and the eye. Curr Eye Res. 2006;31:1–11.

    CAS  PubMed  Google Scholar 

  • González, E. Evaluación clínica y electrofisiológica de una asociación de suplementos dietéticos con luteína y zeaxantiana en la progesión de la degeneración macular y la calidad de vida en pacientes con Degeneración Macular Asociada a la Edad Atrófica. Thesis Universidad Católica de Valencia. Valencia; 2013.

    Google Scholar 

  • Halliwell, B. Reactive oxygen species and the central nervous system. J Neurochem. 1992;59:1609–23.

    CAS  PubMed  Google Scholar 

  • Hammerbacher A, Ralph SG, Bohlmann J, Fenning TM, Gershenzon J, Schmidt A. Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection. Plant Physiol. 2011;157:876–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hartong DT1, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006;368:1795–809.

    CAS  PubMed  Google Scholar 

  • He S, Wu B, Pan Y, Jiang L. Chunganenol: an unusual antioxidative resveratrol hexamer from Vitis chunganensis. J Org Chem. 2008;73:5233–41.

    CAS  PubMed  Google Scholar 

  • He M, Pan H, Chang RC, So KF, Brecha NC, Pu M. Activation of the Nrf2/HO-1 antioxidant pathway contributes to the protective effects of Lycium barbarum polysaccharides in the rodent retina after ischemia-reperfusion-induced damage. PLoS One. 2014;9:e84800. doi: 10.1371/journal.pone.0084800.

    PubMed Central  PubMed  Google Scholar 

  • Hozawa A, Jacobs DR, Steffes MW, Gross MD, Steffen LM, Lee D. Circulating carotenoid concentrations and incident hypertension: the coronary artery risk development in young adults (CARDIA) study. J Hypertens. 2009;27:237–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hsu YL, Kuo PL, Lin CC. Acacetin inhibits the proliferation of Hep G2 by blocking cell cycle progression and inducing apoptosis. Biochem Pharmacol. 2004;67:823–29.

    CAS  PubMed  Google Scholar 

  • Hu CK1, Lee YJ, Colitz CM, Chang CJ, Lin CT. The protective effects of Lycium barbarum and chrysanthemum morifolum on diabetic retinopathies in rats. Vet Ophthalmol Suppl. 2012;2:65–71.

    Google Scholar 

  • Inbaraja BS, Lua H, Hungb CF, Wub WB, Linc C L, Chen BH. Determination of carotenoids and their esters in fruits of Lycium barbarum Linnaeus by HPLC–DAD–APCI–MS. J Pharm Biomed Anal. 2008;47:812–18.

    Google Scholar 

  • Jarrett SG, Boulton ME. Consequences of oxidative stress in age-related macular degeneration. Mol Aspects Med. 2012;33:399–417.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jarrett SG, Lin H, Godley BF, Boulton ME. Mitochondrial DNA damage and its potential role in retinal degeneration. Prog Retin Eye Res. 2008;27:596–607.

    CAS  PubMed  Google Scholar 

  • Jin M, Lu Z, Huang M, Wang Y, Wang Y. Sulfated modification and antioxidant activity of exopolysaccahrides produced by Enterobacter cloacae Z0206 Int J Biol Macromol. 2011;48:607–12.

    CAS  PubMed  Google Scholar 

  • Jin M, Huang Q, Zhao K, Shang P. Biological activities and potential health benefit effects of polysaccharides isolated from Lycium barbarum L. Int J Biol Macromol. 2013;54:16–23.

    CAS  PubMed  Google Scholar 

  • Kadoma Y, Fujisawa S. A comparative study of the radical-scavening activity of the phenolcarboxylic acids caffeic acid, p-coumaric acid, chlorogenic acid and ferulic acid, with or without 2ʹ-mercaptoethanol, a thiol, using the induction period method. Molecules. 2008;13:2488–99.

    CAS  PubMed  Google Scholar 

  • Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL. The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol. 2013;1:45–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kern TS, Engerman RL. Pharmacological inhibition of diabetic retinopathy: aminoguanidine and aspirin. Diabetes. 2001;50:1636–42.

    CAS  PubMed  Google Scholar 

  • Khadem S, Marles RJ. Monocyclic phenolic acids; hydroxy- and polyhydroxybenzoic acids: occurrence and recent bioactivity studies. Molecules. 2010;15:7985–8005.

    CAS  PubMed  Google Scholar 

  • Khandhadia S, Lotery A. Oxidation and age-related macular degeneration: insights from molecular biology. Expert Rev Mol Med. 2010;12:e34.

    PubMed  Google Scholar 

  • Kim HP, Kim SY, Lee EJ, Kim YC, Kim YC. Zeaxanthin dipalmitate from Lycium chinense has hepatoprotective activity. Res Commun Mol Pathol Pharmacol. 1997;97:301–14.

    CAS  PubMed  Google Scholar 

  • Kolb H. How the retina works. Am Sci. 2003;91:28–35.

    Google Scholar 

  • Komeima K, Rogers BS, Lu L, Campochiaro PA. Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc Natl Acad Sci USA. 2006;103:11300–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kowluru RA. Diabetic retinopathy: mitochondrial dysfunction and retinal capillary cell death. Antioxid Redox Signal. 2005;7:1581–7.

    CAS  PubMed  Google Scholar 

  • Kowluru RA, Abbas SN. Diabetes-induced mitochondrial dysfunction in the retina. Invest Ophthalmol Vis Sci. 2003;44:5327–34.

    PubMed  Google Scholar 

  • Kukidome D, Nishikawa T, Sonoda K, Imoto K, Fujisawa K, Yano M, Motoshima H, Taguchi T, Matsumura T, Araki E. Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes. 2006;55:120–7.

    CAS  PubMed  Google Scholar 

  • Lacikova L, Jancova M, Muselik J, Masterova I, Grancai D, Fickova M. Antiproliferative, cytotoxic, antioxidant activity and polyphenols contents in leaves of four staphylea L. species. Molecules. 2009;14:3259–67.

    CAS  PubMed  Google Scholar 

  • Lebuisson DA, Leroy L, Rigal G. Treatment of senile macular degeneration with Ginkgo biloba extract. A preliminary double-blind drug vs. placebo study. Presse Med. 1986;15:1556–8.

    CAS  PubMed  Google Scholar 

  • Lecleire-Collet A, Tessier LH, Massin P, Forster V, Brasseur G, Sahel JA, Picaud S. Advanced glycation end products can induce glial reaction and neuronal degeneration in retinal explants. Br J Ophthalmol. 2005;89: 1631–3.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li XN, Song J, Zhang L, LeMaire SA, Hou X, Zhang C, Coselli JS, Chen L, Wang XL, Zhang Y, Shen YH. Activation of the AMPK-FOXO3 pathway reduces fatty acid-induced increase in intracellular reactive oxygen species by upregulating thioredoxin. Diabetes. 2009;58:2246–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li SY, Yang D, Yeung CM, Yu WY, Chang RC, So KF, Wong D, Lo AC. Lycium barbarum polysaccharides reduce neuronal damage, blood-retinal barrier disruption and oxidative stress in retinal ischemia/reperfusion injury. PLoS One. 2011;6:e16380. doi: 10.1371/journal.pone.0016380.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liang FQ, Godley BF. Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Exp Eye Res. 2003;76:397–403.

    CAS  PubMed  Google Scholar 

  • Lidebjer C, Leanderson P, Ernerudh J, Jonasson L. Low plasma levels of oxygenated carotenoids in patients with coronary artery disease. Nutr Metab Cardiovasc Dis. 2007;17:448–56.

    CAS  PubMed  Google Scholar 

  • Lin H, Qian J, Castillo AC, Long B, Keyes KT, Chen G, Ye Y. Effect of miR-23 on oxidant-induced injury in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2011a;52:6308–14.

    Google Scholar 

  • Lin NC, Lin JC, Chen SH, Ho CT, Yeh AI. Effect of Goji (Lycium barbarum) on expression of genes related to cell survival. J Agric Food Chem. 2011b;59:10088–96.

    Google Scholar 

  • Lu M, Kuroki M, Amano S, Tolentino M, Keough K, Kim I, Bucala R, Adamis AP. Advanced glycation end products increase retinal vascular endothelial growth factor expression. J Clin Invest. 1998;101:1219–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Luo Q, Cai Y, Yan J, Sun M, Corke H. Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum. Life Sci. 2004;76:137–49

    CAS  PubMed  Google Scholar 

  • Madsen-Bouterse SA, Kowluru RA. Oxidative stress and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Rev Endocr Metab Disord. 2008;9:315–27.

    CAS  PubMed  Google Scholar 

  • Manheimer E, Wieland S, Kimbrough E, Cheng K & Berman BM. Evidence from the cochrane collaboration for traditional chinese medicine therapies. J Altern Complement Med. 2009;15:1001–14.

    PubMed Central  PubMed  Google Scholar 

  • Mao F, Xiao B, Jiang Z, Zhao J, Huang X, Guo J. Anticancer effect of Lycium barbarum polysaccharides on colon cancer cells involves G0/G1 phase arrest. Medical Oncology. 2011;28:121–6.

    CAS  PubMed  Google Scholar 

  • Marcum JL, Mathenia JK, Chan R, Guttmann RP. Oxidation of thiol-proteases in the hippocampus of Alzheimer's disease. Biochem Biophys Res Commun. 2005;334:342–8.

    CAS  PubMed  Google Scholar 

  • McLaughlin ME, Ehrhart TL, Berson EL, Dryja TP. Mutation spectrum of the gene encoding the beta subunit of rod phosphodiesterase among patients with autosomal recessive retinitis pigmentosa. Proc Natl Acad Sci USA. 1995;92:3249–53.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mi XS, Chiu K, Van G, Leung JWC, Lo ACY, Chung SK, Chang RCC, So KF. Effect of Lycium barbarum polysaccharides on the expression of endothelin-1 and its receptors in an ocular hypertension model of rat glaucoma. Neural Regen Res. 2012a;7:645–51.

    Google Scholar 

  • Mi XS, Feng Q, Lo AC, Chang RC, Lin B, Chung SK, So KF. Protection of retinal ganglion cells and retinal vasculature by Lycium barbarum polysaccharides in a mouse model of acute ocular hypertension. PLoS One. 2012b;4:e45469. doi:10.1371/journal.pone.0045469.

    Google Scholar 

  • Miranda M, Muriach M, Johnsen S, Bosch-Morell F, Araiz J, Romá J, Romero FJ. Oxidative stress in a model for experimental diabetic retinopathy: treatment with antioxidants. Arch Soc Esp Oftalmol. 2004;79:289–94.

    CAS  PubMed  Google Scholar 

  • Miranda M, Muriach M, Roma J, Bosch-Morell F, Genovés JM, Barcia J, Araiz J, Díaz-Llospis M, Romero FJ. Oxidative stress in a model of experimental diabetic retinopathy: the utility of peroxinytrite scavengers. Arch Soc Esp Oftalmol. 2006;81:27–32.

    CAS  PubMed  Google Scholar 

  • Miranda M, Johnson LE, Ahuja S, Ekstrom PA, Romero FJ, van Veen T. Significant photoreceptor rescue by treatment with a combination of antioxidants in an animal model for retinal degeneration. Neuroscience. 2007;145:1120–9.

    Google Scholar 

  • Miranda M, Arnal E, Ahuja S, Alvarez-Nölting R, López-Pedrajas R, Ekström P, Bosch-Morell F, van Veen T, Romero FJ. Antioxidants rescue photoreceptors in rd1 mice: Relationship with thiol metabolism. Free Radic Biol Med. 2010;48:216–22.

    CAS  PubMed  Google Scholar 

  • Moeller SM, Parekh N, Tinker L, Ritenbaugh C, Blodi B, Wallace RB, Mares JA. Associations between intermediate age-related macular degeneration and lutein and zeaxanthin in the carotenoids in age-related eye disease study (CAREDS): ancillary study of the women’s health initiative. Arch Ophthalmol. 2006;124:1151–62.

    CAS  PubMed  Google Scholar 

  • Montezuma SR, Sobrin L, Seddon JM. Review of genetics in age related macular degeneration. Semin Ophthalmol. 2007;22:229–40.

    PubMed  Google Scholar 

  • Moore TC, Moore JE, Kaji Y, Frizzell N, Usui T, Poulaki V, Campbell IL, Stitt AW, Gardiner TA, Archer DB, Adamis AP. The role of advanced glycation end products in retinal microvascular leukostasis. Invest Ophthalmol Vis Sci. 2003;44:4457–64.

    PubMed  Google Scholar 

  • Muriach M, Bosch-Morell F, Alexander G, Blomhoff R, Barcia J, Arnal E, Almansa I, Romero FJ, Miranda M. Lutein effect on retina and hippocampus of diabetic mice. Free Radic Biol Med. 2006;41:979–84.

    CAS  PubMed  Google Scholar 

  • Natella F, Nardini M, Di Felice M, Scaccini C. Benzoic and cinnamic acid derivatives as antioxidants: structure-activity relation. J Agric Food Chem. 1999;47:1453–9.

    CAS  PubMed  Google Scholar 

  • Obrosova IG, Minchenko AG, Vasupuram R, White L, Abatan OI, Kumagai AK. Aldose reductase inhibitor fidarestat prevents retinal oxidative stress and vascular endothelial growth factor overexpression in streptozotocin-diabetic rats. Diabetes. 2003;52:864–71.

    CAS  PubMed  Google Scholar 

  • Obrosova IG, Pacher P, Szabo C, Zsengeller Z, Hirooka H, Stevens MJ. Aldose reductase inhibition counteracts oxidativenitrosative stress and poly(ADPribose) polymerase activation in tissue sites for diabetes complications. Diabetes. 2005;54:234–42.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Omata Y, Saito Y, Yoshida Y, Niki E. Simple assessment of radical scavenging capacity of beverages. J Agric Food Chem. 2008;56:3386–90.

    CAS  PubMed  Google Scholar 

  • Packer L, Kraemer K, Rimbach G. Molecular aspects of lipoic acid in the prevention of diabetic complications. Nutrition. 2001;17:888–95.

    CAS  PubMed  Google Scholar 

  • Paquet-Durand F, Hauck SM, van Veen T, Ueffing M, Ekström P. PKG activity causes photoreceptor cell death in two retinitis pigmentosa models. J Neurochem. 2009;108:796–810.

    CAS  PubMed  Google Scholar 

  • Pavan B, Capuzzo A, Forlani G. High glucose-induced barrier impairment of human retinal pigment epithelium is ameliorated by treatment with Goji berry extracts through modulation of cAMP levels. Exp Eye Res. 2014;120:50–4.

    CAS  PubMed  Google Scholar 

  • Peng Y, Ma C, Li Y, Leung KS, Jiang ZH, Zhao Z. Quantification of zeaxanthin dipalmitate and total carotenoids in Lycium fruits (Fructus Lycii). Plant Foods Hum Nutr. 2005;60:161–4.

    CAS  PubMed  Google Scholar 

  • Pereira DM, Valentao P, Pereira JA, Andrade PB. Phenolics: from chemistry to biology. Molecules. 2009;14:2202–11.

    CAS  Google Scholar 

  • Pescosolido N, Del Bianco G, de Feo G, Madia F, Risuleo G, Scarsella G. Induced acute ocular hypertension: mode of retinal cell degeneration. Acta Ophthalmol Scand Suppl. 1998;227:20–1.

    PubMed  Google Scholar 

  • Pietta P. Flavonoids as antioxidants. J Nat Prod. 2000;63:1035–42.

    CAS  PubMed  Google Scholar 

  • Puertas FJ, Díaz-Llopis M, Chipont E, Romá J, Raya A, Romero FJ. Glutathione system of human retina: enzymatic conjugation of lipid peroxidation products. Free Radic Biol Med. 1993;14:549–51.

    CAS  PubMed  Google Scholar 

  • Punzo C, Kornacker K, Cepko CL. Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci. 2009;12:44–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rosemann D, Heller W, Sandermann H Jr. Biochemical plant responses to ozone. Plant Physiol. 1991;97:1280–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sancho-Pelluz J, Arango-Gonzalez B, Kustermann S, Romero FJ, van Veen T, Zrenner E, Ekström P, Paquet-Durand F. Photoreceptor cell death mechanisms in inherited retinal degeneration. Mol Neurobiol. 2008;38:253–69.

    CAS  PubMed  Google Scholar 

  • Sanz MM, Johnson LE, Ahuja S, Ekström PA, Romero J, van Veen T. Significant photoreceptor rescue by treatment with a combination of antioxidants in an animal model for retinal degeneration. Neuroscience. 2007;145:1120–9.

    CAS  PubMed  Google Scholar 

  • Scarsella G, Nebbioso M, Stefanini S, Pescosolido N. Degenerative effects in rat eyes after experimental ocular hypertension. Eur J Histochem. 2012;54:e42. doi:10.4081/ejh.2012.e42.

    Google Scholar 

  • Schmidt AM, Vianna M, Gerlach M, Brett J, Ryan J, Kao J, Esposito C, Hegarty H, Hurley W, Clauss M, Wang F, Pan YCE, Tsang TC, Stern D. Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem. 1992;267:14987–97.

    CAS  PubMed  Google Scholar 

  • Schmidt AM, Hori O, Chen JX, Li JF, Crandall J, Zhang J, Cao R, Yan SD, Brett J, Stern D. Advanced glycation end products interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice: a potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest. 1995;96:1395–403.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shan X, Zhou J, Ma T, Chai Q. Lycium barbarum polysaccharides reduce exercise-induced oxidative stress. Int J Mol Sci. 2011;12:1081–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shen J, Yang X, Dong A, Petters RM, Peng YW, Wong F, Campochiaro PA. Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa. J Cell Physiol. 2005;203:457–64.

    CAS  PubMed  Google Scholar 

  • Simic A, Manojlovic D, Segan D, Todorovic M. Electrochemical behavior and antioxidant and prooxidant activity of natural phenolics. Molecules. 2007;12:2327–40.

    CAS  PubMed  Google Scholar 

  • Song MK, Roufogalis BD, Huang TH. Reversal of the caspase-dependent apoptotic cytotoxicity pathway by taurine from Lycium barbarum (Goji Berry) in human retinal pigment epithelial cells: potential benefit in diabetic retinopathy. Evid Based Complement Alternat Med. 2012;2012:323784. doi:10.1155/2012/323784.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Spraul CW, Grossniklaus HE. Characteristics of Drusen and Bruch’s membrane in postmortem eyes with age-related macular degeneration. Arch Ophthalmol. 1997;115:267–73.

    CAS  PubMed  Google Scholar 

  • Stitt AW, Curtis TM. Advanced glycation and retinal pathology during diabetes. Pharmacol Rep. 2005;57:156–68.

    PubMed  Google Scholar 

  • Sun MH, Pang JH, Chen SL, Han WH, Ho TC, Chen KJ, Kao LY, Lin KK, Tsao YP. Retinal protection from acute glaucoma-induced ischemia-reperfusion injury through pharmacologic induction of heme oxygenase-1. Invest Ophthalmol Vis Sci. 2010;51:4798–808.

    PubMed  Google Scholar 

  • Swaroop A, Chew EY, Rickman CB, Abecasis GR. Unraveling a multifactorial late-onset disease: from genetic susceptibility to disease mechanisms for age-related macular degeneration. Annu Rev Genomics Hum Genet. 2009;10:19–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Szwajgier D, Pielecki J, Targon’ski Z. Antioxidant activities of cinnamic and benzoic acid derivatives. Acta Sci Pol Technol Aliment. 2005;4:129–42.

    CAS  Google Scholar 

  • Tan JS, Wang JJ, Flood V, Rochtchina E, Smith W, Mitchell P. Dietary antioxidants and the long-term incidence of age-related macular degeneration: the blue mountains eye study. Ophthalmology 2008;115:334–41.

    PubMed  Google Scholar 

  • Tang L, Zhang Y, Jiang Y, Willard L, Ortiz E, Wark L, Medeiros D, Lin D. Dietary wolfberry ameliorates retinal structure abnormalities in db/db mice at the early stage of diabetes. Exp Biol Med (Maywood). 2011;236:1051–63.

    CAS  Google Scholar 

  • Tanito M, Nishiyama A, Tanaka T, Masutani H, Nakamura H, Yodoi J, Ohira A. Change of redox status and modulation by thiol replenishment in retinal photooxidative damage. Invest. Ophthalmol Visual Sci. 2002;43:2392–400.

    Google Scholar 

  • Ting AY, Lee TK, MacDonald IM. Genetics of age-related macular degeneration. Curr Opin Ophthalmol. 2009;20:369–76.

    PubMed  Google Scholar 

  • Vidal K, Bucheli P, Gao Q, Moulin J, Shen LS, Wang J, Blum S, Benyacoub J. Immunomodulatory effects of dietary supplementation with a milk-based wolfberry formulation in healthy elderly: a randomized, double-blind, placebo-controlled trial. Rejuvenation Res. 2012;15:89–97.

    CAS  PubMed  Google Scholar 

  • Vlachantoni D, Bramall AN, Murphy MP, Taylor RW, Shu X, Tulloch B, Van Veen T, Turnbull DM, McInnes RR, Wright AF. Evidence of severe mitochondrial oxidative stress and a protective effect of low oxygen in mouse models of inherited photoreceptor degeneration. Hum Mol Genet. 2011;2:322–35.

    Google Scholar 

  • Wang CC, Chang SC, Stephen Inbaraj B, Chen BH. Isolation of carotenoids, flavonoids and polysaccharides from Lycium barbarum L. and evaluation of antioxidant activity. Food Chem. 2010;120:184–92.

    CAS  Google Scholar 

  • Warboys CM, Toh HB, Fraser PA. Role of NADPH oxidase in retinal microvascular permeability increase by RAGE activation. Br J Ophthalmol. 2005;89:1631–3.

    Google Scholar 

  • Wautier JL, Zoukourian C, Chappey O, Wautier MP, Guillausseau PJ, Cao R, Hori O, Stern D, Schmidt AM. Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy: soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J Clin Invest. 1996;97:238–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Webster RP, Gawde MD, Bhattacharya RK. Protective effect of rutin, a flavonol glycoside, on the carcinogen-induced DNA damage and repair enzymes in rats. Cancer Lett. 1996;109:185–91.

    CAS  PubMed  Google Scholar 

  • Wellard J, Lee D, Valter K, Stone J. Photoreceptors in the rat retina are specifically vulnerable to both hypoxia and hyperoxia. Vis Neurosci. 2005;22:501–7.

    PubMed  Google Scholar 

  • Winkler BS, Boulton ME, Gottsch JD, Sternberg P. Oxidative damage and age-related macular degenera-tion. Mol vis. 1999; 5:32.

    Google Scholar 

  • Wu HT, He XJ, Hong YK, Ma T, Xu YP, Li HH. Chemical characterization of Lycium barbarum polysaccharides and its inhibition against liver oxidative injury of high-fat mice. Int J Biol Macromol. 2010;46:540–3.

    CAS  PubMed  Google Scholar 

  • Wu WB, Hung DK, Chang FW, Ong ET, Chen BH. Anti-inflammatory and anti-angiogenic effects of flavonoids isolated from Lycium barbarum Linnaeus on human umbilical vein endothelial cells. Food Funct. 2012;3:1068–81.

    CAS  PubMed  Google Scholar 

  • Xin YF, Wan LL, Peng JL, Guo C. Alleviation of the acute doxorubicin-induced cardiotoxicity by Lycium barbarum polysaccharides through the suppression of oxidative stress. Food Chem Toxicol. 2011;49:259–64.

    CAS  PubMed  Google Scholar 

  • Yamagishi S, Ueda S, Matsui T, Nakamura K, Okuda S. Role of advanced glycation end products (AGEs) and oxidative stress in diabetic retinopathy. Curr Pharm Des. 2008;14:962–8.

    CAS  PubMed  Google Scholar 

  • Yamashima T. Ca2 + -dependent proteases in ischemic neuronal death: a conserved ‘calpain-cathepsin cascade’ from nematodes to primates. Cell Calcium. 2004;36:285–93.

    CAS  PubMed  Google Scholar 

  • Yang M, Gao N. protective effect of Lycium barbarum polysaccharide on retinal ganglion cells in vitro. Int J Ophthalmol. 2011;4:377–9.

    PubMed Central  PubMed  Google Scholar 

  • Yang CS, Landau JM, Huang M, Newmark HL. Inhibition of carcinogenesis by dietarypolyphenolic compounds. Annu Rev Nutr. 2001;21:381–406.

    CAS  PubMed  Google Scholar 

  • Yang D, Elner SG, Bian ZM, Till GO, Petty HR, Elner VM. Pro-inflammatory cytokines increase reactive oxygen species through mitochondria and NADPH oxidase in cultured RPE cells. Exp Eye Res. 2007;85:462–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu H, Wark L, Ji H, Willard L, Jaing Y, Han J, He H, Ortiz E, Zhang Y, Medeiros DM, Lin D. Dietary wolfberry upregulates carotenoid metabolic genes and enhances mitochondrial biogenesis in the retina of db/db diabetic mice. Mol Nutr Food Res. 2013;57:1158–69.

    CAS  PubMed  Google Scholar 

  • Zarbin MA. Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol. 2004;122:598–614.

    PubMed  Google Scholar 

  • Zhang M, Chen H, Huang J, Li Z, Zhu C, Zhang S. Efect of Lycium barbarum polysaccharide on human hepatoma QGY7703 cells: inhibition of proliferation and induction of apoptosis. Life Sci. 2005;76:2115–24.

    CAS  PubMed  Google Scholar 

  • Zhang W, Zhang X, Wang H, Guo X, Li H, Wang Y, Xu X, Tan L, Mashek MT, Zhang C, Chen Y, Mashek DG, Foretz M, Zhu C, Zhou H, Liu X, Viollet B, Wu C, Huo Y. AMP-activated protein kinase α1 protects against diet-induced insulin resistance and obesity. Diabetes. 2012;61:3114–25.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao Z, Luo Y, Li G, Zhu L, Wang Y, Zhang X. Thoracic aorta vasoreactivity in rats under exhaustive exercise: effects of Lycium barbarum polysaccharides supplementation. J Int Soc Sports Nutr. 2013;10:47.

    PubMed Central  PubMed  Google Scholar 

  • Zhong Y, Shahidi F, Naczk M. Phytochemicals and health benefits of goji berries. In: Dried Fruits: Phytochemicals and Health Effects, 1st edn. New York: Wiley-Blackwell; 2013. pp. 133–44

    Google Scholar 

  • Ziaei A, Schmedt T, Chen Y, Jurkunas UV. Sulforaphane decreases endothelial cell apoptosis in fuchs endothelial corneal dystrophy: a novel treatment. Invest Ophthalmol Vis Sci. 2013;54:6724–34.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Benlloch, M. et al. (2015). Role of Lycium Barbarum Extracts in Retinal Diseases. In: Chang, RC., So, KF. (eds) Lycium Barbarum and Human Health. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9658-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9658-3_11

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9657-6

  • Online ISBN: 978-94-017-9658-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics