Skip to main content

Aerosol Data Assimilation

  • Chapter
  • First Online:
Atmospheric Aerosols
  • 2720 Accesses

Abstract

Data assimilation aims to combine information from observations describing the real world, some prior information from a model, and in some cases the physical and chemical laws governing the evolution of the system in consideration. This chapter provides a short description of the mathematical principles of data assimilation from the best linear unbiased estimator to variational techniques and Kalman filters. It introduces the vocabulary (background, control vector, analysis) and highlights the importance of error covariance matrices in data assimilation. Finally, the chapter reviews past applications of data assimilation for atmospheric aerosols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benedetti A, Morcrette J-J, Boucher O, Dethof A, Engelen RJ, Fischer M, Flentjes H, Huneeus N, Jones L, Kaiser JW, Kinne S, Mangold A, Razinger M, Simmons AJ, Suttie M, The GEMS-AER team (2009) Aerosol analysis and forecast in the ECMWF Integrated Forecast System. Part II: Data assimilation. J Geophys Res 114:D13205. doi:10.1029/2008JD011115

    Google Scholar 

  • Bouttier F, Courtier P (March 1999) Data assimilation concepts and methods. Meteorological Training Course Lecture Series, 58 pp

    Google Scholar 

  • Chevallier F, Fisher M, Peylin P, Serrar S, Bousquet P, Bréon F-M, Chedin A, Ciais P (2005) Inferring CO2sources and sinks from satellite observations: method and application to TOVS data. J Geophys Res 110:D24309. doi:10.1029/2005JD006390

    Google Scholar 

  • Collins WD, Rasch PJ, Eaton BE, Khattatov BV, Lamarque J-F, Zender CS (2001) Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: methodology for INDOEX. J Geophys Res 106:7313–7336

    Article  Google Scholar 

  • Desroziers G, Berre L, Chapnik B, Poli P (2005) Diagnosis of observation, background and analysiserror statistics in observation space. Q J Royal Meteorol Soc 131:3385–3396

    Article  Google Scholar 

  • Dubovik O, Lapyonok T, Kaufman YJ, Chin M, Ginoux P, Kahn RA, Sinyuk A (2008) Retrieving global aerosol sources from satellites using inverse modeling. Atmos Chem Phys 8:209–250

    Article  Google Scholar 

  • Fu TM, Cao JJ, Zhang XY, Lee SC, Zhang Q, Han YM, Qu WJ, Han Z, Zhang R, Wang YX, Chen D, Henze DK (2012) Carbonaceous aerosols in China: top-down constraints on primary sources and estimation of secondary contribution. Atmos Chem Phys 12:2725–2746

    Article  Google Scholar 

  • Generoso S, Bréon FM, Chevallier F, Balkanski Y, Schulz M, Bey I (2007) Assimilation of POLDER aerosol optical thickness into the LMDz-INCA model: implications for the Arctic aerosol burden J Geophys Res 112:D02311. doi:10.1029/2005jd006954

    Google Scholar 

  • Hakami A, Henze DK, Seinfeld JH, Chai T, Tang Y, Carmichael GR, Sandu A (2005) Adjoint inverse modeling of black carbon during the Asian Pacific regional aerosol characterization experiment. J Geophys Res 110:D14301. doi:10.1029/2004JD005671

    Google Scholar 

  • Henze DK, Seinfeld JH, Liao W, Sandu A, Carmichael GR (2004) Inverse modeling of aerosol dynamics: condensational growth. J Geophys Res 109:D14201. doi:10.1029/2004jd004593

    Google Scholar 

  • Huneeus N, Boucher O (2007) One-dimensional retrieval of extinction coefficient from synthetic lidar and radiometric measurements. J Geophys Res 112:D14303. doi:10.1029/2006JD007625

    Google Scholar 

  • Huneeus N, Chevallier F, Boucher O (2012) Estimating aerosol emissions by assimilating observed aerosol optical depth in a global aerosol model. Atmos Chem Phys 12:4585–4606

    Article  Google Scholar 

  • Huneeus N, Boucher O, Chevallier F (2013) Atmospheric inversion of SO2and primary aerosol emissions for the year 2010. Atmos Chem Phys 13:6555–6573

    Article  Google Scholar 

  • Kaiser JW, Heil A, Andreae MO, Benedetti A, Chubarova N, Jones L, Morcrette JJ, Razinger M, Schultz MG, Suttie M, van der Werf GR (2012) Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 9:527–554

    Article  Google Scholar 

  • Morcrette J-J, Boucher O, Jones L, Salmond D, Bechtold P, Beljaars A, Benedetti A, Bonet A, Kaiser JW, Razinger M, Schulz M, Serrar S, Simmons AJ, Sofiev M, Suttie M, Tompkins AM, Untch A (2009) Aerosol analysis and forecast in the ECMWF Integrated Forecast System: forward modelling. J Geophys Res 114:D06206. doi:10.1029/2008JD011235

    Google Scholar 

  • Niu T, Gong SL, Zhu GF, Liu HL, Hu XQ, Zhou CH, Wang YQ (2008) Data assimilation of dust aerosol observations for the CUACE/dust forecasting system. Atmos Chem Phys 8:3473–3482

    Article  Google Scholar 

  • Rasch PJ, Collins WD, Eaton BE (2001) Understanding the Indian Ocean Experiment (INDOEX) aerosol distributions with an aerosol assimilation. J Geophys Res 106:7337–7355

    Article  Google Scholar 

  • Sandu A, Daescu DN, Carmichael GR, Chai T (2005) Adjoint sensitivity analysis of regional air quality models. J Comput Phys 204:222–252

    Article  Google Scholar 

  • Schutgens NAJ, Miyoshi T, Takemura T, Nakajima T (2010) Applying an ensemble Kalman filter to the assimilation of AERONET observations in a global aerosol transport model. Atmos Chem Phys 10:2561–2576

    Article  Google Scholar 

  • Schutgens NAJ, Nakata M, Nakajima T (2012) Estimating aerosol emissions by assimilating remote sensing observations into a global transport model. Remote Sens 4:3528–3543

    Article  Google Scholar 

  • Sekiyama TT, Tanaka TY, Shimizu A, Miyoshi T (2010) Data assimilation of CALIPSO aerosol observations. Atmos Chem Phys 10:39–49

    Article  Google Scholar 

  • Wang J, Xu X, Henze DK, Zeng J, Ji Q, Tsay S-C, Huang J (2012) Top-down estimate of dust emissions through integration of MODIS and MISR aerosol retrievals with the GEOS-Chem adjoint model. Geophys Res Lett 39:L08802. doi:10.1029/2012GL051136

    Google Scholar 

  • Weaver C, da Silva A, Chin M, Ginoux P, Dubovik O, Flittner D, Zia A, Remer L, Holben B, Gregg W (2007) Direct insertion of MODIS radiances in a global aerosol transport model. J Atmos Sci 64:808–826

    Article  Google Scholar 

  • Xu X, Wang J, Henze DK, Qu W, Kopacz M (2013) Constraints on aerosol sources using GEOSChem adjoint and MODIS radiances, and evaluation with multisensor (OMI, MISR) data. J Geophys Res 118:6396–6413

    Google Scholar 

  • Yumimoto K, Uno I, Sugimoto N, Shimizu A, Satake S (2007) Adjoint inverse modeling of dust emission and transport over East Asia. Geophys Res Lett 34:L08806. doi:10.1029/2006gl028551

    Google Scholar 

  • Yumimoto K, Uno I, Sugimoto N, Shimizu A, Liu Z, Winker DM (2008) Adjoint inversion modeling of Asian dust emission using lidar observations. Atmos Chem Phys 8:2869–2884. doi:10.5194/acp-8-2869-2008

    Article  Google Scholar 

  • Zhang S, Penner JE, Torres O (2005) Inverse modeling of biomass burning emissions using Total Ozone Mapping Spectrometer aerosol index for 1997. J Geophys Res 110:D21306. doi:10.1029/2004jd005738

    Google Scholar 

  • Zhang JL, Reid JS, Westphal DL, Baker NL, Hyer EJ (2008) A system for operational aerosol optical depth data assimilation over global oceans. J Geophys Res 113:D10208. doi:10.1029/2007JD009065

    Google Scholar 

Further Reading (Textbooks and Articles)

  • Ide K, Courtier P, Ghil M, Lorenc AC (1997) Unified notation for data assimilation: operational, sequential and variational. J Meteorol Soc Jpn 75:181–189

    Google Scholar 

  • Lahoz W, Swinbank R, Khattatov B, Menard R (2010) Data assimilation: making sense of observations. Springer-Verlag, Berlin, 475 pp

    Book  Google Scholar 

  • Rodgers CD (2000) Inverse methods for atmospheric sounding: theory and practice. World Science, Tokyo, 240 pp

    Book  Google Scholar 

  • Tarantola A (2004) Inverse problem theory and model parameter estimation. SIAM: Society for Industrial and Applied Mathematics, Philadelphia, 352 pp

    Google Scholar 

  • Tipping E (2005) Inverse problems in atmospheric constituent transport. Cambridge Atmospheric and Space Science Series, Cambridge University Press, Cambridge, 425 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Boucher .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Netherlands

About this chapter

Cite this chapter

Boucher, O. (2015). Aerosol Data Assimilation. In: Atmospheric Aerosols. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9649-1_7

Download citation

Publish with us

Policies and ethics