Skip to main content

Aerosol Modelling

  • Chapter
  • First Online:
Atmospheric Aerosols
  • 2736 Accesses

Abstract

This chapter introduces some concepts of aerosol modelling, going through the different terms of the continuity equation. The procedure for producing emissions inventories of aerosols and aerosol precursors from fossil fuel and biomass burning is briefly discussed. The basis for parametrizing the emissions of other aerosol types and aerosol precursors, such as sea spray and desert dust, dimethysulphide, and volatile organic compounds is also presented. The most relevant atmospheric processes are then reviewed starting from nucleation, new particle formation, and condensation of semi-volatile compounds, and continuing with coagulation, production in the liquid phase, dry deposition, wet deposition, and sedimentation. For each of these processes, a conceptual model is presented. The various approaches to aerosol modelling (bulk, sectional, and modal) are then presented with their advantages and disadvantages. Finally, an example is provided with the global sulphur cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Coccolithophores are unicellular algae that protect their cell under a layer of calcite plates.

  2. 2.

    \({\text{pH}} = - {\log _{10}}[{{\text{H}}^ + }]\) where \([\hbox{H}^+]\) is the concentration in H\(^+\) (or equally H3O\(^+\)) cations in water in unit mol l-1.

References

  • Alfaro SC, Gomes L (2001) Modeling mineral aerosol production by wind erosion: emission intensities and aerosol distributions in source areas. J Geophys Res 106:18075–18084

    Article  Google Scholar 

  • Arneth A, Miller PA, Scholze M, Hickler T, Schurges G, Smith B, Prentice IC (2007) CO2inhibition of global terrestrial isoprene emissions: potential implications for atmospheric chemistry. Geophys Res Lett 34:L1881–3. doi:10.1029/2007GL030615

    Google Scholar 

  • Atkinson JD, Murray BJ, Woodhouse MT, Whale TF, Baustian KJ, Carslaw KS, Dobbie S, O’Sullivan D, Malkin TS (2013) The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature 498:355–358

    Article  Google Scholar 

  • Boucher O, Pham M, Venkataraman C (2002) Simulation of the atmospheric sulfur cycle in the Laboratoire de Météorologie Dynamique General Circulation Model. Model description, model evaluation, and global and European budgets, Note Technique de l’IPSL ntextdegree 23

    Google Scholar 

  • Gillette DA (1979) Environmental factors affecting dust emission by wind erosion. In: Morales C (ed) Saharan dust. Wiley, New York, pp 71–94

    Google Scholar 

  • Journet E, Balkanski Y, Harrison SP (2014) A new data set of soil mineralogy for dust-cycle modeling. Atmos Chem Phys 14:3801–3816

    Article  Google Scholar 

  • Kerkweg A, Buchholz J, Ganzeveld L, Pozzer A, Tost H, Jöckel P (2006) Technical note: an implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy). Atmos Chem Phys 6:4617–4632

    Article  Google Scholar 

  • Kettle AJ, Andreae MO (2000) Flux of dimethylsulfide from the oceans: a comparison of updated data sets and flux models. J Geophys Res 105:26973–26808

    Google Scholar 

  • Kirkby J et al (2011) Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature 476:429–433

    Article  Google Scholar 

  • Kok JF (2011a) A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle. Proc Natl Acad Sci U S A 108:1016–1021

    Article  Google Scholar 

  • Kok JF (2011b) Does the size distribution of mineral dust aerosols depend on the wind speed at emission? Atmos Chem Phys 11:10149–10156

    Article  Google Scholar 

  • Lana A, Bell TG, Simó R, Vallina SM, Ballabrera-Poy J, Kettle AJ, Dachs J, Bopp L, Saltzman ES, Stefels J, Johnson JE, Liss PS (2011) An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Glob Biogeochem Cycles 25:GB100–4. doi:10.1029/2010GB003850

    Article  Google Scholar 

  • Lewis ER, Schwartz SE (2004) Sea salt aerosol production: mechanisms, methods, measurements and models—a critical review. AGU Geophysical Monograph 152, Washington, 413 pp

    Google Scholar 

  • Liss PS, Merlivat L (1986) In: Buat-Ménard P (ed) Air-sea gas exchange rates: introduction and synthesis. The role of air-sea exchange in geochemical cycling. D. Reidel Publishing Company, pp 113–127

    Google Scholar 

  • Mann GW, Carslaw KS, Spracklen DV, Ridley DA, Manktelow PT, Chipperfield MP, Pickering SJ, Johnson CE (2010) Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model. Geosci Model Dev 3:519–551

    Article  Google Scholar 

  • Marticorena B, Bergametti G (1995) Modeling the atmospheric dust cycle: 1 design of a soil-derived dust emission scheme. J Geophys Res 100:16415–16430

    Article  Google Scholar 

  • Monahan EC, Fairall CW, Davidson KL, Boyle PJ (1983) Observed inter-relations between 10 m winds, ocean whitecaps and marine aerosols. Q J Royal Meteorol Soc 109:379–392

    Article  Google Scholar 

  • Pacifico F, Harrison SP, Jones CD, Sitch S (2009) Isoprene emissions and climate. Atmos Environ 43:6121–6135

    Article  Google Scholar 

  • Pruppacher HR, Klett JD (1996) Microphysics of clouds and precipitation. Kluwer Dordrecht, 976 pp (Second revised and enlarged edition)

    Google Scholar 

  • Stier P, Feichter J, Kinne S, Kloster S, Vignati E, Wilson J, Ganzeveld L, Tegen I, Werner M, Balkanski Y, Schulz M, Boucher O, Minikin A, Petzold A (2005) The aerosol-climate model ECHAM5-HAM. Atmos Chem Phys 5:1125–1156

    Article  Google Scholar 

  • Vehkamäki H, Kulmala M, Napari I, Lehtinen KEJ, Timmreck C, Noppel M, Laaksonen A (2002) An improved parametrization for sulfuric acid-water nucleation rates for tropospheric and stratospheric conditions. J Geophys Res 107:462–2. doi:10.1029/2002JD002184

    Google Scholar 

  • Wang Z, Ren S, Huang N (2014) Saltation of non-spherical sand particles. PLOS One 9(8):e10520–8. doi:10.1371/journal.pone.0105208

    Google Scholar 

  • Wesely ML, Hicks BB (2000) A review of the current status of knowledge on dry deposition. Atmos Environ 34:2261–2282

    Article  Google Scholar 

  • Wooster MJ, Roberts G, Perry GLW, Kaufman YJ (2005) Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J Geophys Res 110:D2431–1. doi:10.1029/2005JD006318

    Google Scholar 

Further Reading (Textbooks and Articles)

  • de Leeuw G Andreas EL Anguelova MD Fairall CW Lewis ER O’Dowd C Schulz M Schwartz SE (2011) Production flux of sea spray aerosol. Rev Geophys 49:RG200–1. doi:10.1029/2010RG000349

    Article  Google Scholar 

  • Seinfeld J, Pandis S (2006) Atmospheric chemistry and physics: from air pollution to Dordrecht climate change. Wiley, New York, 1232 pp

    Google Scholar 

  • Sportisse B (2010) Air pollution modelling and simulation, 2nd edn. Springer Berlin, and Heidelberg, 608 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Boucher .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Netherlands

About this chapter

Cite this chapter

Boucher, O. (2015). Aerosol Modelling. In: Atmospheric Aerosols. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9649-1_4

Download citation

Publish with us

Policies and ethics