Skip to main content

Volvocine Algae: From Simple to Complex Multicellularity

  • Chapter
  • First Online:
Evolutionary Transitions to Multicellular Life

Part of the book series: Advances in Marine Genomics ((AMGE,volume 2))

Abstract

The evolution of multicellularity provided new ways for biological systems to increase in complexity . However, although high levels of complexity have indeed been attained in several multicellular lineages, natural selection does not necessarily favor complex biological systems. Why and how, then, has complexity increased in some lineages? We argue that the volvocine green algae (Volvox and its relatives) are a uniquely valuable model system for understanding the evolution of multicellular complexity. Using a general framework for the evolution of complexity, we discuss the various levels of morphological and developmental complexity achieved in this group, and consider both the why and the how underlying the changes in complexity levels that took place in this group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin M, King N (2010) Diverse evolutionary paths to cell adhesion. Trends Cell Biol 20:742–734

    Article  Google Scholar 

  • Ashby WR (1956) Introduction to cybernetics. Methuen, London

    Book  Google Scholar 

  • Ashby WR (1958) Requisite variety and its implications for the control of complex systems. Cybernetica 1:83–99

    Google Scholar 

  • Ayala FJ (1988) Can “progress” be defined as a biological concept? In: Nitecki MH (ed) Evolutionary progress. The University of Chicago Press, Chicago, pp 75-96

    Google Scholar 

  • Bisalputra T, Stein R (1966) The development of cytoplasmic bridges in Volvox aureus. Can J Bot 44:1697–1702

    Article  Google Scholar 

  • Bold HC (1949) The morphology of Chlamydomonas chlamydogama, sp. nov. Bull Torrey Bot Club 76:101–108

    Article  Google Scholar 

  • Bonner JT (2003) On the origin of differentiation. J Biosci 28:523–528

    Article  CAS  Google Scholar 

  • Boraas ME, Seale DB, Boxhorn JE (1998) Phagotrophy by a flagellate selects for colonial prey: a possible origin of multicellularity. Evol Ecol 12:153–164

    Article  Google Scholar 

  • Bory de Saint-Vincent JBGM (1824) Pandorina. In: Lamouroux JV, Bory de Saint-Vincent JBGM, Deslongschamps E (eds) Encyclopédie méthodique ou par ordre de matières. Histoire naturelle des zoophytes, ou animaux rayonnés, faisant suite à l’histoire naturelle des vers de Bruguière. Mme veuve Agasse, Paris, p 600

    Google Scholar 

  • Brooks AE (1972) The physiology of Astrephomene gubernaculifera. J Eukaryot Microbiol 19:195–199

    CAS  Google Scholar 

  • Buss LW (1987) The evolution of individuality. Princeton University Press, Princeton

    Google Scholar 

  • Butterfield NJ (2009) Modes of pre-Ediacaran multicellularity. Precambrian Res 173:201–211

    Article  CAS  Google Scholar 

  • Carroll SB (2001) Chance and necessity: morphological complexity and diversity. Nature 409:1102–1109

    Article  CAS  Google Scholar 

  • Carroll SB (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36

    Article  CAS  Google Scholar 

  • Coleman AW (1979) Sexuality in colonial green flagellates. In: Levandowsky M, Hutner SH (eds) Biochemistry and physiology of protozoa. Academic Press, New York, pp 307–340

    Google Scholar 

  • Coleman AW (2001) Biogeography and speciation in the Pandorina/Volvulina (Chlorophyta) superclade. J Phycol 37:836–851

    Article  CAS  Google Scholar 

  • Crisp MD, Cook LG (2005) Do early branching lineages signify ancestral traits? Trends Ecol Evol 20:122–128

    Article  Google Scholar 

  • Darwin CR (1837) Notebook B: [Transmutation of species (1837–1838)]. CUL–DAR121. Darwin Online, http://darwin-online.org.uk/.

    Google Scholar 

  • Dayel MJ, Alegado RA, Fairclough SR, Levin TC, Nichols SA, McDonald K, King N. 2011. Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Dev Biol 357:73-82 (Elsevier Inc)

    Google Scholar 

  • de Mendoza A Sebé-Pedrós A Šestak MS Matejčić M Torruella G Domazet-Lošo T Ruiz-Trillo I (2013) Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages. Proc Natl Acad Sci U S A 110:E4858–E4866

    Article  CAS  Google Scholar 

  • Degnan BM, Vervoort M, Larroux C, Richards GS (2009) Early evolution of metazoan transcription factors. Curr Opin Genet Dev 19:591–599

    Article  CAS  Google Scholar 

  • Desnitski AG (1995) A review on the evolution of development in Volvox—morphological and physiological aspects. Eur J Protistol 31:241–247

    Google Scholar 

  • Ehrenberg CG (1832) Über die Entwickelung und Lebensdauer der Infusionsthiere; nebst ferneren Beiträgen zu einer Vergleichung ihrer organischen Systeme. Abh K Abhandlungen der Königlichen Akad Wissenschaften zu Berlin. Phys Kl 1831:1–154

    Google Scholar 

  • Fulton AB (1978) Colonial development in Pandorina morum: II. Colony morphogenesis and formation of the extracellular matrix. Dev Biol 251:236–251

    Article  Google Scholar 

  • Gerisch G (1959) Die Zelldifferenzierung bei Pleodorina californica Shaw und die Organisation der Phytomonadinenkolonien. Arch Protistenkd 104:292–358

    Google Scholar 

  • Gilles R, Gilles C, Jaenicke L (1983) Sexual differentiation of the green alga Volvox carteri. Naturwissenschaften 70:571–572

    Article  CAS  Google Scholar 

  • Gottlieb B, Goldstein ME (1977) Colony develompent in Eudorina elegans (Chlorophyta, Volvocales). J Phycol 13:358–364

    Google Scholar 

  • Green KJ, Viamontes GI, Kirk DL (1981) Mechanism of formation, ultrastructure and function of the cytoplasmic bridge system during morphogenesis in Volvox. J Cell Biol 91:756–769

    Article  CAS  Google Scholar 

  • Greuel BT, Floyd GL (1985) Development of the flagellar apparatus and flagellar orientation in the colonial green alga Gonium pectorale (Volvocales). J Phycol 21:358–371

    Article  Google Scholar 

  • Grosberg RK, Strathmann RR (2007) The evolution of multicellularity: a minor major transition? Annu Rev Ecol Evol Syst 38:621–654

    Article  Google Scholar 

  • Hanschen ER, Ferris PJ, Michod RE (2014) Early evolution of the genetic basis for soma in the Volvocaceae. Evolution 68:2014–2025

    Google Scholar 

  • Harris EH (2001) Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol 52:363–406

    Article  CAS  Google Scholar 

  • Harris EH (2009) The Chlamydomonas sourcebook, second edition. Academic Press, Oxford

    Google Scholar 

  • Hayama M, Nakada T, Hamaji T, Nozaki H (2010) Morphology, molecular phylogeny and taxonomy of Gonium maiaprilis sp. nov. (Goniaceae, Chlorophyta) from Japan. Phycologia 49:221–234

    Article  CAS  Google Scholar 

  • Herron MD, Michod RE (2008) Evolution of complexity in the volvocine algae: transitions in individuality through Darwin’s eye. Evolution 62:436–451

    Article  Google Scholar 

  • Herron MD, Hackett JD, Aylward FO, Michod RE (2009) Triassic origin and early radiation of multicellular volvocine algae. Proc Natl Acad Sci U S A 106:3254–3258

    Article  CAS  Google Scholar 

  • Herron MD, Desnitskiy AG, Michod RE (2010) Evolution of developmental programs in Volvox (Chlorophyta). J Phycol 46:316–324

    Article  Google Scholar 

  • Heylighen F (1999) Growth of complexity. In: Heylighen F, Bollen J, Riegler A (eds) The evolution of complexity. Kluwer Academic, Dordrecht, pp 17–44

    Google Scholar 

  • Hiraide R, Kawai-Toyooka H, Hamaji T, Matsuzaki R, Kawafune K, Abe J, Sekimoto H, Umen J, Nozaki H (2013) The evolution of male-female sexual dimorphism predates the gender-based divergence of the mating locus gene MAT3/RB. Mol Biol Evol 30:1038–1040

    Article  CAS  Google Scholar 

  • Hoekstra HE, Coyne JA (2007) The locus of evolution: evo devo and the genetics of adaptation. Evolution 61:995–1016

    Article  Google Scholar 

  • Hoham RW, Bonome TA, Martin CW, Leebens-mack JH (2002) A combined 18S rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-termperature habitats. J Phycol 38:1051–1064

    Article  CAS  Google Scholar 

  • Hull DL (1988) Progress in ideas of progress. In: Nitecki MH (ed) Evolutionary progress. The University of Chicago Press, Chicago, pp 27–48

    Google Scholar 

  • Iida H, Ota S, Inouye I (2013) Cleavage, incomplete inversion, and cytoplasmic bridges in Gonium pectorale (Volvocales, Chlorophyta). J Plant Res 126:699–707

    Article  CAS  Google Scholar 

  • Isaka N, Kawai-Toyooka H, Matsuzaki R, Nakada T, Nozaki H (2012) Description of two new monoecious species of Volvox sect. Volvox (Volvocaceae, Chlorophyceae), based on comparative morphology and molecular phylogeny of cultured material. J Phycol 48:759–767

    Article  Google Scholar 

  • King N (2004) The unicellular ancestry of animal development. Dev Cell 7:313–325

    Article  CAS  Google Scholar 

  • King N, Hittinger CT, Carroll SB (2003) Evolution of key cell signaling and adhesion protein families predates animal origins. Science 301:361–363

    Article  CAS  Google Scholar 

  • King N., Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, Fairclough S, Hellsten U, Isogai Y, Letunic I, Marr M, Pincus D, Putnam N, Rokas A, Wright KJ, Zuzow R, Dirks W, Good M, Goodstein D, Lemons D, Li W, Lyons JB, Morris A, Nichols S, Richter DJ, Salamov A, JGI Sequencing, Bork P, Lim WA, Manning G, Miller WT, McGinnis W, Shapiro H, Tjian R, Grigoriev IV, Rokhsar D (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:783–788

    Article  CAS  Google Scholar 

  • Kirk DL (1998) Volvox: molecular-genetic origins of multicellularity. Cambridge University Press, Cambridge

    Google Scholar 

  • Kirk DL (2005) A twelve-step program for evolving multicellularity and a division of labor. Bioessays 27:299–310

    Article  Google Scholar 

  • Kirk DL, Kirk MM (1986) Heat shock elicits production of sexual inducer in Volvox. Science 231:51–54

    Article  CAS  Google Scholar 

  • Kirk DL, Birchem R, King N (1986) The extracellular matrix of Volvox: a comparative study and proposed system of nomenclature. J Cell Sci 80:207–231

    CAS  Google Scholar 

  • Kirk DL, Kaufman MR, Keeling RM, Stamer KA (1991) Genetic and cytological control of the asymmetric divisions that pattern the Volvox embryo. Dev Suppl 1:67–8

    CAS  Google Scholar 

  • Knoll AH (2011) The multiple origins of complex multicellularity. Annu Rev Earth Planet Sci 39:217–239

    Article  CAS  Google Scholar 

  • Kofoid CA (1899) Plankton studies. III. On Platydorina, a new genus of the family Volvocidae, from the plankton of the Illinois River. Bull Illinois State Lab Nat Hist 5:419–440

    Google Scholar 

  • Kofoid CA (1900) Plankton Studies. II. On Pleodorina illinoisensis, a new species from the plankton of the Illinois River. Ann Mag Nat Hist 6:139–156

    Article  Google Scholar 

  • Koufopanou V, Bell G 1993. Soma and germ: an experimental approach using Volvox. Proc R Soc Lond B 254:107–113

    Article  Google Scholar 

  • Krell F-T, Cranston PS (2004) Which side of the tree is more basal? Syst Entomol 29:279–281

    Article  Google Scholar 

  • Lang NJ (1963) Electron microscopy of the Volvocaceae and Astrephomenaceae. Am J Bot 50:280–300

    Article  Google Scholar 

  • Linnaeus C 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Editio decima revisa, vol 1. Holmiae, Stockholm

    Google Scholar 

  • Lovejoy AO (1936) The great chain of being. Harvard University Press, Cambridge

    Google Scholar 

  • Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404

    Article  CAS  Google Scholar 

  • Marchant HJ (1977) Colony formation and inversion in the green alga Eudorina elegans. Protoplasma 93:325–339

    Article  Google Scholar 

  • Maynard Smith J, Szathmáry E (1997) The major transitions in evolution. Oxford University Press, New York

    Google Scholar 

  • McShea DW (1994) Mechanisms of large-scale evolutionary trends. Evolution 48:1747–1763

    Article  Google Scholar 

  • McShea DW (1996) Perspective: metazoan complexity and evolution: is there a trend? Evolution 50:477–492

    Article  Google Scholar 

  • McShea DW (2002) A complexity drain on cells in the evolution of multicellularity. Evolution 56:441–452

    Article  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L, Marshall WF, Qu L-H, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris PJ, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen C-L, Cognat V, Croft MT, Dent R, Dutcher S, Fernández E, Fukuzawa H, González-Ballester D, González-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral J-P, Riao-Pachón DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen JG, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen C-J, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martínez D, Ngau WCA, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  CAS  Google Scholar 

  • Michod RE (2006) The group covariance effect and fitness trade-offs during evolutionary transitions in individuality. Proc Natl Acad Sci U S A 103:9113–9117

    Article  CAS  Google Scholar 

  • Michod RE, Viossat Y, Solari CA, Hurand M, Nedelcu AM (2006) Life-history evolution and the origin of multicellularity. J Theor Biol 239:257–272

    Article  Google Scholar 

  • Müller OF (1773) Vermium Terrestrium et Fluviatilium, seuAnimalium Infusoriorum, Helminthicorum et Testaceorum, non Marinorum, Succincta Historia. Vol. 1

    Google Scholar 

  • Nedelcu AM (2009a) Comparative genomics of phylogenetically diverse unicellular eukaryotes provide new insights into the genetic basis for the evolution of the programmed cell death machinery. J Mol Evol 68:256–268

    Google Scholar 

  • Nedelcu AM (2009b) Environmentally induced responses co-opted for reproductive altruism. Biol Lett 5:805–808

    Google Scholar 

  • Nedelcu AM, Michod RE (2004) Evolvability, modularity, and individuality during the transition to multicellularity in Volvocalean green algae. In: Schlosser G, Wagner GP (eds) Modularity in development and evolution. Oxford University Press, Oxford, pp 466–489

    Google Scholar 

  • Nedelcu AM, Michod RE (2006) The evolutionary origin of an altruistic gene. Mol Biol Evol 23:1460–1464

    Article  CAS  Google Scholar 

  • Nedelcu AM, Borza T, Lee RW (2006) A land plant-specific multigene family in the unicellular Mesostigma argues for its close relationship to Streptophyta. Mol Bol Evol 23:1011–1105

    Article  CAS  Google Scholar 

  • Nedelcu AM, Driscoll WW, Durand PM, Herron MD, Rashidi A (2011) On the paradigm of altruistic suicide in the unicellular world. Evolution 65:3–20

    Article  Google Scholar 

  • Nishii I, Ogihara S, Kirk DL (2003) A kinesin, invA, plays an essential role in Volvox morphogenesis. Cell 113:743–753

    Article  CAS  Google Scholar 

  • Nozaki H (1983) Morphology and taxonomy of two species of Astrephomene in Japan. Jpn J Phycol 58:345–352

    Google Scholar 

  • Nozaki H (1996) Morphology and evolution of sexual reproduction in the Volvocaceae (Chlorophyta). J Plant Res 109:353–361

    Article  Google Scholar 

  • Nozaki H (2003) Origin and evolution of the genera Pleodorina and Volvox. Biologia 58:425–431

    CAS  Google Scholar 

  • Nozaki H (2014). Sexual Reproduction in animals and plants. In: Sawada H, Inoue N, Iwano M (eds) Sexual reproduction in animals and plants. Springer Japan, Tokyo, pp 215–227

    Google Scholar 

  • Nozaki H, Coleman AW (2011) A new species of Volvox sect. Merrillosphaera (Volvocaceae, Chlorophyceae) from Texas. J Phycol 47:673–679

    Article  Google Scholar 

  • Nozaki H, Itoh M (1994) Phylogenetic relationships within the colonial Volvocales (Chlorophyta) inferred from cladistic analysis based on morphological data. J Phycol 30:353–365

    Article  Google Scholar 

  • Nozaki H, Krienitz L (2001) Morphology and phylogeny of Eudorina minodii (Chodat) Nozaki et Krienitz, comb. nov. (Volvocales, Chlorophyta) from Germany. Eur J Phycol 36:23–28

    Article  Google Scholar 

  • Nozaki H, Kuroiwa T (1992) Ultrastructure of the extracellular matrix and taxonomy of Eudorina, Pleodorina and Yamagishiella gen. nov. (Volvocaceae, Chlorophyta). Phycologia 31:529–541

    Article  Google Scholar 

  • Nozaki H, Ohtani S (1992) Gonium sociale (Volvocales, Chlorophyta) from Antarctica. Jpn J Phycol 40:267–271

    Google Scholar 

  • Nozaki H, Itoh M, Watanabe MM, Kuroiwa T (1996) Ultrastructure of the vegetative colonies and systematic position of Basichlamys (Volvocales, Chlorophyta). Eur J Phycol 31:67–72

    Article  Google Scholar 

  • Nozaki H, Ott FD, Coleman AW (2006) Morphology, molecular phylogeny and taxonomy of two new species of Pleodorina (Volvocaceae, Chlorophyceae). J Phycol 42:1072–1080

    Article  Google Scholar 

  • Nozaki H, Yamada TK, Takahashi F, Matsuzaki R, Nakada T (2014) New “missing link” genus of the colonial volvocine green algae gives insights into the evolution of oogamy. BMC Evol Biol 14:37

    Google Scholar 

  • Otsuka J (2008) A theoretical approach to the large-scale evolution of multicellularity and cell differentiation. J Theor Biol 255:129–136

    Article  CAS  Google Scholar 

  • Pickett-Heaps JD (1975) Green algae: structure, reproduction and evolution in selected genera. Sinauer Associates, Inc, Sunderland

    Google Scholar 

  • Playfair GI (1915) Freshwater algae of the Lismore District: with an appendix on the algal fungi and Schizomycetes. Proc Linn Soc N SW 40:310–362

    Google Scholar 

  • Pocock MA (1954) Two multicellular motile green algae, Volvulina Playfair and Astrephomene, a new genus. Trans R Soc S Afr 34:103–127

    Article  Google Scholar 

  • Pringsheim EG, Wiessner W (1960) Photoassimilation of acetate by green organisms. Nature 919–921

    Google Scholar 

  • Prochnik SE, Umen J, Nedelcu AM, Hallmann A., Miller SM, Nishii I, Ferris PJ, Kuo A, Mitros T, Fritz-Laylin LK, Hellsten U, Chapman J, Simakov O, Rensing SA, Terry A, Pangilinan J, Kapitonov V, Jurka J, Salamov A, Shapiro H, Schmutz J, Grimwood J, Lindquist E, Lucas S, Grigoriev IV, Schmitt R, Kirk DL, Rokhsar DS (2010) Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329:223–226

    Article  CAS  Google Scholar 

  • Ratcliff WC, Denison RF, Borrello M, Travisano M (2012) Experimental evolution of multicellularity. Proc Natl Acad Sci U S A 109:1595–1600

    Article  CAS  Google Scholar 

  • Ratcliff WC, Herron MD, Howell K, Pentz JT, Rosenzweig F, Travisano M (2013) Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii. Nat Commun 4:2742

    Article  Google Scholar 

  • Richards RJ (1988) The moral foundations of the idea of evolutionary progress: Darwin, Spencer, and the neo-darwinians. In: Nitecki MH (ed) Evolutionary progress. University of Chicago Press, Chicago, pp 129–148

    Google Scholar 

  • Rokas A (2008) The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu Rev Genet 42:235–251

    Article  CAS  Google Scholar 

  • Schaap P (2011) Evolutionary crossroads in developmental biology: Dictyostelium discoideum. Development 138:387–396

    Article  CAS  Google Scholar 

  • Schaap P, Winckler T, Nelson M, Alvarez-Curto E, Elgie B, Hagiwara H, Cavender J, Milano-Curto A, Rozen DE, Dingermann T, Mutzel R, Baldauf SL (2006) Molecular phylogeny and evolution of morphology in the social amoebas. Science 314:661–663

    Article  CAS  Google Scholar 

  • Schlichting CD (2003) Origins of differentiation via phenotypic plasticity. Evol Dev 5:98–105

    Article  Google Scholar 

  • Sebé-pedrós A, Roger AJ, Lang FB, King N, Ruiz-Trillo I (2010) Ancient origin of the integrin-mediated adhesion and signaling machinery. Proc Natl Acad Sci U S A 107:10142–10147

    Article  Google Scholar 

  • Sebé-Pedrós A, Mendoza A de, Lang BF, Degnan BM, Ruiz-Trillo I (2011) Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol Biol Evol 28:1241–1254

    Article  Google Scholar 

  • Shaw WR (1894) Pleodorina, a new genus of the Volvocineæ. Bot Gaz 19:279–283

    Article  Google Scholar 

  • Sleigh MA (1989) Protozoa and other protists. Edward Arnold Limited, NewYork

    Google Scholar 

  • Starr RC (1970) Control of differentiation in Volvox. Dev Biol 4:S59–S100

    Google Scholar 

  • Stein JR (1959) The four-celled species of Gonium. Am J Bot 46:366–371

    Article  Google Scholar 

  • Stein JR (1965) On cytoplasmic strands in Gonium pectorale (Volvocales). J Phycol 1:1–5

    Article  Google Scholar 

  • Suga H, Chen Z, Mendoza A de, Sebé-Pedrós A, Brown MW, Kramer E, Carr M, Kerner P, Vervoort M, Sánchez-Pons N, Torruella G, Derelle R, Manning G, Lang BF, Russ C, Haas BJ, Roger AJ, Nusbaum C, Ruiz-Trillo I (2013) The Capsaspora genome reveals a complex unicellular prehistory of animals. Nat Commun 4:2325

    Article  Google Scholar 

  • Szathmáry E, Jordan F, Pál C (2001) Can genes explain biological complexity? Science 292:1315–1316

    Article  Google Scholar 

  • Ueki N, Nishii I (2009) Controlled enlargement of the glycoprotein vesicle surrounding a Volvox embryo requires the InvB nucleotide-sugar transporter and is required for normal morphogenesis. Plant Cell 21:1166–1181

    Article  CAS  Google Scholar 

  • Umen JG, Olson BJSC (2012) Genomics of volvocine algae. Adv Bot Res 64:185–243

    Article  Google Scholar 

  • van Leeuwenhoek A (1700) Part of a letter from Mr Antony van Leeuwenhoek, concerning the worms in sheeps livers, gnats, and animalcula in the excrements of frogs. Philos Trans R Soc London 22:509–518

    Google Scholar 

  • Van Valen L (1973) A new evolutionary law. Evol Theory 1:1–30

    Google Scholar 

  • Van de Berg WJ, Starr RC (1971) Structure, reproduction, and differentiation in Volvox gigas and Volvox powersii. Arch Protistenkd 113:195–219.

    Google Scholar 

  • Velicer GJ, Vos M (2009) Sociobiology of the myxobacteria. Annu Rev Microbiol 63:599–623

    Article  CAS  Google Scholar 

  • Waddington CH (1969) Paradigm for an evolutionary process. In: Waddington CH (ed) Sketching theoretical biology: toward a theoretical biology, vol 2. Aldine Transaction, Chicago, pp 106–128

    Google Scholar 

  • Wolpert L, Szathmáry E (2002) Multicellularity: evolution and the egg. Nature 420:745

    Article  CAS  Google Scholar 

  • Znachor P, Jezberová J (2005) The occurrence of a bloom-forming green alga Pleodorina indica (Volvocales) in the downstream reach of the River Malše (Czech Republic). Hydrobiologia 541:221–228

    Article  Google Scholar 

Download references

Acknowledgements

We thank Erik Hanschen and Deborah Shelton for comments on the manuscript; we also thank Deborah Shelton for providing pictures of volvocine algae. We gratefully acknowledge support from a NASA Astrobiology Institute postdoctoral fellowship and from the John Templeton Foundation (MDH) and NSERC (AMN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Herron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Herron, M., Nedelcu, A. (2015). Volvocine Algae: From Simple to Complex Multicellularity. In: Ruiz-Trillo, I., Nedelcu, A. (eds) Evolutionary Transitions to Multicellular Life. Advances in Marine Genomics, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9642-2_7

Download citation

Publish with us

Policies and ethics