Skip to main content

The Evolution of Transcriptional Regulation in the Viridiplantae and its Correlation with Morphological Complexity

  • Chapter
  • First Online:
Evolutionary Transitions to Multicellular Life

Part of the book series: Advances in Marine Genomics ((AMGE,volume 2))

Abstract

Since its origin from inorganic matter, biological life undoubtedly has gained complexity. Evidence of this can be found in the lineage of the Viridiplantae or Chlorobionta (“green plants”), represented by the extant diversity of green algae and land plants. The land plants, together with the multicellular animals, arguably represent the two most complex groups of organisms on earth. For both groups, a correlation between the observable morphological complexity and the regulatory networks principally controlling it has been hypothesized. Both groups of organisms not only independently evolved multicellularity, but also underwent ancestral whole genome duplication events that presumably acted as evolutionary playgrounds for the expansion of regulatory and morphological complexity. Within animals, multicellularity evolved once and most genome duplications occurred hundreds of millions of years ago. However, an entirely different scenario unfolds among the Viridiplantae: multicellularity evolved several times independently within the green lineage, and genome duplication is the rule rather than the exception and continues to be utilized. The most successful flavor of green multicellularity evolved within the last common ancestor of extant land plants and their sister group, the charophyte algae. In this chapter, we will review common complexity concepts, introduce and compare means to quantify them, and discuss how the evolution of morphological complexity, as measured by gene regulatory complexity, distinctively affected terrestrial plants and the predominantly aquatic green, red and brown algae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adami C (2002) What is complexity? Bioessays 24(12):1085–1094. doi:10.1002/bies.10192

    Article  Google Scholar 

  • Baldauf SL (2008) An overview of the phylogeny and diversity of eukaryotes. J Syst Evol 46:263

    Google Scholar 

  • Bell G, Mooers AO (1997) Size and complexity among multicellular organisms. Biol J Linn Soc 60(3):345–363. doi:10.1111/j.1095-8312.1997.tb01500.x

    Article  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Google Scholar 

  • Busch H, Boerries M, Bao J, Hanke ST, Hiss M, Tiko T, Rensing SA (2013) Network theory inspired analysis of time-resolved expression data reveals key players guiding P. patens stem cell development. PLoS ONE 8:e60494

    Google Scholar 

  • Carroll SB (2001) Chance and necessity: the evolution of morphological complexity and diversity. Nature 409(6823):1102–1109. doi:10.1038/35059227

    Article  CAS  Google Scholar 

  • Casas-Mollano JA, Rohr J, Kim EJ, Balassa E, van Dijk K, Cerutti H (2008) Diversification of the core RNA interference machinery in Chlamydomonas reinhardtii and the role of DCL1 in transposon silencing. Genetics 179:69–81

    Google Scholar 

  • Cock JM, Sterck L, Rouze P, Scornet D, Allen AE, Amoutzias G, Anthouard V, Artiguenave F, Aury JM, Badger JH, Beszteri B, Billiau K, Bonnet E, Bothwell JH, Bowler C, Boyen C, Brownlee C, Carrano CJ, Charrier B, Cho GY, Coelho SM, Collen J, Corre E, Da Silva C, Delage L, Delaroque N, Dittami SM, Doulbeau S, Elias M, Farnham G, Gachon CM, Gschloessl B, Heesch S, Jabbari K, Jubin C, Kawai H, Kimura K, Kloareg B, Kupper FC, Lang D, Le Bail A, Leblanc C, Lerouge P, Lohr M, Lopez PJ, Martens C, Maumus F, Michel G, Miranda-Saavedra D, Morales J, Moreau H, Motomura T, Nagasato C, Napoli CA, Nelson DR, Nyvall-Collen P, Peters AF, Pommier C, Potin P, Poulain J, Quesneville H, Read B, Rensing SA, Ritter A, Rousvoal S, Samanta M, Samson G, Schroeder DC, Segurens B, Strittmatter M, Tonon T, Tregear JW, Valentin K, von Dassow P, Yamagishi T, Van de Peer Y, Wincker P (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621

    Google Scholar 

  • Collen J, Porcel B, Carre W, Ball SG, Chaparro C, Tonon T, Barbeyron T, Michel G, Noel B, Valentin K, Elias M, Artiguenave F, Arun A, Aury JM, Barbosa-Neto JF, Bothwell JH, Bouget FY, Brillet L, Cabello-Hurtado F, Capella-Gutierrez S, Charrier B, Cladiere L, Cock JM, Coelho SM, Colleoni C, Czjzek M, Da Silva C, Delage L, Denoeud F, Deschamps P, Dittami SM, Gabaldon T, Gachon CM, Groisillier A, Herve C, Jabbari K, Katinka M, Kloareg B, Kowalczyk N, Labadie K, Leblanc C, Lopez PJ, McLachlan DH, Meslet-Cladiere L, Moustafa A, Nehr Z, Nyvall Collen P, Panaud O, Partensky F, Poulain J, Rensing SA, Rousvoal S, Samson G, Symeonidi A, Weissenbach J, Zambounis A, Wincker P, Boyen C (2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci U S A 110:5247–5252

    Google Scholar 

  • Cooper L, Walls RL, Elser J, Gandolfo MA, Stevenson DW, Smith B, Preece J, Athreya B, Mungall CJ, Rensing S, Hiss M, Lang D, Reski R, Berardini TZ, Li D, Huala E, Schaeffer M, Menda N, Arnaud E, Shrestha R, Yamazaki Y, Jaiswal P (2013) The plant ontology as a tool for comparative plant anatomy and genomic analyses. Plant Cell Physiol 54(2):e1. doi:10.1093/pcp/pcs163

    Google Scholar 

  • Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, Arias MC, Ball SG, Gile GH, Hirakawa Y, Hopkins JF, Kuo A, Rensing SA, Schmutz J, Symeonidi A, Elias M, Eveleigh RJ, Herman EK, Klute MJ, Nakayama T, Obornik M, Reyes-Prieto A, Armbrust EV, Aves SJ, Beiko RG, Coutinho P, Dacks JB, Durnford DG, Fast NM, Green BR, Grisdale CJ, Hempel F, Henrissat B, Hoppner MP, Ishida K, Kim E, Koreny L, Kroth PG, Liu Y, Malik SB, Maier UG, McRose D, Mock T, Neilson JA, Onodera NT, Poole AM, Pritham EJ, Richards TA, Rocap G, Roy SW, Sarai C, Schaack S, Shirato S, Slamovits CH, Spencer DF, Suzuki S, Worden AZ, Zauner S, Barry K, Bell C, Bharti AK, Crow JA, Grimwood J, Kramer R, Lindquist E, Lucas S, Salamov A, McFadden GI, Lane CE, Keeling PJ, Gray MW, Grigoriev IV, Archibald JM (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492:59–65

    Google Scholar 

  • Dahdul WM, Balhoff JP, Engeman J, Grande T, Hilton EJ, Kothari C, Lapp H, Lundberg JG, Midford PE, Vision TJ, Westerfield M, Mabee PM (2010) Evolutionary characters, phenotypes and ontologies: curating data from the systematic biology literature. PLoS ONE 5(5):e10708. doi:10.1371/journal.pone.0010708

    Google Scholar 

  • Dawkins R, Gould SJ (1997) Human chauvinism. Evolution Int J org Evolution 51(3):1015–1015. doi:10.2307/2411179

    Article  Google Scholar 

  • de Mendoza A, Sebe-Pedros A, Sestak MS, Matejcic M, Torruella G, Domazet-Loso T, Ruiz-Trillo I (2013) Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages. Proc Natl Acad Sci U S A 110(50):E4858–E4866. doi:10.1073/pnas.1311818110

    Article  CAS  Google Scholar 

  • Delaux PM, Xie X, Timme RE, Puech-Pages V, Dunand C, Lecompte E, Delwiche CF, Yoneyama K, Becard G, Sejalon-Delmas N (2012) Origin of strigolactones in the green lineage. New Phytol 195:857–871

    Google Scholar 

  • Farre EM, Liu T (2013) The PRR family of transcriptional regulators reflects the complexity and evolution of plant circadian clocks. Curr Opin Plant Biol 16(5):621–629. doi:10.1016/j.pbi.2013.06.015

    Article  CAS  Google Scholar 

  • Fawcett JA, Maere S, Van de Peer Y (2009) Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc Natl Acad Sci U S A 106:5737–5742

    Google Scholar 

  • Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66:94–116

    Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 126:1

    Article  Google Scholar 

  • Garland Jr., Ives AR (2000) Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155(3):346–364. doi:10.1086/303327

    Article  Google Scholar 

  • Gould SJ (1996) Full house: the spread of excellence from Plato to Darwin. Harmony Books, New York, pp 135–230

    Google Scholar 

  • Gregory TR (2005) The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann Bot (Lond) 95(1):133–146. doi:10.1093/aob/mci009

    Article  CAS  Google Scholar 

  • Hedges SB, Blair JE, Venturi ML, Shoe JL (2004) A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol Biol 4:2

    Google Scholar 

  • Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, de Castro E, Coggill P, Corbett M, Das U, Daugherty L, Duquenne L, Finn RD, Fraser M, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, McMenamin C, Mi H, Mutowo-Muellenet P, Mulder N, Natale D, Orengo C, Pesseat S, Punta M, Quinn AF, Rivoire C, Sangrador-Vegas A, Selengut JD, Sigrist CJA, Scheremetjew M, Tate J, Thimmajanarthanan M, Thomas PD, Wu CH, Yeats C, Yong S-Y (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40(Database issue):D306–D312. doi:10.1093/nar/gkr948

    Google Scholar 

  • Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194:237–255

    Google Scholar 

  • Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Ma H, Leebens-Mack J, dePamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473(7345):97–100. doi:10.1038/nature09916

    Google Scholar 

  • Jiao Y, Leebens-Mack J, Ayyampalayam S, Bowers JE, McKain MR, McNeal J, Rolf M, Ruzicka DR, Wafula E, Wickett NJ, Wu X, Zhang Y, Wang J, Carpenter EJ, Deyholos MK, Kutchan TM, Chanderbali AS, Soltis PS, Stevenson DW, McCombie R, Pires CJ, Wong GK, Soltis DE, Depamphilis CW (2012) A genome triplication associated with early diversification of the core eudicots. Genome Biol 13(1):R3. doi:10.1186/gb-2012-13-1-r3

    Article  Google Scholar 

  • Lang D, Zimmer AD, Rensing SA, Reski R (2008) Exploring plant biodiversity: the Physcomitrella genome and beyond. Trends Plant Sci 13(10):542–549

    Article  CAS  Google Scholar 

  • Lang D, Weiche B, Timmerhaus G, Richardt S, Riano-Pachon DM, Correa LG, Reski R, Mueller-Roeber B, Rensing SA (2010) Genome-wide phylogenetic comparative analysis of plant transcriptional regulation: a timeline of loss, gain, expansion, and correlation with complexity. Genome Biol Evol 2:488–503

    Article  Google Scholar 

  • Levine M, Tjian R (2003) Transcription regulation and animal diversity. Nature 424(6945):147–151

    Article  CAS  Google Scholar 

  • Lynch M (2007) The frailty of adaptive hypotheses for the origins of organismal complexity. Proc Natl Acad Sci U S A 104(Suppl 1):8597–8604. doi:10.1073/pnas.0702207104

    Article  CAS  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  CAS  Google Scholar 

  • Macalister CA, Bergmann DC (2011) Sequence and function of basic helix-loop-helix proteins required for stomatal development in Arabidopsis are deeply conserved in land plants. Evol Dev 13:182–192

    Google Scholar 

  • Martins E (2000) Adaptation and the comparative method. Trends Ecol Evol 15(7):296–299

    Article  Google Scholar 

  • McShea DW (1996) Metazoan complexity and evolution: is there a trend? Evolution 50(2):477–492

    Article  Google Scholar 

  • McShea DW (2005) The evolution of complexity without natural selection, a possible large-scale trend of the fourth kind. Paleobiology 31(sp5):146–156. doi:10.1666/0094-8373 (031[0146:teocwn]2.0.co;2)

    Article  Google Scholar 

  • Meehan TF, Masci AM, Abdulla A, Cowell LG, Blake JA, Mungall CJ, Diehl AD (2011) Logical development of the cell ontology. BMC Bioinformatics 12(1):6. doi:10.1186/1471–2105–12–6

    Article  Google Scholar 

  • Molnar A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC (2007) miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447:1126–1129

    Google Scholar 

  • Mukherjee K, Campos H, Kolaczkowski B (2013) Evolution of animal and plant dicers: early parallel duplications and recurrent adaptation of antiviral RNA binding in plants. Mol Biol Evol 30:627–641

    Google Scholar 

  • Niklas KJ, Kutschera U (2009) The evolution of the land plant life cycle. New Phytol 23:23

    Google Scholar 

  • Niklas KJ, Newman SA (2013) The origins of multicellular organisms. Evol Dev 15(1):41–52. doi:10.1111/ede.12013

    Article  Google Scholar 

  • Pagel M (1994) Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Pro R Soc B: Biol Sci 255(1342):37–45. doi:10.1098/rspb.1994.0006

    Article  Google Scholar 

  • Payne JL, Boyer AG, Brown JH, Finnegan S, Kowalewski M, Krause RA, Lyons SK, McClain CR, McShea DW, Novack-Gottshall PM, Smith FA, Stempien JA, Wang SC (2009) Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proc Natl Acad Sci U S A 106(1):24–27. doi:10.1073/pnas.0806314106

    Article  CAS  Google Scholar 

  • Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC, Maumus F, Mayer C, Miller J, Monier A, Salamov A, Young J, Aguilar M, Claverie JM, Frickenhaus S, Gonzalez K, Herman EK, Lin YC, Napier J, Ogata H, Sarno AF, Shmutz J, Schroeder D, de Vargas C, Verret F, von Dassow P, Valentin K, Van de Peer Y, Wheeler G, Dacks JB, Delwiche CF, Dyhrman ST, Glockner G, John U, Richards T, Worden AZ, Zhang X, Grigoriev IV (2013) Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499:209–213

    Google Scholar 

  • Pennell MW, Harmon LJ, Uyeda JC (2014) Is there room for punctuated equilibrium in macroevolution? Trends Ecol Evol 29(1):23–32. doi:10.1016/j.tree.2013.07.004

    Article  Google Scholar 

  • Price DC, Chan CX, Yoon HS, Yang EC, Qiu H, Weber AP, Schwacke R, Gross J, Blouin NA, Lane C, Reyes-Prieto A, Durnford DG, Neilson JA, Lang BF, Burger G, Steiner JM, Loffelhardt W, Meuser JE, Posewitz MC, Ball S, Arias MC, Henrissat B, Coutinho PM, Rensing SA, Symeonidi A, Doddapaneni H, Green BR, Rajah VD, Boore J, Bhattacharya D (2012) Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science 335:843–847

    Google Scholar 

  • Pires ND, Yi K, Breuninger H, Catarino B, Menand B, Dolan L (2013) Recruitment and remodeling of an ancient gene regulatory network during land plant evolution. Proc Natl Acad Sci U S A 110:9571–9576

    Google Scholar 

  • Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I, Ferris P, Kuo A, Mitros T, Fritz-Laylin LK, Hellsten U, Chapman J, Simakov O, Rensing SA, Terry A, Pangilinan J, Kapitonov V, Jurka J, Salamov A, Shapiro H, Schmutz J, Grimwood J, Lindquist E, Lucas S, Grigoriev IV, Schmitt R, Kirk D, Rokhsar DS (2010) Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329:223–226

    Google Scholar 

  • Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD (2011) The Pfam protein families database. Nucleic Acids Res 40(D1):D290-D301. doi:10.1093/nar/gkr1065

    Google Scholar 

  • Rensing SA (2014) Gene duplication as a driver of plant morphogenetic evolution. Curr Opin Plant Biol 17C:43–48. doi:10.1016/j.pbi.2013.11.002

    Article  Google Scholar 

  • Reyes-Prieto A, Weber AP, Bhattacharya D (2007) The origin and establishment of the plastid in algae and plants. Annu Rev Genet 41:147–168

    Article  CAS  Google Scholar 

  • Schonknecht G, Chen WH, Ternes CM, Barbier GG, Shrestha RP, Stanke M, Brautigam A, Baker BJ, Banfield JF, Garavito RM, Carr K, Wilkerson C, Rensing SA, Gagneul D, Dickenson NE, Oesterhelt C, Lercher MJ, Weber AP (2013) Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339:1207–1210

    Google Scholar 

  • Seoighe C, Gehring C (2004) Genome duplication led to highly selective expansion of the Arabidopsis thaliana genome. Trends Genet 20:461–464

    Google Scholar 

  • Shapiro E, Biezuner T, Linnarsson S (2013) Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14(9):618–630. doi:10.1038/nrg3542

    Article  CAS  Google Scholar 

  • Soltis DE, Burleigh JG (2009) Surviving the K-T mass extinction: new perspectives of polyploidization in angiosperms. Proc Natl Acad Sci U S A 106:5455–5456

    Google Scholar 

  • Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588

    Google Scholar 

  • Soltis DE, Bell CD, Kim S, Soltis PS (2008) Origin and early evolution of angiosuperms. Ann N Y Acad Sci 1133:3–25

    Google Scholar 

  • Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U, Larroux C, Putnam NH, Stanke M, Adamska M, Darling A, Degnan SM, Oakley TH, Plachetzki DC, Zhai Y, Adamski M, Calcino A, Cummins SF, Goodstein DM, Harris C, Jackson DJ, Leys SP, Shu S, Woodcroft BJ, Vervoort M, Kosik KS, Manning G, Degnan BM, Rokhsar DS (2010) The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466(7307):720–726. doi:10.1038/nature09201

    Google Scholar 

  • Szathmary E, Jordan F, Pal C (2001) Molecular biology and evolution. Can genes explain biological complexity? Science 292(5520):1315–1316

    Article  CAS  Google Scholar 

  • Tenaillon O, Silander OK, Uzan JP, Chao L (2007) Quantifying organismal complexity using a population genetic approach. PLoS One 2(2):e217. doi:10.1371/journal.pone.0000217

    Article  Google Scholar 

  • Timme RE, Bachvaroff TR, Delwiche CF (2012) Broad phylogenomic sampling and the sister lineage of land plants. PLoS ONE 7:e29696

    Google Scholar 

  • Van de Peer Y, Maere S, Meyer A (2009) The evolutionary significance of ancient genome duplications. Nat Rev Genet 10(10):725–732

    Article  Google Scholar 

  • Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM (2009) A census of human transcription factors: function, expression and evolution. Nat Rev Genet 10(4):252–263. doi:10.1038/nrg2538

    Article  CAS  Google Scholar 

  • Veron AS, Kaufmann K, Bornberg-Bauer E (2007) Evidence of interaction network evolution by whole-genome duplications: a case study in MADS-box proteins. Mol Biol Evol 24(3):670–678

    Google Scholar 

  • Viaene T, Delwiche CF, Rensing SA, Friml J (2013) Origin and evolution of PIN auxin transporters in the green lineage. Trends Plant Sci 18:5–10

    Google Scholar 

  • Vickaryous MK, Hall BK (2006) Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest. Biological reviews of the Cambridge Philos Soc 81:425–455

    Google Scholar 

  • Vogel C, Chothia C (2006) Protein family expansions and biological complexity. PLoS Comput Biol 2(5):e48. doi:10.1371/journal.pcbi.0020048

    Article  Google Scholar 

  • Walls RL, Athreya B, Cooper L, Elser J, Gandolfo MA, Jaiswal P, Mungall CJ, Preece J, Rensing S, Smith B, Stevenson DW (2012) Ontologies as integrative tools for plant science. Am J Bot 99(8):1263–1275. doi:10.3732/ajb.1200222

    Article  Google Scholar 

  • Wilson D, Pethica R, Zhou Y, Talbot C, Vogel C, Madera M, Chothia C, Gough J (2009) SUPERFAMILY–sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Res 37 (Database issue):D380–D386. doi:10.1093/nar/gkn762

    Article  CAS  Google Scholar 

  • Yi K, Menand B, Bell E, Dolan L (2010) A basic helix-loop-helix transcription factor controls cell growth and size in root hairs. Nat Genet 42(3):264–U108. doi:10.1038/ng.529

    Article  CAS  Google Scholar 

  • Zalewski CS, Floyd SK, Furumizu C, Sakakibara K, Stevenson DW, Bowman JL (2013) Evolution of the class IV HD-zip gene family in streptophytes. Mol Biol Evol 30(10):2347–2365. doi:10.1093/molbev/mst132

    Article  CAS  Google Scholar 

  • Zimmer AD, Lang D, Buchta K, Rombauts S, Nishiyama T, Hasebe M, Van de Peer Y, Rensing SA, Reski R (2013) Reannotation and extended community resources for the genome of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions. BMC Genomics 14:498. doi:10.1186/1471-2164-14-498

    Article  CAS  Google Scholar 

  • Zmasek CM, Godzik A (2011) Strong functional patterns in the evolution of eukaryotic genomes revealed by the reconstruction of ancestral protein domain repertoires. Genome Biol 12(1):R4–R4. doi:10.1186/gb-2011-12-1-r4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sebastian Hanke, Erika Lang, Nico van Gessel and Andreas Zimmer for comments on the manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan A. Rensing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lang, D., Rensing, S. (2015). The Evolution of Transcriptional Regulation in the Viridiplantae and its Correlation with Morphological Complexity. In: Ruiz-Trillo, I., Nedelcu, A. (eds) Evolutionary Transitions to Multicellular Life. Advances in Marine Genomics, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9642-2_15

Download citation

Publish with us

Policies and ethics