Skip to main content

Biodynamic Phenotypic and Epigenetics Changes of Circulating Tumor Cells: Their Application in Cancer Prognosis and Treatment

  • Chapter
  • First Online:
Epigenetics Territory and Cancer

Abstract

This chapter focuses on a deep description on Circulating Tumor Cells (CTCs) and its main role in cancer progression and genetic changes related to metastasis. In solid tumors, like breast and lung cancer, is being more frequent to appear patients with resistance to chemo and radiation therapy, this event will lead to decreasing quality of life as well as less efficient medical treatment. As it is known, CTCs are tumor cells disseminated from primary and metastatic sites and they are current tumor biomarkers. Therefore, CTCs will allow a more efficient tumor characterization and offering a more personalized medicine and treatment to specific patients. In this chapter, we offer a deeper analysis in CTCs characterization in Epithelial Mesenchymal Transition (EMT) process, as well as epigenetic changes that are important for making a more specific characterization of CTCs. Epigenetic changes can lead to silence tumor suppressor and metastasis suppressors’ genes, in addition to being important hallmarks giving clues of growth, proliferation, and invasiveness of tumor cells. It is well known that microRNAs vary their concentration depending on the aggressiveness of the tumor as well as the epidermal characteristics of CTCs. Our main aim with this chapter is trying to give more clues on the genetic and phenotypic characterization of CTCs that will give important information in a personalized therapy, besides novel therapeutic targets and personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CTCs:

Circulating Tumor Cells

EMT:

Epithelial Mesenchymal Transition

MET:

Mesenchymal-to-Epithelial Transition

MMP:

Matrix Metalloproteinases

References

  • Aokage K, Ishii G, Ohtaki Y, Yamaguchi Y, Hishida T, Yoshida J et al (2011) Dynamic molecular changes associated with epithelial–mesenchymal transition and subsequent mesenchymal–epithelial transition in the early phase of metastatic tumor formation. Int J Cancer 128(7):1585–1595.

    Article  CAS  PubMed  Google Scholar 

  • Ashworth T (1869) A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J 14(3):146–149

    Google Scholar 

  • Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):30–737

    Article  Google Scholar 

  • Brabletz T, Lyden D, Steeg PS, Werb Z (2013) Roadblocks to translational advances on metastasis research. Nat Med 19(9):1104–1109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bullock MD, Sayan AE, Packham GK, Mirnezami AH (2012) MicroRNAs: critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progression. Biol Cell 104(1):3–12

    Article  CAS  PubMed  Google Scholar 

  • Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559–1564

    Article  CAS  PubMed  Google Scholar 

  • Cho W (2010) Recent progress in genetic variants associated with cancer and their implications in diagnostics development. Expert Rev Mol Diagn 10:699–703

    Article  CAS  PubMed  Google Scholar 

  • Cock-rada A, Weitzman JB (2013) The methylation landscape of tumour metastasis. Biol Cell 105:73–90

    Article  PubMed  Google Scholar 

  • Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30(7):1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Conejo-Garcia JR, Buckanovich RJ, Benencia F, Courreges MC, Rubin SC, Carroll RG et al (2005) Vascular leukocytes contribute to tumor vascularization. Blood 105(2):679–681

    Article  CAS  PubMed  Google Scholar 

  • Davalos V, Moutinho C, Villanueva A, Boque R, Silva P, Carneiro F et al (2011) Dynamic epigenetic regulation of the microRNA-200 family mediates epithelial and mesenchymal transitions in human tumorigenesis. Oncogene 31(16):2062–2074

    Article  PubMed Central  PubMed  Google Scholar 

  • Fan Y, Zheng M, Tang Y, Liang X (2013) A new perspective of vasculogenic mimicry: EMT and cancer stem cells (Review). Oncol Lett 6(5):1174–1180

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458

    Article  CAS  PubMed  Google Scholar 

  • Garzon R, Marcucci G, Croce CM (2010) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9(10):775–789

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gregory RI, Shiekhattar R (2005) MicroRNA biogenesis and cancer. Cancer Res 65(9):3509–3512

    Article  CAS  PubMed  Google Scholar 

  • Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al.(2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell biol 10(5):593–601

    Article  CAS  PubMed  Google Scholar 

  • Gupta GP, Massagué J (2006) Cancer metastasis: building a framework. Cell 127(4):679–695

    Article  CAS  PubMed  Google Scholar 

  • Kalluri R (2009) EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest 119(6):1417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim M, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L et al (2009) Tumor self-seeding by circulating cancer cells. Cell 139(7):1315–1326

    Article  PubMed Central  PubMed  Google Scholar 

  • Kovács K, Hegedus B, Kenessey I, Tímár J (2013) Tumor type-specific and skin region-selective metastasis of human cancers: another example of the “seed and soil” hypothesis. Cancer Metastasis Rev 32(3–4):493–499

    Article  PubMed  Google Scholar 

  • Langley RR, Fidler IJ (2011) The seed and soil hypothesis revisited—the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer 128(11):2527–2535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leibovich-Rivkin T, Liubomirski Y, Bernstein B, Meshel T, Ben-Baruch A (2013) Inflammatory factors of the tumor microenvironment induce plasticity in nontransformed breast epithelial cells: EMT, invasion, and collapse of normally organized breast textures. Neoplasia 15(12):1330-1346

    PubMed Central  CAS  PubMed  Google Scholar 

  • Loeb LA, Loeb KR, Anderson JP (2003) Multiple mutations and cancer. Proc Natl Acad Sci U S A 100(3):776–781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lorusso G, Rüegg C (2012) New insights into the mechanisms of organ-specific breast cancer metastasis. Semin Cancer Biol 22(3):226–233 (Elsevier)

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Kang Y (2010) Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res 16(24):5928–5935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma L (2010) Role of miR-10b in breast cancer metastasis. Breast Cancer Res 12(5):210

    Article  Google Scholar 

  • Massard C, Fizazi K (2011) Targeting continued androgen receptor signaling in prostate cancer. Clin Cancer Res 17(12):3876–3883

    Article  CAS  PubMed  Google Scholar 

  • Mavroudis D (2010) Circulating cancer cells. Annals Oncol 21(suppl 7):vii95–vii100

    Google Scholar 

  • Medema JP (2013) Cancer stem cells: the challenges ahead. Nat Cell biol 15(4):338–344

    Article  CAS  PubMed  Google Scholar 

  • Mirzayans R, Andrais B, Scott A, Murray D (2012) New insights into p53 signaling and cancer cell response to DNA damage: implications for cancer therapy. J Biomed Biotechnol 2012:170325

    Article  PubMed Central  PubMed  Google Scholar 

  • Nadal R, Lorente JA, Rosell R, Serrano MJ (2013) Relevance of molecular characterization of circulating tumor cells in breast cancer in the era of targeted therapies. Expert Rev Mol Diagn 13(3):295–307

    Article  CAS  PubMed  Google Scholar 

  • Nesbit CE, Tersak JM, Prochownik EV (1999) MYC oncogenes and human neoplastic disease. Oncogene 18(19):3004–3016

    Article  CAS  PubMed  Google Scholar 

  • Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 133(3421):571–573

    Article  Google Scholar 

  • Pantel K, Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4(6):448–456

    Article  CAS  PubMed  Google Scholar 

  • Panteleakou Z, Lembessis P, Sourla A, Pissimissis N, Polyzos A, Deliveliotis C et al (2009) Detection of circulating tumor cells in prostate cancer patients: methodological pitfalls and clinical relevance. Mol Med 15(3–4):101–114

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3(12):895–902

    Article  CAS  PubMed  Google Scholar 

  • Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7(6):415–428

    Article  CAS  PubMed  Google Scholar 

  • Ross JS, Slodkowska EA (2009) Circulating and disseminated tumor cells in the management of breast cancer. Am J Clin Pathol 132(2):237–245

    Article  CAS  PubMed  Google Scholar 

  • Samantarrai D, Dash S, Chhetri B, Mallick B (2013) Genomic and epigenomic cross-talks in the regulatory landscape of miRNAs in breast cancer. Mol Cancer Res 11(4):315–328

    Article  CAS  PubMed  Google Scholar 

  • Savagner P (2010) The epithelial–mesenchymal transition (EMT) phenomenon. Ann Oncol 21(suppl 7):vii89–vii92

    PubMed  Google Scholar 

  • Shu M, Zheng X, Wu S, Lu H, Leng T, Zhu W et al (2011) Targeting oncogenic miR-335 inhibits growth and invasion of malignant astrocytoma cells. Mol Cancer 10(1):59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sleijfer S, Gratama J, Sieuwerts AM, Kraan J, Martens JW, Foekens JA (2007) Circulating tumour cell detection on its way to routine diagnostic implementation? Eur J Cancer 43(18):2645–2650

    Article  CAS  PubMed  Google Scholar 

  • Smit MA, Peeper DS (2008) Deregulating EMT and senescence: double impact by a single twist. Cancer Cell 14(1):5–7

    Article  CAS  PubMed  Google Scholar 

  • Tan E, Thuault S, Caja L, Carletti T, Heldin C, Moustakas A (2012) Regulation of transcription factor Twist expression by the DNA architectural protein high mobility group A2 during epithelial-to-mesenchymal transition. J Biol Chem 287(10):7134–7145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tang DG (2012) Understanding cancer stem cell heterogeneity and plasticity. Cell Res 22(3):457–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taube JH, Malouf GG, Lu E, Sphyris N, Vijay V, Ramachandran PP et al (2013) Epigenetic silencing of microRNA-203 is required for EMT and cancer stem cell properties. Sci Rep 3:2687

    Article  PubMed Central  PubMed  Google Scholar 

  • Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454

    Article  CAS  PubMed  Google Scholar 

  • Tirino V, Desiderio V, Paino F, De Rosa A, Papaccio F, La Noce M et al (2013) Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. FASEB J 27(1):13–24

    Article  CAS  PubMed  Google Scholar 

  • Tsai Y, Wu K (2012) Hypoxia-regulated target genes implicated in tumor metastasis. J Biomed Sci 19(1):102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147(2):275–292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van De Stolpe A (2013) On the origin and destination of cancer stem cells: a conceptual evaluation. Am J Cancer Res 3(1):107–116

    PubMed Central  PubMed  Google Scholar 

  • Van De Stolpe A, Pantel K, Sleijfer S, Terstappen LW, Den Toonder JM (2011) Circulating tumor cell isolation and diagnostics: toward routine clinical use. Cancer Res 71(18):5955–5960

    Article  PubMed  Google Scholar 

  • Wu Y, Zhou BP (2008) New insights of epithelial-mesenchymal transition in cancer metastasis. Acta Biochim Biophys Sin (Shanghai) 40(7):643–650

    Article  CAS  Google Scholar 

  • Yao D, Dai C, Peng S (2011) Mechanism of the mesenchymal–epithelial transition and its relationship with metastatic tumor formation. Mol Cancer Res 9(12):1608–1620

    Article  CAS  PubMed  Google Scholar 

  • Yokota J (2000) Tumor progression and metastasis. Carcinogenesis 21(3):497–503

    Article  CAS  PubMed  Google Scholar 

  • Zadran S, Remacle F, Levine R (2013) miRNA and mRNA cancer signatures determined by analysis of expression levels in large cohorts of patients. Proc Natl Acad Sci 110(47):19160–19165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhe X, Cher ML, Bonfil RD (2011) Circulating tumor cells: finding the needle in the haystack. Am J Cancer Res 1(6):740–751

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Antonio Lorente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fernández, M., Alvarez-Cubero, M., Puche, J., Ortega, F., Lorente, J. (2015). Biodynamic Phenotypic and Epigenetics Changes of Circulating Tumor Cells: Their Application in Cancer Prognosis and Treatment. In: Mehdipour, P. (eds) Epigenetics Territory and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9639-2_2

Download citation

Publish with us

Policies and ethics