Evolutionary Patterns of Ammonoids: Phenotypic Trends, Convergence, and Parallel Evolution

Chapter
Part of the Topics in Geobiology book series (TGBI, volume 44)

Abstract

A major goal in evolutionary biology is to characterize and understand the patterns and processes that shape the evolutionary trajectory of clades through time and space. One common pattern in extinct and extant lineages is the pervasive occurrence of persistent phenotypic evolutionary trends. These trends of evolutionary lineages suggest that adaptation by means of natural selection is a major cause of homoplastic patterns such as convergence and parallel evolution. Such patterns can result from other processes, which are usually ignored or difficult to identify, such as chance, environmental changes, constructional or developmental constraints. How the evolution of organisms follows preferentially specific phenotypic trajectories remains poorly known. The ammonoids are well-known to display persistent phenotypic shifts through time. Commonly described trends in ammonoid lineages are increase in adult size, changes in coiling and increase in suture frilling. Some new methods for the study of ammonoid evolution are here exemplified by recent case studies.

Keywords

Ammonoids Macroevolution Phenotypic trends Long term morphological patterns Evolutionary constraints Quantitative methods 

References

  1. Adami C, Ofria C, Collier TC (2000) Evolution of biological complexity. Proc Natl Acad Sci U S A 97:4463–4468Google Scholar
  2. Adamowicz SJ, Purvis A, Wills MA (2008) Increasing morphological complexity in multiple parallel lineages of the Crustacea. Proc Natl Acad Sci U S A 105:4786–4791Google Scholar
  3. Adams DC, Collyer ML (2009) A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evol (Int J Org Evol) 63:1143–1154Google Scholar
  4. Alberch PA (1982) Developmental constraints in evolutionary processes. In: Bonner JT (ed) Evolution and development. Springer Verlag, BerlinGoogle Scholar
  5. Alroy J (1998) Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science 280:731–734Google Scholar
  6. Alroy J (2000) Understanding the dynamics of trends within evolving lineages. Paleobiology 26:319–329Google Scholar
  7. Anderson DR, Burnham KP, Thompson WL (2000) Null hypothesis testing: problems, prevalence, and an alternative. J Wildl Manage 64:912–923Google Scholar
  8. Arkell WJ, Furnish WM, Kummel B, Miller AK, Moore RC, Schindewolf OH, Sylvester-Bradley PC, Wright CW (1957) Treatise on invertebrate paleontology. Part L. Mollusca 4. Cephalopoda, Ammonoidea. Geological Society of America (University Kansas Press), p 2Google Scholar
  9. Arnold SJ (1992) Constraints on evolution. Am Nat 140(Suppl):85–107Google Scholar
  10. Arthur W (2001) Developmental drive: an important determinant of the direction of phenotypic evolution. Evol Dev 3:271–278Google Scholar
  11. Arthur W (2004) The effect of development on the direction of evolution: toward a twenty-first century consensus. Evol Dev 6:282–288Google Scholar
  12. Averoff M, Patel NH (1997) Crustacean appendage evolution associated with changes in Hox gene expression. Nature 388:682–686Google Scholar
  13. Batt RJ (1989) Ammonite shell morphotype distributions in the Western Interior Greenhorn Sea and some paleoecological implications. Palaios 4:32–42Google Scholar
  14. Bayer U, McGhee GR (1984) Iterative evolution of Middle Jurassic ammonite faunas. Lethaia 17:1–6Google Scholar
  15. Bayer U, McGhee GR (1985) Evolution in marginal epicontinental basins: the role of phylogenetic and ecological factors. In: Bayer U, Seilacher A (eds) Sedimentary and evolutionary cycles. Lect Notes Earth Sci 1:163–220Google Scholar
  16. Bert D, Bersac S (2013) Evolutionary patterns—tested with cladistics—and processes in relation to palaeoenvironments of the upper Barremian genus Gassendiceras (Ammonitina, Lower Cretaceous). Palaeontology 56:631–646Google Scholar
  17. Bookstein FL (1987) Random walk and the existence of evolutionary rates. Paleobiology 13:446–464Google Scholar
  18. Bookstein FL (1988) Random walk and the biometrics of morphological characters. Evol Biol 9:369–398Google Scholar
  19. Boyajian G, Lutz T (1992) Evolution of biological complexity and its relation to taxonomic longevity in the Ammonoidea. Geology 20:983–986Google Scholar
  20. Brayard A, Escarguel G, Bucher H, Monnet C, Brühwiler T, Goudemand N, Galfetti T, Guex J (2009) Good genes and good luck: ammonoid diversity and the end-permian mass extinction. Science 325:1118–1121Google Scholar
  21. Brown JH, Maurer BA (1986) Body size, ecological dominance and Cope’s rule. Nature 324:248–250Google Scholar
  22. Bujtor L (2010) Systematics, phylogeny and homeomorphy of the Engonoceratidae Hyatt, 1900 (Ammonoidea, Cretaceous) and revision of Engonoceras duboisi Latil, 1989. Noteb Geol (2010/08). doi:10.4267/2042/35626Google Scholar
  23. Cariou E, Hantzpergue P (1988) Modalités et taux d’évolution des Ammonoidea en relation avec les environnements: exemples dans le Jurassique de la marge européenne de la Téthys. C R Acad Sci Paris—Ser II 307:1037–1043Google Scholar
  24. Cecca F (1997) Late Jurassic and early Cretaceous uncoiled ammonites: trophism-related evolutionary processes. C R Acad Sci Paris, Ser IIA 325:629–634Google Scholar
  25. Chamberlain JA (1976) Flow patterns and drag coefficients of cephalopod shells. Palaeontology 19:539–563Google Scholar
  26. Chamberlain JA (1980) Hydromechanical design in fossil cephalopods. In: House MR, Senior JR (eds) The Ammonoidea, System Association Special Publication 16. Academic Press, New YorkGoogle Scholar
  27. Chamberlain JA, Westermann GEG (1976) Hydrodynamic properties of cephalopod shell ornament. Paleobiology 2:316–331Google Scholar
  28. Charlesworth B, Lande R (1982) Morphological stasis and developmental constraints: no problem for neo-Darwinism. Nature 296:610Google Scholar
  29. Checa AG (1987) Sutural simplification in Physodoceratinae (Aspidoceratidae, Ammonitina). Estudios Geol 43:271–278Google Scholar
  30. Checa AG (2003) Fabrication and function of ammonite septa, comment on Lewy. J Paleontol 77:790–791Google Scholar
  31. Checa AG, Garcia-Ruiz JM (1996) Morphogenesis of the septum in ammonoids. In: Landman NH, Tanabe K, Davies RA (eds) Ammonoid paleobiology. Plenum Press, New YorkGoogle Scholar
  32. Chirat R, Moulton DE, Goreily A (2013) Mechanical basis of morphogenesis and convergent evolution of spiny seashells. Proc Natl Acad Sci U S A 110:6015–6020Google Scholar
  33. Cobban WA, Hook SC, Kennedy WJ (1989) Upper Cretaceous rocks and ammonite faunas of southwestern New Mexico. New Mex Bur Mines Miner Res 45:1–137Google Scholar
  34. Collyer ML, Adams DC (2007) Analysis of two-state multivariate phenotypic change in ecological studies. Ecology 88:683–692Google Scholar
  35. Collyer ML, Adams DC (2013) Phenotypic trajectory analysis: comparison of shape change patterns in evolution and ecology. Hystrix 24:75–83Google Scholar
  36. Colosimo PF, Hosemann KE, Balabhadra S, Villarreal G, Dickson M, Grimwood J, Schmutz J, Myers RM, Schluter D, Kingsley DM (2005) Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin allelles. Science 307:1928–1933Google Scholar
  37. Cope ED (1887) The origin of the fittest. Appleton and Co., New YorkGoogle Scholar
  38. Cope ED (1896) The primary factors of organic evolution. Open Court Publishing Company, ChicagoGoogle Scholar
  39. Dagys AS, Weitschat W (1993) Extensive intraspecific variation in a Triassic ammonoid from Siberia. Lethaia 26:113–121Google Scholar
  40. Daniel TL, Helmuth BS, Saunders WB, Ward PD (1997) Septal complexity in ammonoid cephalopods increased mechanical risk and limited depth. Paleobiology 23:470–481Google Scholar
  41. De Baets K, Klug C, Korn D (2009) Anetoceratinae (Ammonoidea, early Devonian) from the Eifel and Harz Mountains (Germany), with a revision of their genera. N Jb Geol Paläontol Abh 252:361–376Google Scholar
  42. De Baets K, Klug C, Korn D, Landman NH (2012). Early evolutionary trends in ammonoid embryonic development. Evolution 66:1788–1806Google Scholar
  43. De Baets K, Klug C, Monnet C (2013a) Intraspecific variability through ontogeny in early ammonoids. Paleobiology 39:75–94Google Scholar
  44. De Baets K, Klug C, Korn D, Bartels C, Poschmann M (2013b) Emsian Ammonoidea and the age of the Hunsrück Slate (Rhenish Mountains, Western Germany). Palaeontogr A 299(1–6):1–113Google Scholar
  45. De Baets K, Bert D, Hoffmann R, Monnet C, Yacobucci MM, Klug C (2015) Ammonoid intraspecific variability. In: Klug C et al (eds), Ammonoid Paleobiology: from anatomy to ecology (Topics in Geobiology 44, Springer, New York, doi: 10.1007/978-94-017-9633-0_13)Google Scholar
  46. De Blasio FV (2008) The role of suture complexity in diminishing strain and stress in ammonoid phragmocones. Lethaia 41:15–24Google Scholar
  47. Depéret C (1909) The transformations of the animal world. Appleton and Company, New YorkGoogle Scholar
  48. Diener C (1917) Über Ammoniten mit Adventivloben. Akad Wiss Wien Math-Naturwiss Kl Denkschrift 93:139–199Google Scholar
  49. Dietl G (1973) Middle Jurassic (Dogger) heteromorph ammonites. In: Hallam A (ed) Atlas of paleobiogeography. Elsevier, AmsterdamGoogle Scholar
  50. Dietl G (1978) Die heteromorphen Ammoniten des Dogger. Stuttgarter Beiträge Naturkunde B 33:1–97Google Scholar
  51. Doguzhaeva LA, Mutvei H (1991) Organization of the soft body in Aconeceras (Ammonitina), interpreted on the basis of shell morphology and muscle scars. Palaeontogr A 218:17–33Google Scholar
  52. Dommergues JL (1990) Ammonoids. In: McNamara K (ed) Evolutionary trends. Belhaven Press, LondonGoogle Scholar
  53. Dommergues JL, Meister C (1989) Trajectoires ontogénétiques et hétérochronies complexes chez des ammonites (Harpoceratinae) du Jurassique Inférieur (Domérien). Geobios Mem Spec 12:157–166Google Scholar
  54. Dommergues JL, David B, Marchand T (1986) Les relations ontogenèse-phylogenèse: applications paléontologiques. Geobios 19:335–356Google Scholar
  55. Dommergues JL, Cariou E, Contini D, Hantzpergue P, Marchand D, Meister C, Thierry J (1989) Homéomorphies et canalisations évolutives: le rôle de l’ontogenèse. Quelques exemples pris chez les ammonites du Jurassique. Geobios 22:5–48Google Scholar
  56. Dommergues JL, Montuire S, Neige P (2002) Size patterns through time: the case of the Early Jurassic ammonite radiation. Paleobiology 28:423–434Google Scholar
  57. Donoghue MJ (2005) Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny. Paleobiology 31:77–93Google Scholar
  58. Donovan DT (1985) Ammonite shell form and transgression in the British Lower Jurassic. In: Bayer U, Seilacher A (eds) Sedimentary and evolutionary cycles. Lect Notes Earth Sci 1:164–220Google Scholar
  59. Dunstan AJ, Ward PD, Marshall NJ (2011) Vertical distribution and migration patterns of Nautilus pompilius. PLoS One 6(2):e16311. doi:10.1371/journal.pone.0016311Google Scholar
  60. Ebbighausen R, Korn D (2013) Paleontology as a circumstantial evidence lawsuit. Hist Biol 25:283–295Google Scholar
  61. Elmi S (1991) Données expérimentales sur l’architecture fonctionelle de la coquille des ammonoïdes Jurassiques. Geobios Mem Spec 13:155–160Google Scholar
  62. Elmi S (1993) Loi des aires, couche-limite et morphologie fonctionnelle de la coquille des cephalopods (ammonoïdes). Geobios Mem Spec 15:121–138Google Scholar
  63. Endler JA (1986) Natural selection in the wild. Princeton University Press, PrincetonGoogle Scholar
  64. Erben HK (1964) Die Evolution der ältesten Ammonoidea. N Jb Geol Paläontol Abh 120:107–212Google Scholar
  65. Erben HK (1965) Die Evolution der ältesten Ammonoidea. N Jb Geol Paläontol Abh 122:275–312Google Scholar
  66. Erben HK (1966) Über den Ursprung der Ammonoidea. Biol Rev Camb Phil Soc 41:641–658Google Scholar
  67. Fisher DC (1986) Progress in organismal design. In: Raup RM, Jablonski D (eds) Patterns and processes in the history of life. Springer, BerlinGoogle Scholar
  68. Foote M, Sepkoski JJ (1999) Absolute measures of the completeness of the fossil record. Nature 398:415–417Google Scholar
  69. Foote M, Miller AI (2007) Principles of paleontology. W. H. Freeman, New YorkGoogle Scholar
  70. Futuyma DJ (2009) Evolution, 2nd edn. Sinauer Associates, SunderlandGoogle Scholar
  71. Garcia-Ruiz JM, Checa A, Rivas P (1990) On the origin of ammonite sutures. Paleobiology 16:349–354Google Scholar
  72. Gerber S (2011) Comparing the differential filling of morphospace and allometric space through time: the morphological and developmental dynamics of Early Jurassic ammonoids. Paleobiology 37:369–382Google Scholar
  73. Gerber S, Eble GJ, Neige P (2008) Allometric space and allometric disparity: a developmental perspective in the macroevolutionary analysis of morphological disparity. Evol (Int J Org Evol) 62:1450–1457Google Scholar
  74. Gingerich PD (1979) The stratophenetic approach to phylogeny reconstruction in vertebrate paleontology. In: Cracraft J, Eldredge N (eds) Phylogenetic analysis and paleontology. Columbia University Press, New YorkGoogle Scholar
  75. Gingerich PD (1993) Quantification and comparison of evolutionary rates. Am J Sci 293:453–478Google Scholar
  76. Goldsmith TH (1990) Optimization, constraint, and history in the evolution of eyes. Quart Rev Biol 65:281–322Google Scholar
  77. Gould SJ (1966) Allometry and size in ontogeny and phylogeny. Biol Rev 41:587–640Google Scholar
  78. Gould SJ (1977) Ontogeny and phylogeny. The Belknap of Harvard University , CambridgeGoogle Scholar
  79. Gould SJ (1988) Trends as changes in variance: a new slant on progress and directionality in evolution. J Paleontol 62:319–329Google Scholar
  80. Gould SJ (1990) Speciation and sorting as the source of evolutionary trends, or things are seldom what they seem. In: McNamara KJ (ed) Evolutionary trends. Belhaven Press, LondonGoogle Scholar
  81. Gould SJ (1996) Full house: the spread of excellence from Plato to Darwin. Harmony Books, New YorkGoogle Scholar
  82. Gould SJ (1997) Cope’s rule as psychological artefact. Nature 385:199–200Google Scholar
  83. Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, CambridgeGoogle Scholar
  84. Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond Ser B Biol Sci 205:581–598Google Scholar
  85. Gould GC, MacFadden BJ (2004) Gigantism, dwarfism and Cope’s rule: ‘nothing in evolution makes sense without a phylogeny’. Bull Am Mus Nat Hist 285:219–237Google Scholar
  86. Graffin G, Olson S (2010) Anarchy evolution: faith, science and bad religion in a world without God. Harper Perennial, New YorkGoogle Scholar
  87. Guex J (1973) Observations sur la répartition biostratigraphique des ammonites du Toarcien supérieur de l’Aveyron (France). Bull Lab Géol Minér Géophys Univ Lausanne 207:1–14Google Scholar
  88. Guex J (1981) Associations virtuelles et discontinuités dans la distribution des espèces fossiles: un exemple intéressant. Bull Soc Vaud Sci Nat 359:179–197Google Scholar
  89. Guex J (1992) Origine des sauts évolutifs chez les ammonites. Bull Soc Vaud Sci Nat 82:117–144Google Scholar
  90. Guex J (2001) Environmental stress and atavism in ammonoid evolution. Eclog Geol Helv 94:321–328Google Scholar
  91. Guex J (2003) A generalization of Cope’s rule. Bull Soc Géol Fr 174:449–452Google Scholar
  92. Guex J (2006) Reinitialization of evolutionary clocks during sublethal environmental stress in some invertebrates. Earth Planet Sci Lett 243:240–253Google Scholar
  93. Haas O (1942) Recurrence of morphologic types and evolutionary cycles in Mesozoic ammonites. J Paleontol 16:643–650Google Scholar
  94. Hall BK (2007) Homoplasy and homology: dichotomy or continuum. J Hum Evol 52:473–479Google Scholar
  95. Hallam A (1975) Evolutionary size increase and longevity in Jurassic bivalves and ammonites. Nature 258:493–496Google Scholar
  96. Hammer Ø, Bucher H (2005) Buckman’s first law of covariation—a case of proportionality. Lethaia 38:67–72Google Scholar
  97. Hassan MA, Westermann GEG, Hewitt RA, Dokainish MA (2002) Finite-element analysis of simulated ammonoid septa (extinct Cephalopoda): septal and sutural complexities do not reduce strength. Paleobiology 28:113–126Google Scholar
  98. Hewitt RA (1989) Recent growth of nautiloid and ammonite taxonomy. Paläontol Z 63:281–296Google Scholar
  99. Hewitt RA (1996) Architecture and strength of the ammonoid shell. In: Landman NH, Tanabe K, Davis A (eds) Ammonoid paleobiology (Topics Geobiology 13). Plenum Press, New YorkGoogle Scholar
  100. Hewitt RA, Westermann GEG (1986) Function of complexly fluted septa in ammonoid shell. II. Septal evolution and conclusion. N Jb Geol Paläontol Abh 174:135–169Google Scholar
  101. Hewitt RA, Westermann GEG (1997) Mechanical significance of ammonoid septa with complex sutures. Lethaia 30:205–212Google Scholar
  102. Hoffmann R, Keupp H (2015) Ammonoid paleopathology. In: Klug C et al (eds), Ammonoid Paleobiology: from anatomy to ecology (Topics in Geobiology 44, Springer, New York, doi: 10.1007/978-94-017-9633-0_13)Google Scholar
  103. Holder N (1983) Developmental constraints and the evolution of vertebrate digit patterns. J Theor Biol 104:451–471Google Scholar
  104. Hone D, Benton MJ (2005) The evolution of large size: how does Cope’s rule work? Trends Ecol Evol 20:4–6Google Scholar
  105. Horne DJ (2005) Homology and homoeomorphy in ostracod limbs. Hydrobiologia 538:55–80Google Scholar
  106. House MR (1985) The ammonoid time-scale and ammonoid evolution. Mem Geol Soc (London) 10:273–283Google Scholar
  107. House MR (1996) Juvenile goniatite survival strategies following Devonian extinction events. In: Hart MB (ed) Biotic recovery from mass extinction events. Spec Publ Geol Soc 102:163–185Google Scholar
  108. Hunt G (2004) Phenotypic variation in fossil samples: modeling the consequences of time-averaging. Paleobiology 30:426–443Google Scholar
  109. Hunt G (2006) Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32:578–601Google Scholar
  110. Hunt G (2007) The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. Proc Natl Acad Sci U S A 104:18404–18408Google Scholar
  111. Hunt G, Carrano MT (2010) Models and methods for analyzing phenotypic evolution in lineages and clades. In: Alroy J, Hunt G (eds) Quantitative methods in paleobiology (Paleontological Society Short Papers), Vol 16. pp. 245–269Google Scholar
  112. Hunt G, Roy K (2006) Climate change, body size evolution, and Cope’s rule in deep-sea ostracodes. Proc Natl Acad Sci U S A 103:1347–1352Google Scholar
  113. Hunt G, Bell MA, Travis MP (2008) Evolution toward a new adaptive optimum: phenotypic evolution in a fossil stickleback lineage. Evol (Int J Org Evol) 62:700–710Google Scholar
  114. Hyatt A (1889) Genesis of the Arietitidae. Smithson Contrib Know 673:1–238Google Scholar
  115. Ifrim C (2013) Paleobiology and paleoecology of the early Turonian (Late Cretaceous) ammonite Pseudaspidoceras flexuosum. Palaios 28:9–22Google Scholar
  116. Illert CR, Reverberi D (1988) Holography reveals the soft anatomy of ancient cephalopods. Bull Math Biol 50:19–34Google Scholar
  117. Jablonski D (1987) How pervasive is Cope’s rule? A test using Late Cretaceous mollusks. Geol Soc Am Abstr Progr 19(7):713–714Google Scholar
  118. Jablonski D (1997) Body-size evolution in Cretaceous molluscs and the status of Cope’s rule. Nature 385:250–252Google Scholar
  119. Jablonski D (2000) Micro- and macroevolution: scale and hierarchy in evolutionary biology and paleobiology. Paleobiology 26:15–52Google Scholar
  120. Jablonski D (2007) Scale and hierarchy in macroevolution. Palaeontology 50:87–109Google Scholar
  121. Jacobs D (1990) Sutural pattern and shell strength in Baculites with implications for other cephalopod shell morphologies. Paleobiology 16:336–348Google Scholar
  122. Jacobs DK (1992) Shape, drag, and power in ammonoid swimming. Paleobiology 18:203–220Google Scholar
  123. Jacobs DK, Chamberlain JA (1996) Buoyancy and hydrodynamics in ammonoids. In: Landman NH, Tanabe K, Davis A (eds) Ammonoid paleobiology (Topics in Geobiology 13). Plenum Press, New YorkGoogle Scholar
  124. Jacobs DK, Landman NH (1993) Nautilus, a poor model for the function and behavior of ammonoids? Lethaia 26:101–111Google Scholar
  125. Jacobs DK, Landman NH, Chamberlain JA (1994) Ammonite shell shape covaries with facies and hydrodynamics: iterative evolution as a response to changes in basinal environment. Geology 22:905–908Google Scholar
  126. Kaiser HE, Boucot AJ (1996) Specialisation and extinction: Cope’s law revisited. Hist Biol 11:247–265Google Scholar
  127. Kaplan (2008) The end of the adaptive landscape metaphor. Biol Philos 23:625–638. doi:10.1007/s10539–008-9116-zGoogle Scholar
  128. Kawabe F (2003) Relationship between mid-Cretaceous (upper Albian-Cenomanian) ammonoid facies and lithofacies in the yezo forearc basin, Hokkaido, Japan. Cretac Res 24:751–763Google Scholar
  129. Kennedy WJ (1977) Ammonite evolution. In: Hallam A (ed) Patterns of evolution. Elsevier, AmsterdamGoogle Scholar
  130. Kennedy WJ (1989) Thoughts on the evolution and extinction of Cretaceous ammonites. Proc Geol Ass 100:251–279Google Scholar
  131. Kennedy WJ, Cobban WA (1976) Aspects of ammonite biology, biogeography, and biostratigraphy. Spec Pap Palaeontol 17:1–94Google Scholar
  132. Kennedy WJ, Wright CW (1985) Evolutionary patterns in Late Cretaceous ammonites. Spec Pap Palaeontol 33:131–143Google Scholar
  133. Keupp H (2000) Ammoniten—paläobiologische Erfolgsspiralen. Thorbecke, StuttgartGoogle Scholar
  134. Keupp H (2006) Sublethal punctures in body chambers of Mesozoic ammonites (forma aegra fenestra n.f.), a tool to interpret synecological relationships, particularly predator-prey interactions. Paläontol Z 80:112–123Google Scholar
  135. Klinger HC, Kennedy WJ (1984) Cretaceous faunas from Zululand and Natal, South Africa. The ammonite subfamily Peroniceratinae Hyatt, 1900. Ann S Afr Mus 84:1–294Google Scholar
  136. Klug C (2001) Early Emsian ammonoids from the eastern Anti-Atlas (Morocco) and their succession. Paläontol Z 74:479–515Google Scholar
  137. Klug C (2002) Quantitative stratigraphy and taxonomy of late Emsian and Eifelian ammonoids of the eastern Anti-Atlas (Morocco). Cour Forsch Senckenberg 238:1–109Google Scholar
  138. Klug C, Hoffmann R (2014) Ammonoid septa and sutures. In: Klug C et al. (eds) Ammonoid Paleobiology: from anatomy to ecology (Topics in Geobiology 44, Springer, New York, doi:10.1007/978-94-017-9633-0_13)Google Scholar
  139. Klug C, Korn D (2004) The origin of ammonoid locomotion. Acta Palaeont Pol 49:235–242Google Scholar
  140. Klug C, Schatz W, Korn D, Reisdorf AG (2005) Morphological fluctuations of ammonoid assemblages from the Muschelkalk (Middle Triassic) of the Germanic Basin—indicators of their ecology, extinctions, and immigrations. Palaeogeogr Palaeoclimatol Palaeoecol 221:7–34Google Scholar
  141. Klug C, Meyer E, Richter U, Korn D (2008) Soft-tissue imprints in fossil and eecent cephalopod septa and septum formation. Lethaia 41:477–492Google Scholar
  142. Klug C, Kröger B, Kiessling W, Mullins GL, Servais T, Frýda J, Korn D, Turner S (2010) The Devonian nekton revolution. Lethaia 43:465–477Google Scholar
  143. Klug C, Kröger B, Vinther J, Fuchs D, De Baets K (2015a) Ancestry, origin and early evolution of ammonoids. This volumeGoogle Scholar
  144. Klug C, Korn D, Landman NH, Tanabe K, De Baets K, Naglik C (2015b) Describing ammonoid shells. In: Klug C et al (eds), Ammonoid Paleobiology: from anatomy to ecology (Topics in Geobiology 44, Springer, New York, doi: 10.1007/978-94-017-9633-0_13)Google Scholar
  145. Knell RJ, Naish D, Tomkins JL, Hone DWE (2013) Sexual selection in prehistoric animals: detection and implications. Trends Ecol Evol 28:38–47Google Scholar
  146. Korn D (1992) Heterochrony in the evolution of Late Devonian ammonoids. Acta Palaeont Pol 37:21–36Google Scholar
  147. Korn D (1995a) Paedomorphosis of ammonoids as a result of sealevel fluctuations in the Late Ddevonian Wocklumeria Stufe. Lethaia 28:155–165Google Scholar
  148. Korn D (1995b) Impact of environmental perturbations on heterochronic development in Palaeozoic ammonoids. In: McNamara KJ (ed) Evolutionary change and heterochrony. Wiley, ChichesterGoogle Scholar
  149. Korn D (2003) Typostrophism in Palaeozoic ammonoids. Paläont Z 77:445–470Google Scholar
  150. Korn D (2010) A key for the description of Palaeozoic ammonoids. Foss Rec 13:5–12Google Scholar
  151. Korn D (2012) Quantification of ontogenetic allometry in ammonoids. Evol Dev 14:501–514Google Scholar
  152. Korn D, Klug C (2003) Morphological pathways in the evolution of Early and Middle Devonian ammonoids. Paleobiology 29:329–348Google Scholar
  153. Korn D, Klug C (2007) Conch form analysis, variability, and morphological disparity of a Frasnian (Late Devonian) ammonoid assemblage from Coumiac (Montagne Noire, France). In: Landman NH, Davis RA, Manger W, Mapes RH (eds) Cephalopods—present and past. Springer, New YorkGoogle Scholar
  154. Korn D, Hopkins MJ, Walton SA (2013a) Extinction space—a method for the quantification and classification of changes in morphospace across extinction boundaries. Evol (Int J Org Evol) 67:2795–2810Google Scholar
  155. Korn D, Bockwinkel J, Ebbighausen V, Walton SA (2013b) Rare representatives in the ammonoid fauna from Büdesheim (Cephalopoda, Eifel, Late Devonian) and the role of heterochrony. N Jb Geol Paläontol Abh 269:111–124Google Scholar
  156. Kröger B (2005) Adaptive evolution in Paleozoic coiled cephalopods. Paleobiology 31:253–268Google Scholar
  157. Kröger B, Mapes RH (2007) On the origin of bactritoids (Cephalopoda). Paläontol Z 81:316–327 http://www.springerlink.com/content/m2010544527231rv/ Google Scholar
  158. Kruta I, Landman N, Rouget I, Cecca F, Tafforeau P (2011) The role of ammonites in the Mesozoic marine food web revealed by jaw preservation. Science 331:70–72Google Scholar
  159. Kurten B (1953) On the variation and population dynamics of fossil and recent mammal populations. Acta Zool Fenn 76:1–122Google Scholar
  160. Landman NH (1988) Heterochrony in ammonites. In: McKinney NL (ed) Heterochrony in evolution. Plenum Press, New YorkGoogle Scholar
  161. Landman NH (1989) Iterative progenesis in Upper Cretaceous ammonites. Paleobiology 15:95–117Google Scholar
  162. Landman NH, Geyssant JR (1993) Heterochrony and ecology in Jurassic and Cretaceous ammonites. Geobios Mem Spec 15:247–255Google Scholar
  163. Lankester R (1870) On the use of the term homology in modern zoology, and the distinction between homogenetic and homoplastic agreements. Ann Mag Nat or Hist Zool Bot Geol 4(6):34–43Google Scholar
  164. Lauder GV (1981) Form and function: structural analysis in evolutionary morphology. Paleobiology 7:430–442Google Scholar
  165. Lécuyer C, Bucher H (2006) Stable isotope compositions of a Late Jurassic ammonite shell: a record of seasonal surface water temperatures in the southern hemisphere? eEarth 1:1–7Google Scholar
  166. Levinton JS (2001) Genetics, paleontology, and macroevolution, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  167. Lewy Z (2002) The function of the ammonite fluted septal margins. J Paleontol 76:63–69Google Scholar
  168. Lindsey CC (1962) Experimental study of meristic variation in a population of threespine sticklebacks, Gasterosteus aculeatus. Can J Zool 40:271–312Google Scholar
  169. Lukeneder A (2015) Ammonoid habitats and life history. In: Klug C et al (eds), Ammonoid Paleobiology: from anatomy to ecology (Topics in Geobiology 44, Springer, New York, doi: 10.1007/978-94-017-9633-0_13)Google Scholar
  170. Lukeneder A, Harzhauser M, Müllegger S, Piller WE (2010) Ontogeny and habitat change in Mesozoic cephalopods revealed by stable isotopes (δ18O, δ13C). Earth Planet Sci Lett 296:103–114Google Scholar
  171. MacFadden BJ (1986) Fossil horses from “Eohippus” (Hyracotherium) to Equus: scaling, Cope’s law, and the evolution of body size. Paleobiology 12:355–369Google Scholar
  172. MacFadden BJ (1992) Fossils horses. Systematics, paleobiology, and evolution of the family Equidae. Cambridge University Press, CambridgeGoogle Scholar
  173. MacFadden BJ (2005) Fossil horses—evidence for evolution. Science 307:1728–1730Google Scholar
  174. Matthew WD (1926) The evolution of the horse: a record and its interpretation. Quart Rev Biol 1:139–185Google Scholar
  175. Maynard-Smith J, Burian RM, Kauffman SA, Alberch PA, Campbell J, Goodwin BC, Lande R, Raup D, Wolpert L (1985) Developmental constraints and evolution: a perspective from the mountain lake conference on development and evolution. Quart Rev Biol 60:265–287Google Scholar
  176. McGhee GR Jr (1999) Theoretical morphology: the concepts and its applications. Columbia University Press, New YorkGoogle Scholar
  177. McGhee GR Jr (2007) The geometry of evolution: adaptive landscapes and theoretical morphospaces. Cambridge University Press, New YorkGoogle Scholar
  178. McGhee GR (2011) Convergent evolution: limited forms most beautiful. MIT, CambridgeGoogle Scholar
  179. McGhee GR, Bayer U, Seilacher A (1991) Biological and evolutionary responses to transgressive-regressive cycles. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, BerlinGoogle Scholar
  180. McGowan A, Smith AB (2007) Ammonoids across the Permian/Triassic boundary: a cladistic perspective. Palaeontology 50:573–590Google Scholar
  181. McKinney ML (1988) Heterochrony in evolution. Plenum Press, New YorkGoogle Scholar
  182. McKinney ML (1990) Trends in body-size evolution. In: McNamara KJ (ed) Evolutionary trends. Belhaven Press, LondonGoogle Scholar
  183. McKinney ML, McNamara KJ (1991) Heterochrony, the evolution of ontogeny. Plenum Press, New YorkGoogle Scholar
  184. McNamara KJ (1982) Heterochrony and phylogenetic trends. Paleobiology 8:130–142Google Scholar
  185. McNamara KJ (1990) Evolutionary trends. Belhaven Press, LondonGoogle Scholar
  186. McNamara KJ (1997) Shapes of time: the evolution of growth and development. Johns Hopkins University Press, BaltimoreGoogle Scholar
  187. McNamara KJ (2006) Evolutionary trends. eLS. doi:10.1038/npg.els.0004136Google Scholar
  188. McNamara KJ (2012). Heterochrony: the evolution of development. Evol: Educ Outreach 5:203–218Google Scholar
  189. McNamara KJ, McKinney ML (2005) Heterochrony, disparity, and macroevolution. Paleobiology 31:17–26Google Scholar
  190. McShea DW (1991) Complexity and evolution: what everybody knows. Biol Phil 6:303–324Google Scholar
  191. McShea DW (1994) Mechanisms of large-scale evolutionary trends. Evol (Int J Org Evol) 48:1747–1763Google Scholar
  192. McShea DW (1996) Metazoan complexity and evolution: is there a trend? Evol (Int J Org Evol) 50:477–492Google Scholar
  193. Meister C (1988) Ontogenèse et évolution des Amaltheidae (Ammonoidea). Eclogae Geol Helv 81:763–841Google Scholar
  194. Meister C (1993) L’évolution parallèle des Juraphyllitidae euroboréaux et téthysiens au Pliensbachien: le rôle des contraintes internes et externes. Lethaia 26:123–132Google Scholar
  195. Mitteroecker P, Gunz P, Bookstein FL (2005) Heterochrony and geometric morphometrics: a comparison of cranial growth in Pan paniscus versus Pan troglodytes. Evol Dev 7:244–258Google Scholar
  196. Monnet C, Bucher H (2005) New middle and late Anisian (Middle Triassic) ammonoid faunas from northwestern Nevada (USA): taxonomy and biochronology. Foss Strat 52:1–121Google Scholar
  197. Monnet C, Bucher H, Wasmer M, Guex J (2010) Revision of the genus Acrochordiceras Hyatt, 1877 (Ammonoidea, Middle Triassic): morphology, biometry, biostratigraphy and intraspecific variability. Palaeontology 53:961–996Google Scholar
  198. Monnet C, De Baets K, Klug C (2011) Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods. BMC Evol Biol 11:115. doi:10.1186/1471–2148-11–115Google Scholar
  199. Monnet C, Zollikofer C, Bucher H, Goudemand N (2009) Three-dimensional morphometric ontogeny of mollusc shells by micro-computed tomography and geometric analysis. Palaeontol Electron 12(3)12AGoogle Scholar
  200. Monnet C, Bucher H, Guex J, Wasmer M (2012) Long-term evolutionary trends of Acrochordiceratidae Arthaber, 1911 (Ammonoidea, Middle Triassic) and Cope’s rule. Palaeontology 55:87–107Google Scholar
  201. Monnet C, Bucher H, Brayard A, Jenks JF (2013) Globacrochordiceras gen. nov. (Acrochordiceratidae, late Early Triassic) and its significance for stress-induced evolutionary jumps in ammonoid lineages (cephalopods). Foss Rec 16:197–215Google Scholar
  202. Monnet C, Brayard A, Bucher H (2015a) Ammonoids and quantitative biochronology—a unitary association perspective. This volumeGoogle Scholar
  203. Monnet C, De Baets K, Yacobucci MM (2015b) Buckman’s rules of covariation. This volumeGoogle Scholar
  204. Morard A, Guex J (2003) Ontogeny and covariation in the Toarcian genus Osperleioceras (Ammonoidea). Bull Soc Géol Fr 174:607–615Google Scholar
  205. Morita R (1993) Development mechanics of retractor muscles and the “Dead Spiral Model” in gastropod shell morphogenesis. N Jb Geol Paläontol Abh 190:191–217Google Scholar
  206. Morita R (2003) Why do univalve shells of gastropods coil so tightly? A head-foot guidance model of shell growth and its implication on developmental constraints. In: Sekimura T, Noji S, Ueno N, Maini PK (eds) Morphogenesis and pattern formation in biological systems: experiments and models. Springer, TokyoGoogle Scholar
  207. Moulton DE, Goreily A, Chirat R (2012) Mechanical growth and morphogenesis of seashells. J Theor Biol 311:69–79Google Scholar
  208. Moulton DE, Goriely A, Chirat R (2015) The morpho-mechanical basis of ammonite form. J Theor Biol 364C:220–230Google Scholar
  209. Naglik C, Tajika A, Chamberlain J, Klug C (2015) Ammonoid locomotion. In: Klug C et al (eds), Ammonoid Paleobiology: from anatomy to ecology (Topics in Geobiology 44, Springer, New York, doi: 10.1007/978-94-017-9633-0_13)Google Scholar
  210. Neige P, Marchand D, Bonnot A (1997) Ammonoid morphological signal versus sea-level changes. Geol Mag 134:261–264Google Scholar
  211. Neige P, Brayard A, Gerber S, Rouget I (2009) Les Ammonoïdes (Mollusca, Cephalopoda): avancées et contributions récentes à la paléobiologie évolutive. C R Palevol 8:167–178Google Scholar
  212. Nesis K (1986) On the feeding habits and the causes of the extinction of some heteromorph ammonites. Paleontol Zh:8–15Google Scholar
  213. Neville GT (1962) The concept of homoeomorphy. Proc Geol Assoc 73:9–64Google Scholar
  214. Newell ND (1949) Phyletic size increase, an important trend illustrated by fossil invertebrates. Evol (Int J Org Evol) 3:103–124Google Scholar
  215. Novack-Gottshall PM, Lanier MA (2008) Scale-dependence of Cope’s rule in body size evolution of paleozoic brachiopods. Proc Natl Acad Sci U S A 105:5430–5434Google Scholar
  216. Nützel A, Frýda J (2003) Paleozoic plankton revolution: evidence from early gastropod ontogeny. Geology 31:829–831Google Scholar
  217. Olóriz F, Palmqvist P (1995) Sutural complexity and bathymetry in ammonites: fact or artifact? Lethaia 28:167–170Google Scholar
  218. Olóriz F, Palmqvist P, Pérez -Claros JA (1997) Shell features, main colonized environments, and fractal analysis of sutures in Late Jurassic ammonites. Lethaia 30:191–204Google Scholar
  219. Olóriz F, Palmqvist P, Pérez -Claros JA (1999) Recent advances in morphometric approaches to covariation of shell features and the complexity of suture lines in Late Jurassic ammonites, with reference to the major environments colonized. In: Olóriz F, Rodriguez-Tovar FJ (eds) Advancing research on living and fossil cephalopods. Kluwer Academic (Plenum Press), New YorkGoogle Scholar
  220. Olóriz F, Palmqvist P, Pérez-Claros A (2002) Morphostructural constraints and phylogenetic overprint on sutural frilling in Late Jurassic ammonites. Lethaia 35:158–168Google Scholar
  221. Page KN (1996) Mesozoic ammonoids in space and time. In: Landman NH, Tanabe K, Davis A (eds) Ammonoid paleobiology (Topics in Geobiology, 13). Plenum Press, New YorkGoogle Scholar
  222. Parent H, Bejas M, Greco AF (2010) Size-shape relationships in the Mesozoic planispiral ammonites. Acta Palaeontol Polonica 55:85–98Google Scholar
  223. Parent H, Bejas M, Greco AF, Hammer Ø (2012) Relationships between dimensionless models of ammonoid shell morphology. Acta Palaeont Polonica 57:445–447Google Scholar
  224. Pérez-Claros JA, Palmqvist P, Oloriz F (2002) First and second orders of suture complexity in ammonites: a new methodological approach using fractal analysis. Math Geol 34:323–343Google Scholar
  225. Pérez-Claros JA, Olóriz F, Palmqvist P (2007) Sutural complexity in Late Jurassic ammonites and its relationship with phragmocone size and shape: a multidimensional approach using fractal analysis. Lethaia 40:253–272Google Scholar
  226. Pfaff E (1911) Über Form und Bau der Ammonitensepten und ihre Beziehungen zur Suturlinie. Jb Nieders Geol Vereins Hann 1911:207–223Google Scholar
  227. Pigliucci M (2008) Adaptive landscapes, phenotypic space, and the power of metaphors. Quart Rev Biol 83(3):283–287. doi:10.1086/590511Google Scholar
  228. Prud’homme B, Gompel N, Rokas A, Kassner VA, Williams TM, Yeh SD, True JR, Caroll SB (2006) Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature 440:1050–1053Google Scholar
  229. Raff RA (1987) Constraint, flexibility, and phylogenetic history in the evolution of direct development in sea urchins. Dev Biol 119:6–19Google Scholar
  230. Raup DM (1966) Geometric analysis of shell coiling: general problems. J Paleontol 40:1178–1190Google Scholar
  231. Raup DM (1967) Geometrical analysis of shell coiling: coiling in ammonoids. J Paleontol 41:43–65Google Scholar
  232. Raup DM (1997) Stochastic models in evolutionary paleobiology. In: Hallam A (ed) Patterns of evolution as illustrated by the fossil record. Elsevier, AmsterdamGoogle Scholar
  233. Raup DM, Crick RE (1981) Evolution of single characters in the Jurassic ammonite Kosmoceras. Paleobiology 7:200–215Google Scholar
  234. Raup DM, Crick RE (1982) Kosmoceras evolutionary jumps and sedimentary breaks. Paleobiology 8:90–100Google Scholar
  235. Raup DM, Gould SJ (1974) Stochastic simulation and evolution of morphology—towards a nomothetic paleontology. Syst Zool 23:305–322Google Scholar
  236. Raup DM, Gould SJ, Schopf TJM, Simberloff DS (1973) Stochastic models of phylogeny and the evolution of diversity. J Geol 81:525–542Google Scholar
  237. Reeside JB, Cobban WA (1960) Studies of the Mowry Shale (Cretaceous) and contemporary formations in the United States and Canada. U. S Geol Surv Prof Pap 355:1–126Google Scholar
  238. Rensch B (1948) Histological changes correlated with evolutionary changes of body size. Evol (Int J Org Evol) 2:218–230Google Scholar
  239. Rensch B (1959) Evolution above the species level. Columbia University Press, New YorkGoogle Scholar
  240. Reyment RA (1955) Some examples of homeomorphy in Nigerian Cretaceous ammonites. Geol Fören Stockh Förh 77:567–594Google Scholar
  241. Ritterbush KA, Bottjer DJ (2012) Westermann morphospace displays ammonoid shell shape and hypothetical paleoecology. Paleobiology 38:424–446Google Scholar
  242. Ritterbush K, De Baets K, Hoffmann R, Lukeneder A (2014) Pelagic palaeoecology: the importance of recent constraints on ammonoid palaeobiology and life history. J Zool. doi:10.1111/jzo.12118Google Scholar
  243. Roopnarine PD (2001) The description and classification of evolutionary mode: a computational approach. Paleobiology 27:446–465Google Scholar
  244. Roopnarine PD, Byars G, Fitzgerald P (1999) Anagenetic evolution, stratophenetic patterns, and random walk models. Paleobiology 25:41–57Google Scholar
  245. Rudwick MJS (1965) Adaptive homoeomorphy in the brachiopods Tetractinella Bittner and Cheirothyris Rollier. Paläontol Z 39:134–146Google Scholar
  246. Sanderson MJ, Hufford L (1996) Homoplasy: the recurrence of similarity in evolution. Academic Press, San DiegoGoogle Scholar
  247. Saunders WB (1995) The ammonoid suture problem: relationships between shell and septum thickness and suture complexity in Paleozoic ammonoids. Paleobiology 21:343–355Google Scholar
  248. Saunders WB, Shapiro EA (1986) Calculation and simulation of ammonoid hydrostatics. Paleobiology 12:64–79Google Scholar
  249. Saunders WB, Work DM (1996) Shell morphology and suture complexity in Upper Carboniferous ammonoids. Paleobiology 22:189–218Google Scholar
  250. Saunders WB, Work DM (1997) Evolution of shell morphology and suture complexity in Paleozoic prolecanitids, the rootstock of Mesozoic ammonoids. Paleobiology 23:301–325Google Scholar
  251. Saunders WB, Work DM, Nikolaeva SV (1999) Evolution of complexity in Paleozoic ammonoid sutures. Science 286:760–763Google Scholar
  252. Saunders WB, Work DM, Nikolaeva SV (2004) The evolutionary history of shell geometry in Paleozoic ammonoids. Paleobiology 30:19–43Google Scholar
  253. Saunders WB, Greenfest-Allen E, Work DM, Nikolaeva SV (2008) Morphologic and taxonomic history of Paleozoic ammonoids in time and morphospace. Paleobiology 34:128–154Google Scholar
  254. Schindewolf OH (1933) Vergleichende Morphologie und Phylogenie der Anfangskammern tetrabranchiater Cephalopoden. Eine Studie über Herkunft, Stammesentwicklung und System der niederen Ammoneen. Abh Preuß Geol Landesanst N Fe 148:1–115Google Scholar
  255. Schindewolf OH (1940) Konvergenz bei Korallen und bei Ammoniten. Fortschr Geol Paläontol 12:387–491Google Scholar
  256. Schindewolf OH (1950) Grundfragen der Paläontologie. Geologische Zeitmessung. Organische Stammesentwicklung. Biologische Systematik. Schweizerbart, StuttgartGoogle Scholar
  257. Schluter D (2000) The ecology of adaptive radiations. Oxford University Press, OxfordGoogle Scholar
  258. Schmidt H (1930) Über die Bewegungsweise der Schalencephalopoden. Paläontol Z 12:194–208Google Scholar
  259. Seilacher A (1970) Arbeitskonzept zur Konstruktions-Morphologie. Lethaia 3:393–396Google Scholar
  260. Seilacher A (1973) Fabricational noise in adaptive morphology. Syst Zool 222:451–465Google Scholar
  261. Seilacher A (1988) Why are nautiloid and ammonoid sutures so different? N Jb Geol Paläontol Abh 177:41–69Google Scholar
  262. Seki K, Tanabe K, Landman NH, Jacobs DK (2000) Hydrodynamic analysis of Late Cretaceous desmoceratine ammonites. Rev Paléobiol 8:141–155 (Special Volume)Google Scholar
  263. Sepkoski JJ (1998) Rates of speciation in the fossil record. Phil Trans R Soc Lond B 353:315–326Google Scholar
  264. Serb JM, Eernisse DJ (2008) Charting evolution’s trajectory: using molluscan eye diversity to understand parallel and convergent evolution. Evol: Educ Outreach 2008(1):439–447Google Scholar
  265. Sheets HD, Mitchell CE (2001) Why the null matters: statistical tests, random walks and evolution. Genetica 112–113:105–125Google Scholar
  266. Silberling NJ, Nichols KM (1980) Phylogenetic patterns among Middle Triassic ammonites. Riv Ital Paleontol 85:737–740Google Scholar
  267. Simpson GG (1953) The major features of evolution. Columbia University Press, New YorkGoogle Scholar
  268. Stanley SM (1973) An explanation for Cope’s rule. Evol (Int J Org Evol) 27:1–26Google Scholar
  269. Stanley SM (1979) Macroevolution: pattern and process. Freeman, San FranciscoGoogle Scholar
  270. Stayton CT (2006) Testing hypotheses of convergence with multivariate data: morphological and functional convergence among herbivorous lizards. Evol (Int J Org Evol) 60:824–841Google Scholar
  271. Swinnerton HH, Trueman AE (1917) The morphology and development of the ammonite septum. Quart J Geol Soc 73:26–58Google Scholar
  272. Tabin CJ (1992) Why we have (only) five fingers per hand: hox genes and the evolution of paired limbs. Development 116:289–296Google Scholar
  273. Tanabe K, Kruta I, Landman NH (2015) Ammonoid buccal mass and jaw apparatus. In: Klug C et al (eds), Ammonoid Paleobiology: from anatomy to ecology (Topics in Geobiology 44, Springer, New York, doi: 10.1007/978-94-017-9633-0_13)Google Scholar
  274. Thierry J (1982) Rythme d’évolution des caractères morphologiques chez les Macrocephalitidae (Cephalopoda, Ammonitina, Jurassique Moyen). In: Chaline J (ed) Modalités, rythmes, mécanismes de l’évolution biologique, Colloq Int Cent Nat Rech Sci, Vol 330, pp. 211–218Google Scholar
  275. Trammer J, Kaim A (1999) Active trends, passive trends, Cope’s rule and temporal scaling: new categorization of cladogenetic changes in body size. Hist Biol 13:113–125Google Scholar
  276. Ubukata T, Tanabe K, Shigeta Y, Maeda H, Mapes RH (2008) Piggyback whorls: a new theoretical morphologic model reveals constructional linkages among morphological characters in ammonoids. Acta Palaeontol Pol 53:113–128Google Scholar
  277. Urdy S, Chirat R (2006) Snail shell coiling (re-)evolution and the evo-devo revolution. J Zool Syst Evol Res 44:1–7Google Scholar
  278. Urdy S, Goudemand N, Bucher H, Chirat R (2010a) Allometries and the morphogenesis of the molluscan shell: a quantitative and theoretical model. J Exp Zool (Mol Dev Evol) 314B:280–302Google Scholar
  279. Urdy S, Goudemand N, Bucher H, Chirat R (2010b) Growth-dependent phenotypic variation of molluscan shells: implications for allometric data interpretation. J Exp Zool (Mol Dev Evol) 314B:303–326Google Scholar
  280. Valentine JW, Collins AG, Meyer CP (1994) Morphological complexity increase in metazoans. Paleobiology 20:131–142Google Scholar
  281. Vermeij GJ (1987) Evolution and escalation an ecological history of life. Princeton University Press, PrincetonGoogle Scholar
  282. Vörös A (2002) Paleoenvironmental distribution of some Middle Triassic ammonoid genera in the Balaton Highland (Hungary). Abh Geol B-A 57:479–490Google Scholar
  283. Vrba ES (1980) Evolution, species and fossils: how does life evolve? S Afr J Sci 76:61–84Google Scholar
  284. Vrba ES (1983) Macroevolutionary trends: new perspectives on the roles of adaptation and incidental effect. Science 221:387–389Google Scholar
  285. Vrba ES (1984) Patterns in the fossil record and evolutionary processes. In: Ho MW, Saunders PT (eds) Beyond neo-darwinism: an introduction to the new evolutionary paradigm. Academic Press, LondonGoogle Scholar
  286. Vrba ES, Gould SJ (1986) The hierarchical expansion of sorting and selection: sorting and selection cannot be equated. Paleobiology 12:217–228Google Scholar
  287. Waddington CH (1941) Evolution of developmental systems. Nature 147:108–110Google Scholar
  288. Wagner PJ (1996) Contrasting the underlying patterns of active trends in morphologic evolution. Evol (Int J Org Evol) 50:990–1007Google Scholar
  289. Wagner PJ, Erwin DH (2006) Patterns of convergence in general shell form among Paleozoic gastropods. Paleobiology 32:316–337Google Scholar
  290. Wake DB (1991) Homoplasy: the result of natural selection or evidence of design constraints? Am Nat 138:543–567Google Scholar
  291. Wake DB, Wake MH, Specht CD (2011) Homoplasy: from detecting pattern to determining process and mechanism of evolution. Science 331:1032–1035Google Scholar
  292. Wang SC (2001) Quantifying passive and driven large-scale evolutionary trends. Evol (Int J Org Evol) 55:849–858Google Scholar
  293. Wang SC (2005) Accounting for unequal variances in evolutionary trend mechanisms. Paleobiology 31:191–198Google Scholar
  294. Wani R, Gupta NS (2015) Taphonomy. This volumeGoogle Scholar
  295. Ward PD (1981) Shell sculpture as a defensive adaptation in ammonoids. Paleobiology 7:96–100Google Scholar
  296. Ward PD (1988) In search of Nautilus. Simon and Schuster, New YorkGoogle Scholar
  297. Ward P (1996) Ammonoid extinction In: Landman NH, Tanabe K, Davis A (eds) Ammonoid paleobiology (Topics in Geobiology 13). Plenum Press, New YorkGoogle Scholar
  298. Webb GE (1994) Parallelism, non-biotic data and phylogeny reconstruction in paleobiology. Lethaia 27:185–192Google Scholar
  299. Weitschat W, Bandel K (1991) Organic components in phragmocones of Boreal Triassic ammonoids: implications for ammonoid biology. Paläontol Z 65:269–303Google Scholar
  300. Wells M (1999) Why the ammonites snuffed it. Mar Freshw Behav Physiol 32:103–111Google Scholar
  301. Westermann GEG (1966) Covariation and taxonomy of the Jurassic ammonite Sonninia adicra (Waagen). N Jb Geol Paläontol Abh 124:289–312Google Scholar
  302. Westermann GEG (1971) Form, structure and function of shell and siphuncle in coiled Mesozoic ammonoids. Life Sci Contrib Royal Ont Mus 78:1–39Google Scholar
  303. Westermann GEG (1975) Model for origin, function and fabrication of fluted cephalopod septa. Paläontol Z 49:235–253Google Scholar
  304. Westermann GEG (1996) Ammonoid life and habitat. In: Landman NH, Tanabe K, Davis A (eds) Ammonoid paleobiology (Topics in Geobiology 13). Plenum Press, New YorkGoogle Scholar
  305. Westermann GEG, Tsujita CJ (1999) Life habits of ammonoids. In: Savazzi E (ed) Functional morphology of the invertebrate skeleton. Wiley, ChichesterGoogle Scholar
  306. Wiedmann J (1966) Stammesgeschichte und System der posttriadischen Ammonoideen. Ein Überblick. N Jb Geol Paläontol 127:13–81Google Scholar
  307. Wiedmann J (1969) The heteromorphs and ammonoid extinction. Biol Rev 44:563–602Google Scholar
  308. Wiedmann J (1973) Evolution or revolution of ammonoids at Mesozoic system boundaries. Biol Rev 48:159–194Google Scholar
  309. Williamson PG (1981) Morphological stasis and developmental constraint: real problems for Neo-Darwinism. Nature 294:214–215Google Scholar
  310. Wilmsen M, Mosavinia A (2011) Phenotypic plasticity and taxonomy of Schloenbachia varians (J. Sowerby, 1817) (Cretaceous Ammonoidea). Palaeontol Z 85:169–184Google Scholar
  311. Wilson LAB (2013) The contribution of developmental palaeontology to extensions of evolutionary theory. Acta Zool 94:254–260Google Scholar
  312. Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proceedings of the Sixth International Congress Genetics, 1, pp 356–366Google Scholar
  313. Wright CW, Kennedy WJ (1979) Origin and evolution of the Cretaceous micromorph ammonite family Flickiidae. Palaeontology 22:685–704Google Scholar
  314. Yacobucci MM (2004) Buckman’s paradox: variability and constraints on ammonoid ornament and shell shape. Lethaia 37:57–69Google Scholar
  315. Yacobucci MM (2012) Meta-analysis of character utility and phylogenetic information content in cladistic studies of ammonoids. Geobios 45:139–143Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Claude Monnet
    • 1
  • Christian Klug
    • 2
  • Kenneth De Baets
    • 3
  1. 1.UMR CNRS 8217 Géosystèmes, UFR des Sciences de la Terre (SN5)Université de Lille 1Villeneuve d’Ascq cedexFrance
  2. 2.Paläontologisches Institut und MuseumUniversität ZürichZürichSwitzerland
  3. 3.GeoZentrum Nordbayern, Fachgruppe PaläoUmweltFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations