Buckman’s Rules of Covariation

  • Claude MonnetEmail author
  • Kenneth De Baets
  • Margaret M. Yacobucci
Part of the Topics in Geobiology book series (TGBI, volume 44)


Most planispirally and regularly coiled ammonoid species show to varying degrees continuous morphological intraspecific variation of their shell. In many species, individuals range from slender, involute, compressed, and weakly ornamented forms to “robust” forms, which are more evolute, more depressed, and with coarser ornamentation. Additionally, more compressed shells tend to have more complex sutures. Within a species from a single sample, the frequency of these variants is represented by a continuous unimodal distribution (often normal). These covariation patterns of intraspecific variation have been abundantly documented and were coined “Buckmans Laws of Covariation”. These rules help to delineate ammonoid morphospecies. This interdependent morphological variation suggests that shell morphogenesis may not be random but constrained either by adaptive constraints or simple constructional scaling rules. The cause(s) remain debated. Hence, although Buckman’s rules of covariation are now widely documented and acknowledged, several aspects of their scope and limits still remain to be investigated.


Ammonoids Cephalopoda Intraspecific variation Morphological variability Shell morphogenesis Taxonomy 



We warmly thank Arnaud Brayard (Dijon), Hugo Bucher, Christian Klug, David Ware and Maximiliano Meier (all Zürich) for constructive discussion on ammonoid taxonomy and providing datasets. The referees Christian Klug (Zürich) and Jean Guex (Lausanne) are also thanked for their comments.


  1. Allen EG (2006) New approaches to Fourier analysis of ammonoid sutures and other complex, open curves. Paleobiology 32:299–315Google Scholar
  2. Arkell WJ, Furnish WM, Kummel B, Miller AK, Moore RC, Schindewolf OH, Sylvester-Bradley PC, Wright CW (1957) Treatise on invertebrate paleontology. Part L. Mollusca 4. Cephalopoda, Ammonoidea. Geological Society of America, University of KansasGoogle Scholar
  3. Atrops F, Melendez G (1993) Current trends in systematics of Jurassic Ammonoidea the case of Oxfordian-Kimmeridgian perisphinctids from southern Europe. Geobios Mem Spec 15:19–31Google Scholar
  4. Batt RJ (1989) Ammonite shell morphotype distributions in the Western Interior Greenhorn Sea and some paleoecological implications. Palaios 4:32–42Google Scholar
  5. Batt RJ (1991) Sutural amplitude of ammonite shells as a paleoenvironmental indicator. Lethaia 24:219–225Google Scholar
  6. Bayer U (1972) Zur Ontogenie und Variabilität des jurassischen Ammoniten Leioceras opalinum. N Jb Geol Paläont Abh 140:306–327Google Scholar
  7. Bayer U, McGhee GR (1984) Iterative evolution of Middle Jurassic ammonite faunas. Lethaia 17:1–6Google Scholar
  8. Bert D (2013) Factors of intraspecific variability in ammonites, the example of Gassendiceras alpinum (d’Orbigny, 1850) (Hemihoplitidae, Upper Barremian). Ann Paleontolog.
  9. Bert D, Delanoy G, Bersac S (2011) The Dichotomus Horizon: a new biochronologic unit of the Giraudi Zone of the Upper Barremian of southeastern France, and considerations regarding the genus Imerites Rouchadzé (Ammonoidea, Gassendiceratinae). Noteb Geol CG2011–A01Google Scholar
  10. Bert D, Bersac S, Delanoy G, Canut L (2013) Palaeontology, taxonomic revision and variability of some species of the genus Gassendiceras Bert et al., 2006 (Ammonitina, Upper Barremian) from southeastern France. Acta Geol Polon 63:355–397Google Scholar
  11. Boettiger A, Ermentrout B, Oster G (2009) The neural origins of shell structure and pattern in aquatic mollusks. Proc Natl Acad Sci U S A 106:6837–6842Google Scholar
  12. Boyajian G, Lutz T (1992) Evolution of biological complexity and its relation to taxonomic longevity in the Ammonoidea. Geology 20:983–986Google Scholar
  13. Boyle P, Rodhouse P (2005) Cephalopods—ecology and fisheries. Blackwell Publishing, OxfordGoogle Scholar
  14. Brayard A, Bylund KG, Jenks JF, Stephen DA, Olivier N, Escarguel G, Fara E, Vennin E (2013) Smithian ammonoid faunas from Utah: implications for Early Triassic biostratigraphy, correlation and basinal paleogeography. Swiss J Palaeontol 132:141–219Google Scholar
  15. Buckman SS (1892) Monograph of the ammonites of the Inferior Oolite Series. Part VII. Monogr Palaeontol Soc 220:313–344Google Scholar
  16. Bush AM, Powell MG, Arnold WS, Bert TM, Daley GM (2002) Time-averaging, evolution, and morphologic variation. Paleobiology 28:9–25Google Scholar
  17. Butler MA, Sawyer SA, Losos JB (2007) Sexual dimorphism and adaptive radiation in Anolis lizards. Nature 447:202–205Google Scholar
  18. Callomon JH (1985) The evolution of the Jurassic ammonite family Cardioceratidae. Spec Pap Palaeont 33:49–90Google Scholar
  19. Chandler R, Callomon JH (2009) The Inferior Oolite at Coombe Quarry, near Mapperton, Dorset, and a new Middle Jurassic ammonite faunal horizon, Aa-3b, Leioceras comptocostosum n.biosp. in the Scissum Zone of the Lower Aalenian. Proc Dorset Nat Hist Archaeol Soc 130:99–132Google Scholar
  20. Checa AG (1987) Morphogenesis in ammonites—differences linked to growth pattern. Lethaia 20:141–148Google Scholar
  21. Checa AG (1994) A model for the morphogenesis of ribs in ammonites inferred from associated microsculptures. Palaeontology 37:863–888Google Scholar
  22. Checa AG, Garcia-Ruiz JM (1996) Morphogenesis of the septum in ammonoids. In: Landman NH, Tanabe K, Davies RA (eds) Ammonoid paleobiology. Plenum Press, New YorkGoogle Scholar
  23. Checa AG, Westermann GEG (1989) Segmental growth in planulate ammonites: inferences on costal function. Lethaia 22:95–100Google Scholar
  24. Checa AG, Company M, Sandoval J, Weitschat W (1997) Covariation of morphological characters in the Triassic ammonoid Czekanowskites rieberi. Lethaia 29:225–235Google Scholar
  25. Chirat R, Moulton DE, Goreily A (2013) Mechanical basis of morphogenesis and convergent evolution of spiny seashells. Proc Natl Acad Sci U S A 110:6015–6020Google Scholar
  26. Courville P, Crônier C (2003) Les hétérochronies du développement: un outil pour l’étude de la variabilité et des relations phylétiques? Exemple de Nigericeras, Ammonitina du Crétacé supérieur africain. C R Palevol 2:535–546Google Scholar
  27. Courville P, Thierry J (1993) Sous-espèces géographiques et/ou contrôle environemental de la variabilité morphologique chez “Thomasitesgongilensis (Woods, 1911), (Ammonitina, Acanthocerataceae, Vascoceratinae) du Turonien inférieur de la Haute Bénoué (Nigéria). Geobios Mem Spéc 15:73–89Google Scholar
  28. Dagys AS (2001) The ammonoid family Arctohungaritidae from the Boreal Lower–Middle Anisian (Triassic) of Arctic Asia. Rev Paléobiol 20:543–641Google Scholar
  29. Dagys AS, Weitschat W (1993) Extensive intraspecific variation in a Triassic ammonoid from Siberia. Lethaia 26:113–121Google Scholar
  30. Dagys AS, Bucher H, Weitschat W (1999) Intraspecific variation of Parasibirites kolymensis Bychkov (Ammonoidea) from the lower Triassic (Spathian) of Arctic Asia. Mitt Geol-Paläont Inst Univ Hamburg 83:163–178Google Scholar
  31. Davis JC (2002) Statistics and data analysis in geology, 3rd edn. Wiley, New YorkGoogle Scholar
  32. Davis RA, Landman NH, Dommergues JL, Marchand D, Bucher H (1996) Mature modifications and dimorphism in ammonoid cephalopods. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum Press, New YorkGoogle Scholar
  33. De Baets K, Klug C, Monnet C (2013) Intraspecific variability through ontogeny in early ammonoids. Paleobiology 39:75–94Google Scholar
  34. De Baets K, Bert D, Hoffmann R, Monnet C, Yacobucci MM, Klug C (2015) Ammonoid intraspecific variability. Ammonoid Paleobiology: from anatomy to ecologyGoogle Scholar
  35. De Blasio FV (2008) The role of suture complexity in diminishing strain and stress in ammonoid phragmocones. Lethaia 41:15–24Google Scholar
  36. Delanoy G (1997) Biostratigraphie des faunes d’Ammonites à la limite Barrémien-Aptien dans la région d’Angles-Barrême-Castellane. Étude particulière de la Famille des Heteroceratidae Spath 1922 (Ancyloceratina, Ammonoidea). Annales du Museum d´Histoire Naturelle de Nice 12:1–270Google Scholar
  37. Dietl G (1978) Die heteromorphen Ammoniten des Dogger. Stuttg Beitr Naturk Ser B 33:1–32Google Scholar
  38. Dietze V, Callomon JH, Schweigert G, Chandler RB (2005) The ammonite fauna and biostratigraphy of the Lower Bajocian (ovale and laeviuscula zones) of E Swabia (S Germany). Stuttg Beitr Naturk Ser B 353:1–82Google Scholar
  39. Dobzhansky T (1937) Genetics and the origin of species. Columbia University Press, ColumbiaGoogle Scholar
  40. Dommergues JL, David B, Marchand D (1986) Les relations ontogénèse-phylogénèse: applications paléontologiques. Geobios 19:335–356Google Scholar
  41. Dommergues JL, Laurin B, Meister C (1996) Evolution of ammonoid morphospace during the Early Jurassic radiation. Paleobiology 22:219–240Google Scholar
  42. Dzik J (1985) Typologic versus population concepts of chronospecies: implications for ammonite biostratigraphy. Acta Palaeontol Polon 30:71–92Google Scholar
  43. Dzik J (1990) The ammonite Acrochordiceras in the Triassic of Silesia. Acta Palaeontol Polon 35:49–65Google Scholar
  44. Ebbighausen R, Korn D (2007) Conch geometry and ontogenetic trajectories in the triangularly coiled Late Devonian ammonoid Wocklumeria and related genera. N Jb Geol Paläont Abh 244:9–41Google Scholar
  45. Elmi S (1993) Loi des aires, couche-limite et morphologie fonctionnelle de la coquille des cephalopodes (ammonoïdes). Geobios Mem Spéc 15:121–138Google Scholar
  46. Erwin DH, Valentine JW, Sepkoski JJ (1987) A comparative study of diversification events: the early Paleozoic versus the Mesozoic. Evolution 41:1177–1186Google Scholar
  47. Fowler DR, Meinhardt H, Prusinkiewicz P (1992) Modeling seashells. Comput Gr 26:379–387Google Scholar
  48. Furnish WM, Knapp WD (1966) Lower Pennsylvanian fauna from Eastern Kentucky; part 1, ammonoids. J Paleontol 40:296–308Google Scholar
  49. Garcia-Ruiz JM, Checa A, Rivas P (1990) On the origin of ammonite sutures. Paleobiology 16:349–354Google Scholar
  50. Gildner RF (2003) A Fourier method to describe and compare suture patterns. Palaeontol Electron 6(12)Google Scholar
  51. Gould SJ (2002) The structure of evolutionary theory. Belknap Press, CambridgeGoogle Scholar
  52. Guex J, Koch A, O’Dogherty L, Bucher H (2003) A morphogenetic explanation of Buckmans law of covariation. Bull Soc Geol Fr 174:603–606Google Scholar
  53. Haas O (1946) Intraspecific variation in, and ontogeny of, Prionotropis woolgari and Prionocyclus wyomingensis. Am Mus Nat Hist 86:145–224Google Scholar
  54. Hammer Ø, Bucher H (1999) Reaction-diffusion processes: application to the morphogenesis of ammonoid ornamentation. Geobios 32:841–852Google Scholar
  55. Hammer Ø, Bucher H (2005) Buckman’s first law of covariation—a case of proportionality. Lethaia 38:67–72Google Scholar
  56. Hammer Ø, Bucher H (2006a) Generalized ammonoid hydrostatics modelling, with application to Intornites and intraspecific variation. Paleontol Res Jpn 10:91–96Google Scholar
  57. Hammer Ø, Harper DAT (2006b) Paleontological data analysis. Blackwell, OxfordGoogle Scholar
  58. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9Google Scholar
  59. Hewitt RA (1996) Architecture and strength of the ammonoid shell. In: Landman NH, Tanabe K, Davis A (eds) Ammonoid paleobiology (Topics in Geobiology, 13). Plenum Press, New YorkGoogle Scholar
  60. Hohenegger J, Tatzreiter F (1992) Morphometric methods in determination of ammonite species, exemplified through Balatonites shells (Middle Triassic). J Paleontol 66:801–816Google Scholar
  61. Hunt G (2004) Phenotypic variation in fossil samples: modeling the consequences of time-averaging. Paleobiology 30:426–443Google Scholar
  62. Ifrim C (2013) Paleobiology and paleoecology of the early Turonian (late Cretaceous) ammonite Pseudaspidoceras flexuosum. Palaios 28:9–22Google Scholar
  63. Jacobs DK (1992) Shape, drag, and power in ammonoid swimming. Paleobiology 18:203–220Google Scholar
  64. Jacobs DK, Chamberlain JA (1996) Buoyancy and hydrodynamics in ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology (Topics in Geobiology, 13). Plenum Press, New YorkGoogle Scholar
  65. Jacobs DK, Landman NH, Chamberlain JA (1994) Ammonite shell shape covaries with facies and hydrodynamics: iterative evolution as a response to changes in basinal environment. Geology 22:905–908Google Scholar
  66. Jayet A (1929) La variation individuelle chez les ammonites et la diagnose des espèces. Note préliminaire basée sur l’analyse d’Inflaticeras varicosum (Sowerby). Mém Soc Paléonto Suisse 49:1–11Google Scholar
  67. Kakabadze MV (2004) Intraspecific and intrageneric variabilities and their implication for the systematics of Cretaceous heteromorph ammonites: a review. Scripta Geol 128:17–37Google Scholar
  68. Kaplan P (1999) Buckman’s rule of covariation and other trends in Paleozoic Ammonoidea; morphological integration as key innovation. Geol Soc Am Abstr Progr 31:172Google Scholar
  69. Kawabe F (2003) Relationship between mid-Cretaceous (upper Albian-Cenomanian) ammonoid facies and lithofacies in the Yezo forearc basin, Hokkaido, Japan. Cretac Res 24:751–763Google Scholar
  70. Kennedy WJ, Cobban WA (1976) Aspects of ammonite biology, biogeography, and biostratigraphy. Spec Pap Palaeont 17:1–94Google Scholar
  71. Kennedy WJ, Hancock JM (1970) Ammonites of the genus Acanthoceras from the Cenomanian of Rouen, France. Palaeontology 13:462–490Google Scholar
  72. Kennedy WJ, Wright CW (1985) Evolutionary patterns in late Cretaceous ammonites. Spec Pap Palaeont 33:131–143Google Scholar
  73. Kennedy WJ, Cobban WA, Landman NH (2001) A revision of the Turonian members of the ammonite subfamily Collignoniceratinae from the United States Western Interior and Gulf Coast. Bull Am Mus Nat Hist 267:1–148Google Scholar
  74. Kidwell SM, Holland SM (2002) The quality of the fossil record: implications for evolutionary analyses. Annu Rev Ecol Syst 33:561–88Google Scholar
  75. Klug C, Hoffmann R (2015) Ammonoid septa and sutures. Ammonoid Paleobiology: From anatomy to ecologyGoogle Scholar
  76. Klug C, Korn D (2004) The origin of ammonoid locomotion. Acta Palaeontol Polon 49:235–242Google Scholar
  77. Klug C, Meyer E, Richter U, Korn D (2008) Soft-tissue imprints in fossil and recent cephalopod septa and septum formation. Lethaia 41:477–492Google Scholar
  78. Klug C, Korn D, Landman NH, Tanabe K (2015a) Ammonoid shell form. Ammonoid Paleobiology: from anatomy to ecologyGoogle Scholar
  79. Klug C, Zaton M, Parent H, Hostettler B, Tajika A (2015b) Mature modifications and sexual dimorphism. Ammonoid Paleobiology: from anatomy to ecologyGoogle Scholar
  80. Knauss MJ, Yacobucci MM (2014) Geographic information systems technology as a morphometric tool for quantifying morphological variation in an ammonoid clade. Palaeontol Electron 17(1):20AGoogle Scholar
  81. Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24:189–216Google Scholar
  82. Kolbe SE, Lockwood R, Hunt G (2011) Does morphological variation buffer against extinction? A test using veneroid bivalves from the Plio-Pleistocene of Florida. Paleobiology 37:355–368Google Scholar
  83. Korn D (2010) A key for the description of Palaeozoic ammonoids. Foss Rec 13:5–12Google Scholar
  84. Korn D, Klug C (2003) Morphological pathways in the evolution of Early and Middle Devonian ammonoids. Paleobiology 29:329–348Google Scholar
  85. Korn D, Klug C (2007) Conch form analysis, variability, and morphological disparity of a Frasnian (Late Devonian) ammonoid assemblage from Coumiac (Montagne Noire, France). In: Landman NH, Davis RA, Manger W, Mapes RH (eds) Cephalopods—present and past. Springer, New YorkGoogle Scholar
  86. Korn D, Vöhringer E (2004) Allometric growth and intraspecific variability in the basal Carboniferous ammonoid Gattendorfia crassa schmidt, 1924. Paläontol Z 78:425–432Google Scholar
  87. Kraft S, Korn D, Klug C (2008) Patterns of ontogenetic septal spacing in Carboniferous ammonoids. N Jb Geol Paläontol Abh 250:31–44Google Scholar
  88. Landman NH, Waage KM (1993a) Morphology and environment of Upper Cretaceous (Maastrichtian) Scaphites. Geobios Mem Spec 15:257–265Google Scholar
  89. Landman NH, Waage KM (1993b) Scaphitid ammonites of the Upper Cretaceous (Maastrichtian) Fox Hills Formation in South Dakota and Wyoming. Bull Am Mus Nat Hist 215: 1–257Google Scholar
  90. Landman NH, Kennedy WJ, Cobban WA, Larson NL (2010) Scaphites of the “Nodosus Group” from the upper Cretaceous (Campanian) of the Western Interior of North America. Bull Am Mus Nat Hist 342:1–242Google Scholar
  91. Manship LL (2004) Pattern matching: classification of ammonitic sutures using GIS. Palaeont Electron 7(15)Google Scholar
  92. Martin E (2003) Intraspecific variation of Dufrenoyia furcata Sowerby (Ammonoidea, Ancylocerataceae, Deshayesitidae) from the Gargasian in the Vaucluse (Southern France). Mitt Geol-Paläont Inst Univ Hamburg 87:115–124Google Scholar
  93. Mayr E (1942) Systematics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  94. Mayr E (1948) The bearing of the new systematics on genetical problems—the nature of species. Adv Genet 2:205–237Google Scholar
  95. Mayr E (1963) Animal species and evolution. Harvard University Press, CambridgeGoogle Scholar
  96. Mayr E (1969) Principles of systematic zoology. McGraw-Hill, New YorkGoogle Scholar
  97. McCaleb JA, Furnish WM (1964) The Lower Pennsylvanian ammonoid genus Axinolobus in the southern midcontinent. J Paleontol 38:249–255Google Scholar
  98. Meinhardt H (1995) The algorithmic beauty of sea shells. Springer, BerlinGoogle Scholar
  99. Meister C (1988) Ontogenèse et évolution des Amaltheidae (Ammonoidea). Eclog Geol Helv 81:763–841Google Scholar
  100. Monnet C, Bucher H (2005) New middle and late Anisian (Middle Triassic) ammonoid faunas from northwestern Nevada (USA): taxonomy and biochronology. Foss Strat 52:1–121Google Scholar
  101. Monnet C, Brack P, Bucher H, Rieber H (2008) Ammonoids of the middle/late Anisian boundary (Middle Triassic) and the transgression of the Prezzo limestone in eastern Lombardy–Giudicarie (Italy). Swiss J Geosci 101:61–84Google Scholar
  102. Monnet C, Bucher H, Wasmer M, Guex J (2010) Revision of the genus Acrochordiceras Hyatt, 1877 (Ammonoidea, Middle Triassic): morphology, biometry, biostratigraphy and intraspecific variability. Palaeontology 53:961–996Google Scholar
  103. Monnet C, De Baets K, Klug C (2011) Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods. BMC Evol Biol 11:115. doi:10.1186/1471-2148-11-115Google Scholar
  104. Monnet C, Klug C, De Baets K (2014) Evolutionary patterns of ammonoids: phenotypic trends, convergence, and parallel evolution. This volumeGoogle Scholar
  105. Morard A, Guex J (2003) Ontogeny and covariation in the Toarcian genus Osperleioceras (Ammonoidea). Bull Soc Geol Fr 174:607–615Google Scholar
  106. Moulton DE, Goreily A, Chirat R (2012) Mechanical growth and morphogenesis of seashells. J Theor Biol 311:69–79Google Scholar
  107. Moulton DE, Goriely A, Chirat R (2015) The morpho-mechanical basis of ammonite form. J Theor Biol 364C:220–230Google Scholar
  108. Nettleship MT, Mapes RH (1993) Morphological variation, maturity, and sexual dimorphism in an upper Carboniferous ammonoid from the Midcontinent. Geol Soc Am Abstr Progr 25(2):67Google Scholar
  109. Nosil P (2012) Ecological speciation. Oxford series in ecology and evolution. Oxford University Press, OxfordGoogle Scholar
  110. Olóriz F, Palmqvist P, Pérez -Claros JA (1997) Shell features, main colonized environments, and fractal analysis of sutures in Late Jurassic ammonites. Lethaia 30:191–204Google Scholar
  111. Parsons PA (1987) Evolutionary rates under environmental stress. Evol Biol 21:311–347Google Scholar
  112. Paul CRC (2011) Sutural variation in the ammonites Oxynoticeras and Cheltonia from the lower Jurassic of Bishop’s cleeve, Gloucestershire, England and its significance for ammonite growth. Palaeogeogr, Palaeoclimatol, Palaeoecol 309:201–214Google Scholar
  113. Pérez-Claros JA (2005) Allometric and fractal exponents indicate a connection between metabolism and complex septa in ammonites. Paleobiology 31:221–232Google Scholar
  114. Pérez-Claros JA, Palmqvist P, Oloriz F (2002) First and second orders of suture complexity in ammonites: a new methodological approach using fractal analysis. Math Geol 34:323–343Google Scholar
  115. Pérez-Claros JA, Olóriz F, Palmqvist P (2007) Sutural complexity in Late Jurassic ammonites and its relationship with phragmocone size and shape: a multidimensional approach using fractal analysis. Lethaia 40:253–272Google Scholar
  116. Reeside JB, Cobban WA (1960) Studies of the Mowry Shale (Cretaceous) and contemporary formations in the United States and Canada. U S Geol Surv Prof Pap 355:1–126Google Scholar
  117. Reyment (1988) Does sexual dimorphism occur in upper Cretaceous ammonites. Senckenbergiana Lethaea 69:109–119Google Scholar
  118. Reyment RA, Kennedy WJ (1998) Taxonomic recognition of species of Neogastroplites (Ammonoidea, Cenomanian) by geometric morphometric methods. Cretac Res 19:25–42Google Scholar
  119. Ritterbush KA, Bottjer DJ (2012) Westermann Morphospace displays ammonoid shell shape and hypothetical paleoecology. Paleobiology 38:424–446Google Scholar
  120. Ritterbush K, De Baets K, Hoffmann R, Lukeneder A (2014) Pelagic palaeoecology: the importance of recent constraints on ammonoid palaeobiology and life history. J Zool. doi:10.1111/jzo.12118Google Scholar
  121. Ropolo P (1995) Implications of variation in coiling in some Hauterivian (lower Cretaceous) heteromorph ammonites from the Vocontian basin, France. Mem Descr Carta Geol Italia 51:137–165Google Scholar
  122. Sandoval J, Chandler RB (2000) The sonninid ammonite ‘Euhoploceras’ from the Middle Jurassic of South-West England and southern Spain. Palaeontology 43:495–532Google Scholar
  123. Saunders WB, Shapiro EA (1986) Calculation and simulation of ammonoid hydrostatics. Paleobiology 12:64–79Google Scholar
  124. Saunders WB, Work DM, Nikolaeva SV (1999) Evolution of complexity in Paleozoic ammonoid sutures. Science 286:760–763Google Scholar
  125. Saunders WB, Work DM, Nikolaeva SV (2004) The evolutionary history of shell geometry in Paleozoic ammonoids. Paleobiology 30:19–43Google Scholar
  126. Saunders WB, Greenfest-Allen E, Work DM, Nikolaeva SV (2008) Morphologic and taxonomic history of Paleozoic ammonoids in time and morphospace. Paleobiology 34:128–154Google Scholar
  127. Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, OxfordGoogle Scholar
  128. Schluter D (2001) Ecology and the origin of species. Trends Ecol Evol 16:372–380Google Scholar
  129. Seilacher A (1970) Arbeitskonzept zur Konstruktions-Morphologie. Lethaia 3:393–396Google Scholar
  130. Seilacher A (1973) Fabricational noise in adaptive morphology. Syst Zool 222:451–465Google Scholar
  131. Seilacher A (1988) Why are nautiloid and ammonoid sutures so different? N Jb Geol Paläontol Abh 177:41–69Google Scholar
  132. Seki K, Tanabe K, Landman NH, Jacobs DK (2000) Hydrodynamic analysis of Late Cretaceous desmoceratine ammonites. Revue Paleobiol Vol Spec 8:141–155Google Scholar
  133. Sheldon PR (1993) Making sense of microevolutionary patterns. In: Lees DR, Edwards D (eds) Evolutionary patterns and processes (Linnean Society Symposium, Vol 14). Academic Press, LondonGoogle Scholar
  134. Silberling NJ (1959) Pre-Tertiary stratigraphy and Upper Triassic paleontology of the Union District, Shoshone Mountains, Nevada. U S Geol Surv Prof Pap 322:1–67Google Scholar
  135. Silberling NJ (1962) Stratigraphic distribution of Middle Triassic ammonites at fossil hill, Humboldt Range, Nevada. J Paleontol 36:153–160Google Scholar
  136. Silberling NJ, Nichols KM (1982) Middle Triassic molluscan fossils of biostratigraphic significance from the Humboldt Range, Northwestern Nevada. U S Geol Surv Prof Pap 1207: 1–77Google Scholar
  137. Simpson GG (1944) Tempo and mode in evolution. Columbia University Press, New YorkGoogle Scholar
  138. Sniegowski PD, Murphy HA (2006) Evolvability. Curr Biol 16:831–834Google Scholar
  139. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. Freeman, New YorkGoogle Scholar
  140. Sokal RR, Sneath PHA (1963) Principles of numerical taxonomy. Freeman, San FranciscoGoogle Scholar
  141. Spicer JI, Rundle SD, Tills O (2011) Studying the altered timing of physiological events during development: it’s about time…or is it? Respir Physiol Neurobiol 178:3–12Google Scholar
  142. Stephen DA, Manger WL, Baker C (2002) Ontogeny and heterochrony in the middle Carboniferous ammonoid Arkanites relictus (Quinn, McCaleb and Webb) from the Northern Arkansas. J Paleontol 76:810–821Google Scholar
  143. Swan ARH, Saunders WB (1987) Function and shape in Late Paleozoic (mid-Carboniferous) ammonoids. Paleobiology 13:297–311Google Scholar
  144. Swinnerton HH, Trueman AE (1917) The morphology and development of the ammonite septum. Quart J Geol Soc 73:26–58Google Scholar
  145. Tanabe K (1993) Variability and mode of evolution of the middle Cretaceous ammonite Subprionocyclus (Ammonitina: Collignoniceratidae) from Japan. Geobios Mem Spec 15:347–357Google Scholar
  146. Templeton AR (2006) Population genetics and microevolutionary theory. Wiley, HobokenGoogle Scholar
  147. Tills O, Rundle SD, Salinger M, Haun T, Pfenninger M, Spicer JI (2011) A genetic basis for intraspecific differences in developmental timing? Evol Dev 13:542–548Google Scholar
  148. Tozer ET (1971) Triassic time and ammonoids: problems and proposals. Can J Earth Sci 8:989–1031Google Scholar
  149. Tsujino Y, Naruse H, Maeda H (2003) Estimation of allometric shell growth by fragmentary specimens of Baculites tanakae Matsumoto and Obata (a Late Cretaceous heteromorph ammonoid). Paleontol Res Jpn 7:245–255Google Scholar
  150. Ubukata T, Tanabe K, Shigeta Y, Maeda H, Mapes RH (2010) Eigenshape analysis of ammonoid sutures. Lethaia 43:266–277Google Scholar
  151. Ubukata T, Tanabe K, Shigeta Y, Maeda H, Mapes RH (2014) Wavelet analysis of ammonoid sutures. Palaeont Electron 17(1):9AGoogle Scholar
  152. Urdy S, Goudemand N, Bucher H, Chirat R (2010a) Allometries and the morphogenesis of the molluscan shell: a quantitative and theoretical model. J Exp Zool (Mol Dev Evol) 314B:280–302Google Scholar
  153. Urdy S, Goudemand N, Bucher H, Chirat R (2010b) Growth-dependent phenotypic variation of molluscan shells: implications for allometric data interpretation. J Exp Zool (Mol Dev Evol) 314B:303–326Google Scholar
  154. Urreta MBA, Riccardi AC (1988) Albian heteromorph ammonoids from Southern Patagonia, Argentina. J Paleontol 62:598–614Google Scholar
  155. Valentine JW (1995) Why no new phyla after the Cambrian? Genome and ecospace hypotheses revisited. Palaios 10:190–194Google Scholar
  156. Wagner GP, Altenberg L (1996) Complex adaptations and the evolution of evolvability. Evolution 50:967–976Google Scholar
  157. Weitschat W (2008) Intraspecific variation of Svalbardiceras spitzbergensis (Frebold) from the Early Triassic (Spathian) of Spitsbergen. Polar Res 27:292–297Google Scholar
  158. West-Eberhard MJ (1989) Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst 20:249–278Google Scholar
  159. West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, OxfordGoogle Scholar
  160. West-Eberhard MJ (2005) Developmental plasticity and the origin of species differences. Proc Natl Acad Sci U S A 102:6543–6549Google Scholar
  161. Westermann GEG (1966) Covariation and taxonomy of the Jurassic ammonite Sonninia adicra (Waagen). N Jb Geol Paläontol Abh 124:289–312Google Scholar
  162. Westermann GEG (1971) Form, structure and function of shell and siphuncle in coiled Mesozoic ammonoids. Life Science Contributions Royal Ontario Museum 78:1–39Google Scholar
  163. Westermann GEG (1975) Model for origin, function and fabrication of fluted cephalopod septa. Paläontol Z 49:235–253Google Scholar
  164. Westermann GEG (1996) Ammonoid life and habitat. In: Landman NH, Tanabe K, Davis A (eds) Ammonoid paleobiology (Topic in Geobiology, 13). Plenum Press, New YorkGoogle Scholar
  165. Westermann GEG, Tsujita CJ (1999) Life habits of ammonoids. In: Savazzi E (ed) Functional morphology of the invertebrate skeleton. Wiley, ChichesterGoogle Scholar
  166. Wiedmann J (1966a) Stammesgeschichte und System der posttriadischen Ammonoiden. N Jb Geol Paläontol Abh 125:49–79Google Scholar
  167. Wiedmann J (1966b) Stammesgeschichte und System der posttriadischen Ammonoiden. N Jb Geol Paläontol Abh 127:13–81Google Scholar
  168. Wiedmann J (1969) The heteromorphs and ammonoid extinction. Biol Rev 44:563–602Google Scholar
  169. Wilmsen M, Mosavinia A (2011) Phenotypic plasticity and taxonomy of Schloenbachia varians (J. Sowerby, 1817) (Cretaceous Ammonoidea). Palaeontol Z 85:169–184Google Scholar
  170. Wright JK (2012) Speciation in the cardioceratinid ammonites of the Costicardia subzone (cordatum zone) of the Oxfordian of Skye. Scott J Geol 48:61–72Google Scholar
  171. Wright CW, Kennedy WJ (1984) The Ammonoidea of the lower chalk. Part 1. Monograph of the Palaeontographical Society London 567:1–126Google Scholar
  172. Wright CW, Kennedy WJ (1987) The Ammonoidea of the lower chalk. Part 2. Monograph of the Palaeontographical Society London 573:127–218Google Scholar
  173. Wright CW, Kennedy WJ (1990) The Ammonoidea of the lower chalk. Part 3. Monograph of the Palaeontographical Society London 585:219–294Google Scholar
  174. Yacobucci MM (1999) Plasticity of developmental timing as the underlying cause of high speciation rates in ammonoids. In: Olóriz F, Rodríguez-Tovar FJ (eds) Advancing research on living and fossil cephalopods. Kluwer Academic, New YorkGoogle Scholar
  175. Yacobucci MM (2004a) Buckman’s paradox: variability and constraints on ammonoid ornament and shell shape. Lethaia 37:57–69Google Scholar
  176. Yacobucci MM (2004b) Neogastroplites meets Metengonoceras: morphological response of an endemic hoplitid ammonite to a new invader in the mid-Cretaceous Mowry Sea of North America. Cretac Res 25:927–944Google Scholar
  177. Yacobucci MM, Manship L (2011) Ammonoid septal formation and suture asymmetry explored with a geographic information systems approach. Palaeontol Electron 14(1)3AGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Claude Monnet
    • 1
    Email author
  • Kenneth De Baets
    • 2
  • Margaret M. Yacobucci
    • 3
  1. 1.UMR CNRS 8217 Géosystèmes, UFR des Sciences de la Terre (SN5)Université de Lille 1Villeneuve d’Ascq cedexFrance
  2. 2.GeoZentrum Nordbayern, Fachgruppe PaläoUmweltFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  3. 3.Department of GeologyBowling Green State UniversityBowling GreenUSA

Personalised recommendations