Ammonoids and Quantitative Biochronology—A Unitary Association Perspective

  • Claude MonnetEmail author
  • Arnaud Brayard
  • Hugo Bucher
Part of the Topics in Geobiology book series (TGBI, volume 44)


Ammonoid evolutionary changes have long been recognized to be excellent time markers. They are the major macrofossil group to date and correlate Paleozoic and Mesozoic marine strata. Originations and extinctions of ammonoid species are commonly used to define GSSPs and build high resolution biozonations. Biochronology is now an advanced field with the recent development of computerized, quantitative methods yielding robust biochronological schemes. It has been demonstrated that such quantitative biochronological methods are very efficient to resolve (often complex) biostratigraphic contradictions and produce accurate and high resolution biozonations, thus enabling precise dating and correlations at various spatial scales. Among the available methods, Unitary Associations is the only one that does not violate the integrity of the data by breaking real coexistences or generating spurious coexistences of species. It has been most commonly applied to ammonoids and is thus reviewed here.


Ammonoids Biochronology Biostratigraphy Correlation Quantitative methods 



This work is a contribution to the team BioME of the UMR CNRS 6282; it was funded by the CNRS INSU Interrvie. We thank Spencer Lucas and Jean Guex for insightful comments on this manuscript.


  1. Agterberg FP (1985) Normality testing and comparison of RASC to unitary associations method. In: Gradstein FM, Agterberg FP, Brower JC, Schwarzacher WS (eds) Quantitative stratigraphy. Kluwer, DordrechtGoogle Scholar
  2. Agterberg FP, Gradstein FM (1999) The RASC method for ranking and scaling of biostratigraphic events. Earth-Sci Rev 46:1–25CrossRefGoogle Scholar
  3. Agterberg FP, Nel LD (1982a) Algorithms for the ranking of stratigraphic events. Comput Geosci 8:69–90CrossRefGoogle Scholar
  4. Agterberg FP, Nel LD (1982b) Algorithms for the scaling of stratigraphic events. Comput Geosci 8:163–189CrossRefGoogle Scholar
  5. Angiolini L, Bucher H (1999) Taxonomy and quantitative biochronology of guadalupian brachiopods from the khuff formation, southeastern Oman. Geobios 32:665–699CrossRefGoogle Scholar
  6. Baumgartner PO (1984) Comparison of unitary associations and probabilistic ranking and scaling as applied to Mesozoic radiolarians. Comput Geosci 10:167–183CrossRefGoogle Scholar
  7. Baumgartner PO, Bartolini A, Carter E, Conti M, Cortese G, Danelian T, Dumitrica-Jud R, Gorican S, Guex J, Hull D, Kito N, Marcucci M, Matsuoka A, Murchey B, O’Dogherty L, Savary J, Vishnevskaya V, Widz D, Yao A (1995) Middle Jurassic to Early Cretaceous radiolarian biochronology of tethys based on unitary associations. Mém Géol Lausanne 23:1013–10143Google Scholar
  8. Benton MJ (2005) When life nearly died: the greatest mass extinction of all time. Thames and Hudson, LondonGoogle Scholar
  9. Boulard C (1993) Biochronologie quantitative: concepts, méthodes et validité. Docum Lab Géol Fac Sci Lyon 128:1-259Google Scholar
  10. Brayard A, Bucher H, Escarguel G, Fluteau F, Bourquin S, Galfetti T (2006) The Early Triassic ammonoid recovery: paleoclimatic significance of diversity gradients. Palaeogeogr, Palaeoclimatol, Palaeoecol 239:374–395CrossRefGoogle Scholar
  11. Brayard A, Escarguel G, Bucher H, Brühwiler T (2009a) Smithian and Spathian (Early Triassic) ammonoid assemblages from terranes: paleoceanographic and paleogeographic implications. J Asian Earth Sci 36:420–433CrossRefGoogle Scholar
  12. Brayard A, Escarguel G, Bucher H, Monnet C, Brühwiler T, Goudemand N, Galfetti T, Guex J (2009b) Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science 325:1118–1121CrossRefGoogle Scholar
  13. Brayard A, Bylund KG, Jenks JF, Stephen DA, Olivier N, Escarguel G, Fara E, Vennin E (2013) Smithian ammonoid faunas from Utah: implications for Early Triassic biostratigraphy, correlation and basinal paleogeography. Swiss J Paleont 132:141–219CrossRefGoogle Scholar
  14. Brower JC (1982) A simple method for quantitative biostratigraphy. In: Cubitt JM, Reyment RA (eds) Quantitative stratigraphic correlation. Wiley, ChichesterGoogle Scholar
  15. Brühwiler T, Bucher H, Brayard A, Goudemand N (2010) High-resolution biochronology and diversity dynamics of the Early Triassic ammonoid recovery: the Smithian faunas of the Northern Indian Margin. Palaeogeogr, Palaeoclimatol, Palaeoecol 297:491–501CrossRefGoogle Scholar
  16. Carney JL, Pierce RW (1995) Graphic correlation and composite standard databases as tools for the exploration biostratigrapher. Soc Econ Paleontol Mineral (Special Publication) 53:23–43Google Scholar
  17. Carter ES, Goričan Š, Guex J, O’Dogherty L, De Wever P, Dumitrica P, Hori RS, Matsuoka A, Whalen PA (2010) Global radiolarian zonation for the Pliensbachian, Toarcian and Aalenian. Palaeogeogr, Palaeoclimatol, Palaeoecol 297:401–419CrossRefGoogle Scholar
  18. Cobban WA (1984) Mid-Cretaceous ammonite zones, Western Interior, United States. Bull geol Soc Denmark 33:71–89Google Scholar
  19. Cody RD, Levy RH, Harwood DM, Sadler PM (2008) Thinking outside the zone: high-resolution quantitative diatom biochronology for the Antarctic Neogene. Palaeogeogr, Palaeoclimatol, Palaeoecol 260:92–121CrossRefGoogle Scholar
  20. Cuartas C, Jaramillo C, Martínez JI (2006) Quantitative biostratigraphic model for the tertiary of the Lower Magdalena Basin, Colombian Caribbean. Cienc Tecnol Futuro (CTF) 3:7–28Google Scholar
  21. Cubitt JM, Reyment RA (eds) (1982) Quantitative stratigraphic correlation. Wiley, ChichesterGoogle Scholar
  22. De Baets K, Bert D, Hoffmann R, Monnet C, Yacobucci MM, Klug C (2015) Ammonoid intraspecific variability. In: Klug C, Korn D, De Baets K, Kruta I, Mapes RH (eds) Ammonoid Paleobiology: from anatomy to ecology. Springer, DordrechtGoogle Scholar
  23. Edwards LE (1989) Supplemented graphic correlation: a powerful tool for paleontologists and non-paleontologists. Palaios 4:127–143CrossRefGoogle Scholar
  24. Erwin DH (2001) Lessons from the past: biotic recoveries from mass extinctions. Proc Natl Acad Sci U S A 98:5399–403CrossRefGoogle Scholar
  25. Escarguel G, Bucher H (2004) Counting taxonomic richness from discrete biochronozones of unknown duration: a simulation. Palaeogeogr, Palaeoclimatol, Palaeoecol 202:181–208CrossRefGoogle Scholar
  26. Euler L (1741) Solutio problematis ad geometriam situs pertinentis. Commentarii academiae scientiarum Petropolitanae 8:128–140Google Scholar
  27. Galfetti T, Bucher H, Ovtcharova M, Schaltegger U, Brayard A, Brühwiler T, Goudemand N, Weissert H, Hochuli PA, Cordey F, Guodun KA (2007a) Timing of the Early Triassic carbon cycle perturbations inferred from new U-Pb ages and ammonoid biochronozones. Earth Planet Sci Lett 258:593–604CrossRefGoogle Scholar
  28. Galfetti T, Hochuli PA, Brayard A, Bucher H, Weissert H, Vigran OV (2007b) Smithian-Spathian boundary event: evidence for global climatic change in the wake of the end-Permian biotic crisis. Geology 35:291–294CrossRefGoogle Scholar
  29. Galster F, Guex J, Hammer Ø (2010) Neogene biochronology of Antarctic diatoms: a comparison between two quantitative approaches, CONOP and UAgraph. Palaeogeogr, Palaeoclimatol, Palaeoecol 285:237–247CrossRefGoogle Scholar
  30. Gradstein FM (2012) Biochronology. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012. Elsevier, AmsterdamGoogle Scholar
  31. Gradstein FM, Agterberg FP, Brower JC, Schwarzacher WS (1985) Quantitative stratigraphy. Kluwer, DordrechtGoogle Scholar
  32. Gradstein FM, Kaminski MA, Agterberg FP (1999) Biostratigraphy and paleoceanography of the Cretaceous seaway between Norway and Greenland. Earth-Sci Rev 46:27–98CrossRefGoogle Scholar
  33. Guex J (1977) Une nouvelle méthode d’analyse biochronologique. Bull Soc Vaud Sci Nat 73:309–321Google Scholar
  34. Guex J (1979) Terminologie et méthodes de la biostratigraphie moderne: commentaires critiques et propositions. Bull Soc Vaud Sci Nat 74:169–216Google Scholar
  35. Guex J (1988) Utilisation des horizons maximaux résiduels en biochronologie. Bull Soc Vaud Sci Nat 79:135–142Google Scholar
  36. Guex J (1991) Biochronological correlations. Springer, BerlinCrossRefGoogle Scholar
  37. Guex J (2011) Some recent ‘refinements’ of the unitary association method: a short discussion. Lethaia 44:247–249CrossRefGoogle Scholar
  38. Guex J, Davaud E (1984) Unitary associations method: use of graph theory and computer algorithm. Comput Geosci 10:69–96CrossRefGoogle Scholar
  39. Guex J, Davaud E (1986) Recherche automatique des associations unitaires: option nouvelle et exemple d’application. Bull Soc Vaud Sci Nat 78:195–205Google Scholar
  40. Guex J, Martinez JN (1996) Application of the unitary associations to the biochronological scales based on mammals. Acta Zool Cracov 39:329–341Google Scholar
  41. Guex J, Schoene B, Bartolini A, Spangenberg J, Schaltegger U, O’Dogherty L, Taylor D, Bucher H, Atudorei V (2012) Geochronological constraints on post-extinction recovery of the ammonoids and carbon cycle perturbations during the Early Jurassic. Palaeogeogr, Palaeoclimatol, Palaeoecol 346:1–11CrossRefGoogle Scholar
  42. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):9Google Scholar
  43. Hay WW, Southam JR (1978) Quantifying biostratigraphic correlation. Ann Rev Earth Planet Sci 6:353–75CrossRefGoogle Scholar
  44. Hermann E, Hochuli PA, Bucher H, Brühwiler T, Hautmann M, Ware D, Weissert H, Roohi G (2011) Terrestrial ecosystems on North Gondwana in the aftermath of the end-permian mass extinction. Gondwana Res 20:630–637CrossRefGoogle Scholar
  45. Hermann E, Hochuli PA, Bucher H, Brühwiler T, Hautmann M, Ware D, Weissert H, Roohi G, Yaseen A, Rehman K (2012) Climatic oscillations at the onset of the Mesozoic inferred from palynological records from the North Indian Margin. J Geol Soc Lond 169:227–237CrossRefGoogle Scholar
  46. Holland SM (2000) The quality of the fossil record—a sequence stratigraphic perspective. Paleobiology 26:148–168CrossRefGoogle Scholar
  47. Holland SM (2003) Confidence limits on fossil ranges that account for facies changes. Paleobiology 29:468–479CrossRefGoogle Scholar
  48. Holland SM, Patzkowsky ME (2002) Stratigraphic variation in the timing of first and last occurrences. Palaios 17:134–146CrossRefGoogle Scholar
  49. House MR (1985) The ammonoid time-scale and ammonoid evolution. Memoir Geol Soc (London) 10: 273–283Google Scholar
  50. Jenks JF, Monnet C, Balini M, Brayard A, Meier M (2015) Biostratigraphy of Triassic ammonoids. In: Klug C et al (eds) Ammonoid Paleobiology: from macroevolution to paleogeography (Topics in Geobiology 44, Springer, New York, doi: 10.1007/978-94-017-9633-0_13)Google Scholar
  51. Kemple WG, Sadler PM, Strauss DJ (1989) A prototype constrained optimization solution to the time correlation problem. Geol Surv Can Pap 89:417–425Google Scholar
  52. Kemple WG, Sadler PM, Strauss DJ (1995) Extending graphic correlation to many dimensions: stratigraphic correlation as constrained optimization. Soc Econ Paleontol Mineral (Special Publication) 53:65–82Google Scholar
  53. Kennedy WJ, Cobban WA (1991) Stratigraphy and interregional correlation of the Cenomanian-Turonian transition in the Western Interior of the United States near Pueblo, Colorado, a potential boundary stratotype for the base of the Turonian stage. Newsl Stratigr 24:1–33Google Scholar
  54. Kennedy WJ, Gale AS, Lees JA, Caron M (2004) The global boundary stratotype section and point (GSSP) for the base of the Cenomanian Stage, Mont Risou, Hautes-Alpes, France. Episodes 27:21–32Google Scholar
  55. Kirchner JW, Weil A (2000) Delayed biological recovery from extinctions throughout the fossil record. Nature 404:177–180CrossRefGoogle Scholar
  56. Monnet C (2009) The Cenomanian-Turonian boundary mass extinction (Late Cretaceous): new insights from ammonoid biodiversity patterns of Europe, Tunisia and the Western Interior (North America). Palaeogeogr, Palaeoclimatol, Palaeoecol 282:88–104CrossRefGoogle Scholar
  57. Monnet C, Bucher H (1999) Biochronologie quantitative (associations unitaires) des faunes d’ammonites du Cénomanien du Sud-Est de la France. Bull Soc géol Fr 170:599–610Google Scholar
  58. Monnet C, Bucher H (2002) Cenomanian (early Late Cretaceous) ammonoid faunas of Western Europe. Part 1: biochronology (unitary associations) and diachronism of datums. Eclogae geol Helv 95:57–73Google Scholar
  59. Monnet C, Bucher H (2005a) New middle and late Anisian (Middle Triassic) ammonoid faunas from northwestern Nevada (USA): taxonomy and biochronology. Foss Strat 52:1–121Google Scholar
  60. Monnet C, Bucher H (2005b) Anisian (Middle Triassic) ammonoids from North America: quantitative biochronology and biodiversity. Stratigraphy 2:311–326Google Scholar
  61. Monnet C, Bucher H (2007) Ammonite-based correlations in the Cenomanian-lower Turonian of north-west Europe, central Tunisia and the western interior (North America). Cretac Res 28:1017–1032CrossRefGoogle Scholar
  62. Monnet C, Bucher H, Escarguel G, Guex J (2003) Cenomanian (early Late Cretaceous) ammonoid faunas of Western Europe. Part II: diversity patterns and the end-Cenomanian anoxic event. Eclogae geol Helv 96:381–398Google Scholar
  63. Monnet C, Bucher H, Wasmer M, Guex J (2010) Revision of the genus Acrochordiceras Hyatt, 1877 (Ammonoidea, Middle Triassic): morphology, biometry, biostratigraphy and intraspecific variability. Palaeontology 53:961–996CrossRefGoogle Scholar
  64. Monnet C, Klug C, Goudemand N, De Baets K, Bucher H (2011) Quantitative biochronology of Devonian ammonoids from Morocco and proposals for a refined unitary association method. Lethaia 44:469–489CrossRefGoogle Scholar
  65. Monnet C, Bucher H, Guex J, Wasmer M (2012) Large-scale evolutionary trends of Acrochordiceratidae Arthaber, 1911 (Ammonoidea, Middle Triassic) and Cope’s rule. Palaeontology 55:87–107CrossRefGoogle Scholar
  66. Monnet C, Bucher H, Brayard A, Jenks JF (2013) Globacrochordiceras gen. nov. (Acrochordiceratidae, late Early Triassic) and its significance for stress-induced evolutionary jumps in ammonoid lineages (cephalopods). Foss Rec 16:197–215CrossRefGoogle Scholar
  67. Monnet C, De Baets K, Yacobucci MM (2015) Buckman’s rules of covariation. In: Klug C, Korn D, De Baets K, Kruta I, Mapes RH (eds) Ammonoid Paleobiology: from macroevolution to paleogeography. Springer, New YorkGoogle Scholar
  68. Ovtcharova M, Bucher H, Schaltegger U, Galfetti T, Brayard A, Guex J (2006) New early to middle Triassic U-Pb ages from South China: Calibration with the ammonoid biochronozones and implications for the timing of the Triassic biotic recovery. Earth Planet Sci Lett 243:463–475CrossRefGoogle Scholar
  69. Pálfy J (2007) Applications of quantitative biostratigraphy in chronostratigraphy and time scale construction. Stratigraphy 4:195–199Google Scholar
  70. Pálfy J, Vörös A (1998) Quantitative ammonoid biochronological assessment of the Anisian–Ladinian (Middle Triassic) stage boundary proposals. Albertiana 21:19–26Google Scholar
  71. Pálfy J, Parrish RR, Smith PL (1997) A U-Pb age from the Toarcian (Lower Jurassic) and its use for time scale calibration through error analysis of biochronologic dating. Earth Planet Sci Lett 146:659–675CrossRefGoogle Scholar
  72. Pálfy J, Parrish RR, David K, Vörös A (2003) Mid-Triassic integrated U–Pb geochronology and ammonoid biochronology from the Balaton Highland (Hungary). J Geol Soc 160:271–284CrossRefGoogle Scholar
  73. Robaszynski F, Caron M, Amédro F, Dupuis C, Hardenbol J, González Donoso JM, Linares D, Gartner S (1994) Le Cénomanien de la région de Kalaat Senan (Tunisie centrale): litho-biostratigraphie et interprétation séquentielle. Rev Paléobiol 12:351–505Google Scholar
  74. Romano C, Goudemand N, Vennemann TW, Ware D, Schneebeli-Hermann E, Hochuli PA, Brühwiler T, Brinkmann W, Bucher H (2013) Climatic and biotic upheavals following the end-Permian mass extinction. Nat Geosci 6:57–60CrossRefGoogle Scholar
  75. Sadler PM (2004) Quantitative biostratigraphy—achieving finer resolution in global correlation. Annu Rev Earth Planet Sci 32:187–213CrossRefGoogle Scholar
  76. Sadler PM, Cooper RA (2003) Best-fit intervals and consensus sequences: comparison of the resolving power and computer-assisted correlation. In: Harries PJ (ed) High-resolution approaches in stratigraphic paleontology. Topics in Geobiology 21. Kluwer, DordrechtGoogle Scholar
  77. Savary J, Guex J (1991) BioGraph: un nouveau programme de construction des corrélations biochronologiques basées sur les associations unitaires. Bull Géol Lausanne 313:317–340Google Scholar
  78. Savary J, Guex J (1999) Discrete biochronological scales and unitary associations: description of the BioGraph computer program. Mém Géol Lausanne 34:1–281Google Scholar
  79. Shaw AB (1964) Time in stratigraphy. McGraw Hill, New YorkGoogle Scholar
  80. Sheets HD, Mitchell CE, Izard ZT, Willis JM, Melchin MJ, Holmden C (2012) Horizon annealing: a collection-based approach to automated sequencing of the fossil record. Lethaia 45:532–547CrossRefGoogle Scholar
  81. Shen SZ, Crowley JL, Wang Y, Bowring SA, Erwin DH, Sadler PM, Cao CQ, Rothman DH, Henderson CM, Ramezani J, Zhang H, Shen Y, Wang XD, Wang W, Mu L, Li WZ, Tang YG, Liu XL, Liu LJ, Zeng Y, Jiang YF, Jin YG (2011) Calibrating the end-Permian mass extinction. Science 334:1367–1372CrossRefGoogle Scholar
  82. Silberling NJ (1956) “Trachyceras zone” in the Upper Triassic of the western United States. J Paleontol 30:1147–1153Google Scholar
  83. Simmons MD, Lowe S (1996) The future for palaeontology? An industrial perspective. Geoscientist 6(3):14–16Google Scholar
  84. Tozer ET (1994) Significance of Triassic stage boundaries defined in North America. Mém Géol Lausanne 22:155–171Google Scholar
  85. Wright CW, Kennedy WJ (1984) The Ammonoidea of the lower chalk. Part 1. Monogr Palaeontogr Soc Lond 567:1–126Google Scholar
  86. Zhang T, Plotnick RE (2006) Graphic biostratigraphic correlation using genetic algorithms. Math Geol 38:781–800CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.UMR CNRS 8217 Géosystèmes, UFR des Sciences de la Terre (SN5)Université de Lille 1Villeneuve dAscq cedexFrance
  2. 2.UMR CNRS 6282 BiogéosciencesUniversité de BourgogneDijonFrance
  3. 3.Paläontologisches Institut und MuseumUniversität ZürichZürichSwitzerland

Personalised recommendations