Microwave Pyrolysis of Organic Wastes for Syngas-Derived Biopolymers Production

  • D. Beneroso
  • J. M. Bermúdez
  • A. Arenillas
  • J. A. Menéndez
Part of the Biofuels and Biorefineries book series (BIOBIO, volume 3)


Bioplastics production is a growing industry that offers an alternative to that of conventional fossil-derived plastics. Polyhydroxyalkanoates are biopolymers whose thermo-mechanical properties can be comparable to those of conventional plastics. Polyhydroxyalkanoates can be produced through the bacterial fermentation of carbon substrates, although to be commercially viable cheap renewable resources such as syngas (CO + H2 + CO2) from waste pyrolysis are required. Microwave pyrolysis has been demonstrated to have the potential of maximising both the gas production and syngas concentration. Hence it is an appropriate thermochemical route for further syngas fermentation. A combination of different factors, such as the type of waste, the moisture content, the pyrolysis temperature or the use of a microwave receptor makes microwave pyrolysis highly versatile, so that the syngas produced can be virtually tailored to the specific requirements of the bacteria.


Microwave heating Pyrolysis Syngas Biopolymers Polyhydroxyalkanoates Waste valorisation 



The research leading to this chapter has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 311815 (SYNPOL project). D. B. also acknowledges the support received from PCTI and FICYT of the Government of the Principado de Asturias.


  1. 1.
    European Bioplastics (2014) Frequently asked questions on bioplasticsGoogle Scholar
  2. 2.
    Plastics Europe (2013) Plastics—the facts 2013Google Scholar
  3. 3.
    Gumel AM, Annuar MSM, Chisti Y (2013) Recent advances in the production, recovery and applications of Polyhydroxyalkanoates. J Polym Environ 21(2):580–605CrossRefGoogle Scholar
  4. 4.
    Chen G-Q, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26(33):6565–6578CrossRefGoogle Scholar
  5. 5.
    Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82(3):233–247CrossRefGoogle Scholar
  6. 6.
    Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25(10):1503–1555CrossRefGoogle Scholar
  7. 7.
    Loo C-Y, Sudesh K (2007) Polyhydroxyalkanoates: bio-based microbial plastics and their properties. Malays Polym J 2(2):31–57Google Scholar
  8. 8.
    European Bioplastics (2014) Bioplastics facts and figuresGoogle Scholar
  9. 9.
    The Freedonia Group (2009) World bioplasticsGoogle Scholar
  10. 10.
    Snell KD, Peoples OP (2009) PHA bioplastic: a value-added coproduct for biomass biore-fineries. Biofuels, Bioprod Biorefin 3(4):456–467CrossRefGoogle Scholar
  11. 11.
    Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—a review. Biotechnol Adv 25(2):148–175CrossRefGoogle Scholar
  12. 12.
    Koller M, Atlić A, Dias M, Reiterer A, Braunegg G (2010) Microbial PHA production from waste raw materials. In: Chen GG-Q (ed) Plastics from bacteria, microbiology monographs, vol 14. Springer, Berlin, pp 85–119CrossRefGoogle Scholar
  13. 13.
    Mohammadi M, Najafpour GD, Younesi H, Lahijani P, Uzir MH, Mohamed AR (2011) Bioconversion of synthesis gas to second generation biofuels: a review. Renew Sust Energ Rev 15(9):4255–4273CrossRefGoogle Scholar
  14. 14.
    Tirado-Acevedo O, Chinn MS, Grunden AM (2010) Production of biofuels from synthesis gas using microbial catalysts (Chap. 2). In: Allen IL, Sima S, Geoffrey MG (eds) Advances in applied microbiology, vol 70. Academic Press, London, pp 57–92Google Scholar
  15. 15.
    Younesi H, Najafpour G, Mohamed AR (2005) Ethanol and acetate production from synthesis gas via fermentation processes using anaerobic bacterium, Clostridium ljungdahlii. Biochem Eng J 27(2):110–119CrossRefGoogle Scholar
  16. 16.
    Griffin DW, Schultz MA (2012) Fuel and chemical products from biomass syngas: a com-parison of gas fermentation to thermochemical conversion routes. Environ Prog Sustain Energy 31(2):219–224CrossRefGoogle Scholar
  17. 17.
    Chang I-S, Kim B-H, Kim D-H, Lovitt RW, Sung H-C (1999) Formulation of defined media for carbon monoxide fermentation by Eubacterium limosum KIST612 and the growth characteristics of the bacterium. J Biosci Bioeng 88(6):682–685CrossRefGoogle Scholar
  18. 18.
    Do YS, Smeenk J, Broer KM, Kisting CJ, Brown R, Heindel TJ, Bobik TA, DiSpirito AA (2007) Growth of Rhodospirillum rubrum on synthesis gas: conversion of CO to H2 and poly-β-hydroxyalkanoate. Biotechnol Bioeng 97(2):279–286CrossRefGoogle Scholar
  19. 19.
    Choi D, Chipman D, Bents S, Brown R (2010) A techno-economic Analysis of Polyhydroxyalkanoate and hydrogen production from syngas fermentation of gasified biomass. Appl Biochem Biotechnol 160(4):1032–1046CrossRefGoogle Scholar
  20. 20.
    Weaver PF, Maness PC (1993) Photoconversion of gasified organic materials into biologically-degradable plastics. US Patent 5250427 AGoogle Scholar
  21. 21.
    Köpke M, Mihalcea C, Liew FM, Tizard JH, Ali MS, Conolly JJ, Al-Sinawi B, Simpson SD (2011) 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 77(15):5467–5475CrossRefGoogle Scholar
  22. 22.
    Kunasundari B, Sudesh K (2011) Isolation and recovery of microbial polyhydroxyalkanoates. Express Polym Lett 5(7):620–634CrossRefGoogle Scholar
  23. 23.
    Fernandez-Akarregi AR, Makibar J, Lopez G, Amutio M, Olazar M (2013) Design and operation of a conical spouted bed reactor pilot plant (25 kg/h) for biomass fast pyrolysis. Fuel Process Technol 112:48–56CrossRefGoogle Scholar
  24. 24.
    Gaddy JL (2000) Biological production of ethanol from waste gases with Clostridium ljungdahlii. US Patent 6136577 AGoogle Scholar
  25. 25.
    Worden RM, Grethlein AJ, Zeikus JG, Datta R (1989) Butyrate production from carbon monoxide by Butyribacterium methylotrophicum. Appl Biochem Biotechnol 20–21(1):687–698CrossRefGoogle Scholar
  26. 26.
    Grethlein AJ, Worden RM, Jain MK, Datta R (1990) Continuous production of mixed alcohols and acids from carbon monoxide. Appl Biochem Biotechnol 24–25(1):875–884CrossRefGoogle Scholar
  27. 27.
    Heiskanen H, Virkajärvi I, Viikari L (2007) The effect of syngas composition on the growth and product formation of Butyribacterium methylotrophicum. Enzyme Microb Technol 41(3):362–367CrossRefGoogle Scholar
  28. 28.
    Sim JH, Kamaruddin AH, Long WS, Najafpour G (2007) Clostridium aceticum—a potential organism in catalyzing carbon monoxide to acetic acid: application of response surface methodology. Enzyme Microb Technol 40(5):1234–1243CrossRefGoogle Scholar
  29. 29.
    Cotter JL, Chinn MS, Grunden AM (2009) Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas. Enzyme Microb Technol 44(5):281–288CrossRefGoogle Scholar
  30. 30.
    Huhnke RL, Lewis RS, Tanner RS (2006) Indirect or direct fermentation of biomass to fuel alcohol. US Patent 20070275447 A1Google Scholar
  31. 31.
    Liou JS-C, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55(5):2085–2091CrossRefGoogle Scholar
  32. 32.
    Phillips JR, Klasson KT, Clausen EC, Gaddy JL (1993) Biological production of ethanol from coal synthesis gas. Appl Biochem Biotechnol 39–40(1):559–571CrossRefGoogle Scholar
  33. 33.
    Clausen EC, Gaddy JL (1992) Clostridium ljungdahlii, an anaerobic ethanol and acetate producing microorganism. US Patent 5173429 AGoogle Scholar
  34. 34.
    Phillips J, Clausen E, Gaddy J (1994) Synthesis gas as substrate for the biological production of fuels and chemicals. Appl Biochem Biotechnol 45–46(1):145–157CrossRefGoogle Scholar
  35. 35.
    Kundiyana DK, Huhnke RL, Wilkins MR (2010) Syngas fermentation in a 100-L pilot scale fermentor: design and process considerations. J Biosci Bioeng 109(5):492–498CrossRefGoogle Scholar
  36. 36.
    Kundiyana DK, Wilkins MR, Maddipati P, Huhnke RL (2011) Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by “Clostridium ragsdalei”. Bioresour Technol 102(10):5794–5799CrossRefGoogle Scholar
  37. 37.
    Chang I-S, Kim D-H, Kim B-H, Shin P-K, Sung H-C, Lovitt R-W (1998) CO fermentation of Eubacterium limosum KIST612. J Microbiol Biotechnol 8(2):134–140Google Scholar
  38. 38.
    Sakai S, Nakashimada Y, Inokuma K, Kita M, Okada H, Nishio N (2005) Acetate and ethanol production from H2 and CO2 by Moorella sp. using a repeated batch culture. J Biosci Bioeng 99(3):252–258CrossRefGoogle Scholar
  39. 39.
    Solomon PR, Serio MA, Suuberg EM (1992) Coal pyrolysis: experiments, kinetic rates and mechanisms. Prog Energ Combust 18(2):133–220CrossRefGoogle Scholar
  40. 40.
    Horne PA, Williams PT (1996) Influence of temperature on the products from the flash pyrolysis of biomass. Fuel 75(9):1051–1059CrossRefGoogle Scholar
  41. 41.
    Payakkawan P, Areejit S, Sooraksa P (2014) Design, fabrication and operation of continuous microwave biomass carbonization system. Renew Energ 66:49–55CrossRefGoogle Scholar
  42. 42.
    Appleton TJ, Colder RI, Kingman SW, Lowndes IS, Read AG (2005) Microwave technology for energy-efficient processing of waste. Appl Energ 81(1):85–113CrossRefGoogle Scholar
  43. 43.
    Arenillas Y, Fernández A, Menéndez JÁ (2011) Microwave heating applied to pyrolysis. In: Advances in induction and microwave heating of mineral and organic materials, Stanislaw Grundas, LublinGoogle Scholar
  44. 44.
    Domínguez A, Fernández Y, Fidalgo B, Pis JJ, Menéndez JA (2008) Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge. Chemosphere 70(3):397–403CrossRefGoogle Scholar
  45. 45.
    Luque R, Menendez JA, Arenillas A, Cot J (2012) Microwave-assisted pyrolysis of biomass feedstocks: the way forward? Energy Environ Sci 5(2):5481–5488CrossRefGoogle Scholar
  46. 46.
    Menéndez JA, Domínguez A, Inguanzo M, Pis JJ (2005) Microwave-induced drying, pyrolysis and gasification (MWDPG) of sewage sludge: vitrification of the solid residue. J Anal Appl Pyrol 74(1–2):406–412CrossRefGoogle Scholar
  47. 47.
    Beneroso D, Bermúdez JM, Arenillas A, Menéndez JA (2013) Microwave pyrolysis of microalgae for high syngas production. Bioresour Technol 144:240–246CrossRefGoogle Scholar
  48. 48.
    Tian Y, Zuo W, Ren Z, Chen D (2011) Estimation of a novel method to produce bio-oil from sewage sludge by microwave pyrolysis with the consideration of efficiency and safety. Bioresour Technol 102(2):2053–2061CrossRefGoogle Scholar
  49. 49.
    Menéndez JA, Domı́nguez A, Inguanzo M, Pis JJ (2004) Microwave pyrolysis of sewage sludge: analysis of the gas fraction. J Anal Appl Pyrol 71(2):657–667CrossRefGoogle Scholar
  50. 50.
    Lam SS, Russell AD, Lee CL, Lam SK, Chase HA (2012) Production of hydrogen and light hydrocarbons as a potential gaseous fuel from microwave-heated pyrolysis of waste automotive engine oil. Int J Hydrogen Energy 37(6):5011–5021CrossRefGoogle Scholar
  51. 51.
    Huang YF, Kuan WH, Lo SL, Lin CF (2010) Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis. Bioresour Technol 101(6):1968–1973CrossRefGoogle Scholar
  52. 52.
    Zhao X, Song Z, Liu H, Li Z, Li L, Ma C (2010) Microwave pyrolysis of corn stalk bale: a promising method for direct utilization of large-sized biomass and syngas production. J Anal Appl Pyrol 89(1):87–94CrossRefGoogle Scholar
  53. 53.
    Clark DE, Sutton WH (1996) Microwave processing of materials. Annu Rev Mater Sci 26(1):299–331CrossRefGoogle Scholar
  54. 54.
    Robinson JP, Kingman SW, Barranco R, Snape CE, Al-Sayegh H (2009) Microwave pyrolysis of wood pellets. Ind Eng Chem Res 49(2):459–463CrossRefGoogle Scholar
  55. 55.
    Motasemi F, Afzal MT, Salema AA, Mouris J, Hutcheon RM (2014) Microwave dielectric characterization of switchgrass for bioenergy and biofuel. Fuel 124:151–157CrossRefGoogle Scholar
  56. 56.
    Menéndez JA, Arenillas A, Fidalgo B, Fernández Y, Zubizarreta L, Calvo EG, Bermúdez JM (2010) Microwave heating processes involving carbon materials. Fuel Process Technol 91(1):1–8CrossRefGoogle Scholar
  57. 57.
    Menéndez JA, Domínguez A, Fernández Y, Pis JJ (2006) Evidence of self-gasification during the microwave-induced pyrolysis of coffee hulls. Energy Fuels 21(1):373–378CrossRefGoogle Scholar
  58. 58.
    Menéndez JA, Juárez-Pérez EJ, Ruisánchez E, Bermúdez JM, Arenillas A (2011) Ball light-ning plasma and plasma arc formation during the microwave heating of carbons. Carbon 49(1):346–349CrossRefGoogle Scholar
  59. 59.
    Domínguez A, Menéndez JA, Fernández Y, Pis JJ, Nabais JMV, Carrott PJM, Carrott MMLR (2007) Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas. J Anal Appl Pyrol 79(1–2):128–135CrossRefGoogle Scholar
  60. 60.
    Ferrera-Lorenzo N, Fuente E, Bermúdez JM, Suárez-Ruiz I, Ruiz B (2014) Conventional and microwave pyrolysis of a macroalgae waste from the agar-agar industry. Prospects for bio-fuel production. Bioresour Technol 151:199–206CrossRefGoogle Scholar
  61. 61.
    Fernández Y, Arenillas A, Díez MA, Pis JJ, Menéndez JA (2009) Pyrolysis of glycerol over activated carbons for syngas production. J Anal Appl Pyrol 84(2):145–150CrossRefGoogle Scholar
  62. 62.
    Domínguez A, Menéndez JA, Inguanzo M, Pís JJ (2006) Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating. Bioresour Technol 97(10):1185–1193CrossRefGoogle Scholar
  63. 63.
    Bengelsdorf FR, Straub M, Dürre P (2013) Bacterial synthesis gas (syngas) fermentation. Environ Technol 34(13–14):1639–1651CrossRefGoogle Scholar
  64. 64.
    Zhao X, Wang M, Liu H, Zhao C, Ma C, Song Z (2013) Effect of temperature and additives on the yields of products and microwave pyrolysis behaviors of wheat straw. J Anal Appl Pyrol 100:49–55CrossRefGoogle Scholar
  65. 65.
    Wang X-L, Deng W-Y, Yu W-C, Su Y-X (2013) Hydrogen-rich gas formation characteristics during microwave-induced high temperature pyrolysis of sewage sludge. J Fuel Chem Technol 41(2):243–251Google Scholar
  66. 66.
    Beneroso D, Bermúdez JM, Arenillas A, Menéndez JA (2014) Influence of the microwave absorbent and moisture content on the microwave pyrolysis of an organic municipal solid waste. J Anal Appl Pyrol 105:234–240CrossRefGoogle Scholar
  67. 67.
    Gedam V, Regupathi I (2012) Pyrolysis of municipal solid waste for syngas production by microwave irradiation. Nat Resour Res 21(1):75–82CrossRefGoogle Scholar
  68. 68.
    Beneroso D, Bermúdez JM, Arenillas A, Menéndez JA (2014) Syngas from waste valorization for bioplastics production. Paper presented at the 20th international symposium on analytical and applied pyrolysis, BirminghamGoogle Scholar
  69. 69.
    Vega JL, Klasson KT, Kimmel DE, Clausen EC, Gaddy JL (1990) Sulfur gas tolerance and toxicity of co-utilizing and methanogenic bacteria. Appl Biochem Biotechnol 24–25(1):329–340CrossRefGoogle Scholar
  70. 70.
    Tian Y, Zhang J, Zuo W, Chen L, Cui Y, Tan T (2013) Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge. Environ Sci Technol 47(7):3498–3505Google Scholar
  71. 71.
    Klepfer JS, Honeycutt TW, Sharivker V, Tairova G (2001) Process and reactor for micro-wave cracking of plastic materials. US Patent 6184427 B1Google Scholar
  72. 72.
    Nirmalakhandan N, Arulgnanendran V, Mohsin M, Sun B, Cadena F (1994) Toxicity of mixtures of organic chemicals to microorganisms. Water Res 28(3):543–551CrossRefGoogle Scholar
  73. 73.
    He M, Xiao B, Liu S, Hu Z, Guo X, Luo S, Yang F (2010) Syngas production from pyrolysis of municipal solid waste (MSW) with dolomite as downstream catalysts. J Anal Appl Pyrol 87(2):181–187CrossRefGoogle Scholar
  74. 74.
    Niu M, Huang Y, Jin B, Wang X (2013) Simulation of syngas production from municipal solid waste gasification in a bubbling fluidized bed using Aspen Plus. Ind Eng Chem Res 52(42):14768–14775CrossRefGoogle Scholar
  75. 75.
    Budarin VL, Shuttleworth PS, Dodson JR, Hunt AJ, Lanigan B, Marriott R, Milkowski KJ, Wilson AJ, Breeden SW, Fan J, Sin EHK, Clark JH (2011) Use of green chemical technologies in an integrated biorefinery. Energy Environ Sci 4(2):471–479CrossRefGoogle Scholar
  76. 76.
    Michael S, Joseph C, Marek W, Kanapathipillai W, John F (2012) Pyrolysis yields from microwave-assisted heating of solid wastes. In: 42nd international conference on environmental systems (ICES), American Institute of Aeronautics and AstronauticsGoogle Scholar
  77. 77.
    Beneroso D, Bermúdez JM, Arenillas A, Menéndez JA (2014) Integrated microwave drying, pyrolysis and gasification for valorisation of organic wastes to syngas. Fuel 132:20–26CrossRefGoogle Scholar
  78. 78.
    Xie LP, Li T, Gao JD, Fei XN Wu X, Jiang YG (2010) Effect of moisture content in sewage sludge on air gasification. J Fuel Chem Technol 38(5):615–620CrossRefGoogle Scholar
  79. 79.
    Xiong S, Zhuo J, Zhang B, Yao Q (2013) Effect of moisture content on the characterization of products from the pyrolysis of sewage sludge. J Anal Appl Pyrol 104:632–639CrossRefGoogle Scholar
  80. 80.
    Zuo W, Tian Y, Ren N (2011) The important role of microwave receptors in bio-fuel production by microwave-induced pyrolysis of sewage sludge. Waste Manage 31(6):1321–1326CrossRefGoogle Scholar
  81. 81.
    Hu Z, Ma X, Chen C (2012) A study on experimental characteristic of microwave-assisted pyrolysis of microalgae. Bioresour Technol 107:487–493CrossRefGoogle Scholar
  82. 82.
    Salema AA, Ani FN (2011) Microwave induced pyrolysis of oil palm biomass. Bioresour Technol 102(3):3388–3395CrossRefGoogle Scholar
  83. 83.
    Abubakar Z, Salema AA, Ani FN (2013) A new technique to pyrolyse biomass in a micro-wave system: effect of stirrer speed. Bioresour Technol 128:578–585CrossRefGoogle Scholar
  84. 84.
    Salema AA, Ani FN (2012) Microwave-assisted pyrolysis of oil palm shell biomass using an overhead stirrer. J Anal Appl Pyrol 96:162–172CrossRefGoogle Scholar
  85. 85.
    Khaghanikavkani E, Farid MM, Holdem J, Williamson A (2013) Microwave pyrolysis of plastic. J Chem Eng Process Tech 4(3)Google Scholar
  86. 86.
    Lam SS, Chase HA (2012) A review on waste to energy processes using microwave pyrolysis. Energies 5(10):4209–4232CrossRefGoogle Scholar
  87. 87.
    Stein DF, Edgar RH, Iskander MF, Johnson DL, Johnson SM, Lob CG, Shaw JM, Sutton WH, Tien PK, Munns TE (1994) Microwave processing—an emerging industrial technology? In: MRS proceedings, p 347Google Scholar
  88. 88.
    Motasemi F, Afzal MT (2013) A review on the microwave-assisted pyrolysis technique. Renew Sust Energ Rev 28:317–330CrossRefGoogle Scholar
  89. 89.
    Lidström P, Tierney J, Wathey B, Westman J (2001) Microwave assisted organic synthesis—a review. Tetrahedron 57(45):9225–9283CrossRefGoogle Scholar
  90. 90.
    Metaxas AC, Meredith RJ (1983) Industrial microwave heating, vol 4. IET, London, UKGoogle Scholar
  91. 91.
    Moseley JD, Kappe CO (2011) A critical assessment of the greenness and energy efficiency of microwave-assisted organic synthesis. Green Chem 13(4):794–806CrossRefGoogle Scholar
  92. 92.
    Puigjaner L (ed) (2011) Syngas from waste, green energy and technology. Springer, BerlinGoogle Scholar
  93. 93.
    Serio MA, Cosgrove JE, Wojtowicz MA, Wignarajah K, Fisher J (2013) A prototype micro-wave pyrolyzer for solid wastes. Paper presented at the 43rd international conference on environmental systemsGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • D. Beneroso
    • 1
  • J. M. Bermúdez
    • 1
  • A. Arenillas
    • 1
  • J. A. Menéndez
    • 1
  1. 1.Instituto Nacional del CarbónCSICOviedoSpain

Personalised recommendations