Skip to main content

Microwave Reactors for Chemical Synthesis and Biofuels Preparation

  • Chapter
  • First Online:
Production of Biofuels and Chemicals with Microwave

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 3))

Abstract

Microwave reactors are among the most novel thermochemical technologies to treat biomass and improve process sustainability. The microwave-assisted process offers several advantages over the traditional ones in terms of uniform internal heating of heterogeneous low-thermal conductivity loads, ease of control, saving of time and heat energy for properly designed or selected reactors. The geometries and the functioning principles of microwave reactors commonly adopted for chemical synthesis and biofuels are discussed in this chapter. Temperature monitoring , output microwave power control and product enhancement are critical to obtain process efficiency with microwave reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nadkarni RA (1984) Applications of microwave oven sample dissolution in analysis. Anal Chem 56(12):2233–2237

    Article  Google Scholar 

  2. Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J (1986) The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett 27(3):279–282

    Article  Google Scholar 

  3. Baghurst DR, Mingos DMP (1988) Application of microwave heating techniques for the synthesis of solid state inorganic compounds. J Chem Soc, Chem Commun 12:829–830

    Article  Google Scholar 

  4. Baghurst DR, Chippindale AM, Mingos DMP (1988) Microwave syntheses for superconducting ceramics. Nature 332(6162):311

    Article  Google Scholar 

  5. Baghurst DR, Mingos DMP (1992) Superheating effects associated with microwave dielectric heating. J Chem Soc, Chem Commun 9:674–677

    Article  Google Scholar 

  6. Loupy A (2006) Microwaves in organic synthesis, 2nd edn. Wiley-VCH, Weinheim (D)

    Book  Google Scholar 

  7. Breitwieser D, Moghaddam MM, Spirk S, Baghbanzadeh M, Pivec T, Fasl H, Ribitsch V, Kappe CO (2013) In situ preparation of silver nanocomposites on cellulosic fibers-Microwave vs. conventional heating. Carbohydr Polym 94(1):677–686

    Article  Google Scholar 

  8. Metaxas AC, Meredith RJ (1988) Industrial microwave heating. Peter Peregrinus Ltd., London

    Book  Google Scholar 

  9. Zhao X, Wang M, Liu H, Li L, Ma C, Song Z (2012) A microwave reactor for characterization of pyrolyzed biomass. Bioresour Technol 104:673–678

    Article  Google Scholar 

  10. Zhao Z, Ma X, Chen C (2012) A study on experimental characteristic of microwave-assisted pyrolysis of microalgae. Bioresour Technol 07:487–493

    Google Scholar 

  11. Ren S, Lei H, Wang L, Bu Q, Chen S, Wu J et al (2012) Biofuel production and kinetics analysis for microwave pyrolysis of Douglas fir sawdust pellet. J Anal Appl Pyrol 94:163–169

    Article  Google Scholar 

  12. Huang YF, Kuan WH, Lo SL, Lin CF (2010) Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis. Bioresour Technol 101:1968–1973

    Article  Google Scholar 

  13. Salema AA, Ani FN (2011) Microwave induced pyrolysis of oil palm biomass. Bioresour Technol 102:3388–3395

    Article  Google Scholar 

  14. Bondioli F, Ferrari AM, Braccini S, Leonelli C, Pellacani GC, Opalinska A, Chudoba T, Grzanka E, Palosz B, Lojkowski W (2003) Microwave-hydrothermal synthesis of nanocrystalline Pr—doped zirconia powders at pressures up to 8 MPa. Solid State Phenom 94:193–196

    Article  Google Scholar 

  15. Motasemi F, Afzal MT (2013) A review on the microwave-assisted pyrolysis technique. Renew Sustain Energy Rev 28:317–330

    Article  Google Scholar 

  16. Michel E, Stuerga D, Chaumont D (2001) Microwave flash synthesis of tin dioxide sols from tin chloride aqueous solutions. J Mat Sci 20(17):1593–1595

    Google Scholar 

  17. Komarneni S, Roy R, Li QH (1992) Microwave-hydrothermal processing for synthesis of electroceramic powders. Mater Res Bull 27:1393–1405

    Article  Google Scholar 

  18. Metaxas AC (1996) Foundations of electroheat: a unified approach. Wiley, New York

    Google Scholar 

  19. Leonelli C, Mason TJ (2010) Microwave and ultrasonic processing: now a realistic option for industry. Chem Eng Process 49(9):885–900

    Article  Google Scholar 

  20. Coquerel Y, Colacino E, Rodriguez J, Martinez J, Lamaty F (2013) Microwave-assisted stereoselective synthesis. In: Andrushko N, Andrushko V (eds) Stereoselective synthesis of drugs and natural products. Wiley, New York

    Google Scholar 

  21. Gude VG, Patil P, Martinez-Guerra E, Deng S, Nirmalakhandan N (2013) Microwave energy potential for biodiesel production. Sustain Chem Process 1:5. doi:10.1186/2043-7129-1-5

    Article  Google Scholar 

  22. Meredith RJ (1998) Engineers’ handbook of industrial microwave heating. IET, London, UK

    Google Scholar 

  23. Veronesi P, Leonelli C, Rosa R, Garuti M (2010) Microwave pyrolizer for activated carbon production. In: Proceedings of international symposium on heating by electromagnetic sources, Padova, Italy, 18–21 May 2010, pp 321–327

    Google Scholar 

  24. Thuéry J (1992) Microwaves: industrial, scientific, and medical applications. Artech House, Boston

    Google Scholar 

  25. Nightingale SA, Dunne DP, Worner HK (1996) Sintering and grain growth of 3 mol% yttria zirconia in a microwave field. J Mater Sci 31(19):5039–5043

    Article  Google Scholar 

  26. Collin RE (2000) Foundations for microwave engineering. Wiley-IEEE Press, New York

    Google Scholar 

  27. Veronesi P, Leonelli C, Moscato U, Cappi A, Figurelli O (2007) Non-incineration microwave assisted sterilization of medical waste. J Microw Power Electromagn Energy 40(4):211–218

    Google Scholar 

  28. Clemente-Fernández FJ, Monzò-Cabrera J, Pedreno-Molina JL, Lozano-Guerrero AJ, Dìaz-Mordillo A (2011) Crosscoupling reduction in multifeed multimode microwave heating cavities by means of inner doubly corrugated filters. In: Proceedings of the 13th international conference on microwave and high frequency heating, AMPERE 2011, Toulouse (F)

    Google Scholar 

  29. Geedipalli SSR, Rakesh V, Datta AK (2007) Modeling the heating uniformity contributed by a rotating turntable in microwave ovens. J Food Eng 82(3):359–368

    Article  Google Scholar 

  30. Monzó-Cabrera J, Escalante J, Díaz-Morcillo A, Martínez-González A, Sánchez-Hernández D (2004) Load matching in multimode microwave-heating applicators based on the use of dielectric-layer moulding with commercial materials. Microw Opt Technol Lett 41(5):414–417

    Article  Google Scholar 

  31. Mizuno M, Obata S, Takayama S, Ito S, Kato N, Hirai T, Sato M (2004) Sintering of alumina by 2.45 GHz microwave heating. J Eur Ceram Soc 24(2):387–391

    Article  Google Scholar 

  32. Pitarch J, Catalá-Civera JM, Peñaranda-Foix FL, García-Baños B (2007) Modeling microwave power structures based on k-furcated waveguides arbitrarily filled with materials by modal techniques. J Microw Power Electromagn Energy 41(4):46–61

    Google Scholar 

  33. Nüchter M, Ondruschka B, Bonrath W, Gum A (2004) Microwave assisted synthesis—a critical technology overview. Green Chem 6(3):128–141

    Article  Google Scholar 

  34. Pert E, Carmel Y, Birnboim A, Olorunyolemi T, Gershon D, Calame J, Lloyd IK, Wilson OC (2001) Temperature measurements during microwave processing: the significance of thermocouple effects. J Am Ceram Soc 84(9):1981–1986

    Article  Google Scholar 

  35. Olmstead WE, Brodwin ME (1997) A model for thermocouple sensitivity during microwave heating. Int J Heat Mass Transf 40(7):1559–1565

    Article  MATH  Google Scholar 

  36. Carnochan P, Dickinson RJ, Joiner MC (1986) The practical use of thermocouples for temperature measurement in clinical hyperthermia. Int J Hyperth 2(1):1–19

    Article  Google Scholar 

  37. Leadbeater NE, McGowan CB (2013) Laboratory experiments using microwave heating. CRC Press, Boca Raton

    Book  Google Scholar 

  38. Kappe CO, Stadler A, Dallinger D, Mannhold R (2012) Microwaves in organic and medicinal chemistry, 2nd edn. Wiley-VCH, Weinheim, D

    Book  Google Scholar 

  39. Cao W (2012) The development and application of microwave heating, an InTech open access book. ISBN 978-953-51-0835-1

    Google Scholar 

  40. Leadbeater NE (2010) Microwave heating as a tool for sustainable chemistry. CRC Press, Boca Raton

    Google Scholar 

  41. Kappe CO, Dallinger D, Murphree SS (2006) Practical microwave synthesis for organic chemists, 2nd edn. Wiley-VCH, Weinheim, D

    Google Scholar 

  42. Breccia A, Esposito B, Breccia Fratadocchi G, Fini A (1999) Reaction between methanol and commercial seeed oils under microwave irradiation. J Microw Power Electromagn Energy 34(1):3–8

    Google Scholar 

  43. Mazzocchia C, Modica G, Kaddouri A, Nannicini R (2004) Fatty acid methyl esters synthesis from triglycerides over heterogeneous catalysts in the presence of microwaves. C R Chimie 7:601–605

    Article  Google Scholar 

  44. Leadbeater NE, Stencel LM (2006) Fast, easy preparation of biodiesel using microwave heating. Energy Fuels 20:2281–2283

    Article  Google Scholar 

  45. Leadbeater NE, Barnard TM, Stencel L (2008) Batch and continuous-flow preparation of biodiesel derived from butanol and facilitated by microwave heating. Energy Fuels 22:2005–2008

    Article  Google Scholar 

  46. Hernando J, Leton P, Matia MP, Novella JL, Alvarez-Builla J (2007) Biodiesel and FAME synthesis assisted by microwaves: homogeneous batch and flow processes. Fuel 86:1641–1644

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Leonelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Leonelli, C., Veronesi, P. (2015). Microwave Reactors for Chemical Synthesis and Biofuels Preparation. In: Fang, Z., Smith, Jr., R., Qi, X. (eds) Production of Biofuels and Chemicals with Microwave. Biofuels and Biorefineries, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9612-5_2

Download citation

Publish with us

Policies and ethics