The Phanerozoic Four Revolutions and Evolution of Paleosol Ichnofacies

  • Jorge F. Genise
  • Emilio Bedatou
  • Eduardo S. Bellosi
  • Laura C. Sarzetti
  • M. Victoria Sánchez
  • J. Marcelo Krause
Part of the Topics in Geobiology book series (TGBI, volume 40)


The analysis of a database composed of 166 cases of invertebrate and root trace fossils in paleosols allowed us to recognize four major evolutionary steps in the Phanerozoic evolution of paleosol ichnofaunas. Each step constitutes a revolution that is reflected in the appearance of a new ichnofacies. The emergence of the first vascular plants during the late Silurian–Early Devonian produced the most significant change in soil evolution, the appearance of rooted Histosols, Spodosols, Alfisols, Ultisols, and forest Oxisols through the Devonian and Carboniferous. The first revolution, then, occurred in the Early Devonian with these first paleosols that exhibit ichnoassemblages composed of rhizoliths. Paleosols bearing only rhizoliths constitute half of the cases in the Paleozoic and are recorded through the whole Phanerozoic. These cases may compose an archetypal ichnofacies termed the Rhizolith Ichnofacies. The Rhizolith Ichnofacies would be indicative of subaerial exposure and depending on needed studies on root morphology, probably would yield more precise and significative data on paleoenvironment and vegetation in the near future. Other cases of Paleozoic ichnoassemblages can be included in the Scoyenia Ichnofacies. The second revolution took place after the end-Permian mass extinction. It is characterized by the appearance of trace fossil assemblages that include or are dominated by earthworm and crayfish trace fossils. These ichnoassemblages are grouped in a new archetypal ichnofacies, the Camborygma Ichnofacies. The second revolution was followed by stasis that ended during the Cretaceous, when the third revolution occurred. By that time, the appearance and diversification of flowering plants triggered the diversification of groups of soil-inhabiting insects, such as ants, termites, bees, wasps, and certain beetles, which were capable of constructing linings and free-standing walls for their chambers and nests that consequently acquired a high potential of preservation. By the Late Cretaceous, the first recognizable insect trace fossils in paleosols appear as isolated examples, integrating the Camborygma Ichnofacies, or composing a new one: the Celliforma Ichnofacies. The fourth and most diverse revolution took place in the Middle Eocene, with the advent of grass-dominated habitats during the long-term cooling-drying period after the EECO, and the full establishment of all groups of modern insects, including the ball-making dung beetles. The spread of grasses produced the last step in soil evolution, that is, the appearance of soils with fine granular peds that derived in Mollisols. Traces of cicadas, dung beetles, bees, sphinx moths, ants, termites, cleptoparasites, and detritivores appear or diversify during this revolution composing the Coprinisphaera Ichnofacies. By the Oligocene, in closed-forest environments, the first assemblage dominated by termite trace fossils is recorded, composing the Termitichnus Ichnofacies. This last revolution is followed during the Neogene by a stasis only interrupted by the occasional appearance of new trace fossils from the same groups of insects.


Paleosol ichnofacies Rhizolith ichnofacies Scoyenia ichnofacies Camborygma ichnofacies Celliforma ichnofacies Coprinisphaera ichnofacies Termitichnus ichnofacies 



We thank Conrad Labandeira and Nicholas Minter for improving the original manuscript, and Gabriela Mángano and Luis Buatois for fruitful comments and also for inviting us to contribute to this book. The present research was supported by grant PICT 07/1972 and 2012/022 of the FONCYT of Argentina to J.F.G.


  1. Adams JS, Kraus MJ, Wing SL (2011) Evaluating the use of weathering indices for determining mean annual precipitation in the ancient stratigraphic record. Palaeogeogr Palaeoclimat Palaeoecol 309:358–366CrossRefGoogle Scholar
  2. Aguirre-Urreta MB (1992) Tertiary freshwater decapod (Crustacea: Parastacidae) from the Ñirihuau Basin, Patagonia, Argentina. J Palontol 66:817–825CrossRefGoogle Scholar
  3. Alonso RN, González CE, Pelayes HA (1982) Hallazgo de roedores y nidos de escarabeidos en el Terciario Superior de la Sierra de Vaqueros, Salta, República Argentina. Rev Inst Cienc Geol 5:1–3Google Scholar
  4. Alonso-Zarza AM, Silva PG (2002) Quaternary laminar calcretes with bee nests: evidences of small-scale climatic fluctuations, Eastern Canary Islands, Spain. Palaeogeogr Palaeoclimat Palaeoecol 178:119–135CrossRefGoogle Scholar
  5. Alonso-Zarza AM, Genise JF, Cabrera MC, Mangas J, Martín-Pérez A, Valdeolmillos A, Dorado-Valiño M (2008) Megarhizoliths in Pleistocene aeolian deposits from Gran Canaria (Spain): ichnological and palaeoenvironmental significance. Palaeogeogr Palaeoclimat Palaeoecol 265:39–51CrossRefGoogle Scholar
  6. Alonso-Zarza AM, Genise JF, Verde M (2011) Sedimentology, diagenesis and ichnology of Cretaceous and Palaeogene calcretes and palustrine carbonates from Uruguay. Sediment Geol 236:45–61CrossRefGoogle Scholar
  7. Alonso-Zarza AM, Meléndez A, Martín-García R, Herrero MJ, Martín-Pérez A (2012) Discriminating between tectonism and climate signatures in palustrine deposits: lessons from the Miocene of the Teruel Graben, NE Spain. Earth-Sci Rev 113:141–160CrossRefGoogle Scholar
  8. Anderson RC (2006) Evolution and origin of the Central Grassland of North America: climate, fire, and mammalian grazers. J Torrey Bot Soc 133:626–647CrossRefGoogle Scholar
  9. Andreis R (1972) Paleosuelos de la Formación Musters (Eoceno Medio), Laguna del Mate, Prov. de Chubut, Rep. Argentina. Rev Asoc Arg Min Petr Sed 3:91–97Google Scholar
  10. Arche A, López-Gómez J (2005) Sudden changes in fluvial style across the Permian-Triassic boundary in the eastern Iberian Ranges, Spain: Analysis of possible causes. Palaeogeogr Palaeoclimatol Palaeoecol 222:104–126CrossRefGoogle Scholar
  11. Archibald JD, Bryant LJ (1990) Differential Cretaceous/Tertiary extinctions of nonmarine vertebrates; evidence from northeastern Montana. Geol Soc Am Spec Pap 247:549–562Google Scholar
  12. Archibold O (1995) Ecology of world vegetation. Chapman and Hall, London, 510 pCrossRefGoogle Scholar
  13. Arillo A, Ortuño VM (2008) Did dinosaurs have any relation with dung beetles? (The origin of coprophagy). J Nat Hist 42:1405–1408CrossRefGoogle Scholar
  14. Armenteros I, Daley B (1998) Pedogenic modification and structure evolution in palustrine facies as exemplified by the Bembridge Limestone (Late Eocene) of the Isle of Wight, southern England. Sediment Geol 119:275–295CrossRefGoogle Scholar
  15. Ashley GM, Driese SG (2000) Paleopedology and paleohydrology of a volcaniclastic paleosol interval: implications for Early Pleistocene stratigraphy and paleoclimate record, Olduvai Gorge, Tanzania. J Sed Res 70:1065–1080CrossRefGoogle Scholar
  16. Babcock LE, Miller MF, Isbell JL, Collinson JW, Hasiotis ST (1998) Paleozoic-Mesozoic crayfish from Antarctica: earliest evidence of freshwater decapod crustaceans. Geology 26:539–542CrossRefGoogle Scholar
  17. Bedatou E (2010) Icnofábricas continentales complejas de Patagonia Central: significado y potenciales aplicaciones. Tesis doctoral, Univ Nac San Luis. 255 ppGoogle Scholar
  18. Bedatou E, Melchor RN, Bellosi E, Genise JF (2005) Icnofábricas continentales complejas de Patagonia Central. Ameghiniana 42:14RGoogle Scholar
  19. Bedatou E, Melchor RN, Bellosi E, Genise JF (2006) Trázas fósiles de decápodos continentales en el Jurásico y Cretácico de Santa Cruz, Argentina. In: Veiga G, Limarino CO, Rossetti DF (eds) Resúmenes de la XI Reunión Argentina de Sedimentología y IV Congreso Latinoamericano de Sedimentología, Bariloche. p 54Google Scholar
  20. Bedatou E, Melchor RN, Bellosi E, Genise JF (2007) Evolución de la icnofauna terrestre de la Patagonia central I. El Cretácico, el reinado de los crustáceos. In: Resúmenes de la V Reunión Argentina de Icnología y III Reunión de Icnología del Mercosur, Ushuaia. p 37Google Scholar
  21. Bedatou E, Melchor RN, Bellosi E, Genise JF (2008a) Crayfish burrows from Late Jurassic-Late Cretaceous continental deposits of Patagonia: Argentina. Their palaeoecological, palaeoclimatic and palaeobiogeographical significance. Palaeogeogr Palaeoclimat Palaeoecol 257:169–184CrossRefGoogle Scholar
  22. Bedatou E, Melchor RN, Bellosi E, Genise JF (2008b) Icnofábricas complejas dominadas por trazas de crustáceos terrestres (crayfishes) y lombrices en paleosuelos de Patagonia, Argentina. In: Resúmenes de la XII Reunión Argentina de Sedimentología, Buenos Aires. p 40Google Scholar
  23. Bedatou E, Melchor RN, Genise JF (2009) Complex palaeosol ichnofabrics from Late Jurassic-Early Cretaceous volcaniclastic successions of Central Patagonia, Argentina. Sediment Geol 218:74–102CrossRefGoogle Scholar
  24. Bellosi ES (2010) Loessic and fluvial sedimentation in Sarmiento Formation pyroclastics, middle Cenozoic of Central Patagonia. In: Madden R, Carlini A, Vucetich M, Kay R (eds) The paleontology of Gran Barranca: evolution and environmental change through the Middle Cenozoic of Patagonia. Cambridge University Press, Cambridge, pp 278–292Google Scholar
  25. Bellosi ES, Genise JF (2004) Insect trace fossils from paleosols of the Sarmiento Formation (Middle Eocene - Lower Miocene) at Gran Barranca (Chubut Province). In: Bellosi ES, Melchor RN (eds) Ichnia 2004, Fieldtrip Guidebook. Museo Paleontológico Egidio Feruglio, Trelew. pp 15–29Google Scholar
  26. Bellosi ES, González M (2010) Paleosols of the Middle Cenozoic Sarmiento formation, Central Patagonia. In: Madden R, Carlini A, Vucetich M, Kay R (eds) The paleontology of Gran Barranca: evolution and environmental change through the Middle Cenozoic of Patagonia. Cambridge University Press, Cambridge, pp 293–305Google Scholar
  27. Bellosi ES, Sciutto JC (2002) Laguna Palacios formation (San Jorge basin, Argentina): an upper cretaceous loess-paleosol sequence from Central Patagonia. Actas de la IX Reunión Argentina de Sedimentología, Córdoba, p 15Google Scholar
  28. Bellosi ES, Laza J, González M (2001) Icnofaunas en paleosuelos de la Formación Sarmiento (Eoceno-Mioceno), Patagonia Central. Resúmenes de la IV Reunión Argentina de Icnología y II Reunión de Icnología del Mercosur, Tucumán, p 31Google Scholar
  29. Bellosi ES, Miquel SE, Kay R, Madden R (2002a) Un paleosuelo mustersense con microgastrópodos terrestres (Charopidae) de la Formación Sarmiento, Eoceno de Patagonia central: significado paleoclimático. Ameghiniana 39:465–477Google Scholar
  30. Bellosi ES, González M, Genise JF (2002b) Paleosuelos y sedimentación Cretácica de la Cuenca San Jorge (Grupo Chubut) en la Sierra de San Bernardo, Patagonia Central. Actas del XV Congreso Geológico Argentino, El Calafate. CD-ROMGoogle Scholar
  31. Bellosi ES, Genise JF, González M (2004) Origen y desmantelamiento de lateritas paleógenas del sudoeste del Uruguay (Formación Asencio). Rev Mus Argentino Cienc Nat 6:25–40Google Scholar
  32. Bellosi ES, Laza JH, Sánchez MV, Genise JF (2010) Ichnofacial analysis of the Sarmiento Formation (Middle Eocene-Lower Miocene) at Gran Barranca, Central Patagonia. In: Madden R, Carlini A, Vucetich M, Kay R (eds) The paleontology of Gran Barranca: evolution and environmental change through the Middle Cenozoic of Patagonia. Cambridge University Press, Cambridge, pp 306–316Google Scholar
  33. Bellosi ES, Genise JF, González M, Verde M (2016) Paleogene laterites bearing the highest insect ichnodiversity in paleosols. Geology 44:119–122Google Scholar
  34. Béthoux O (2008) The earliest beetle identified. J Paleontol 83:931–937CrossRefGoogle Scholar
  35. Blinnikov M, Busacca A, Whitlock C (2002) Reconstruction of the late Pleistocene grassland of the Columbia basin, Washington, USA, based on phytolith records in loess. Palaeogeogr Palaeoclimat Palaeoecol 177:77–101CrossRefGoogle Scholar
  36. Blomeier D, Wisshak M, Joachimski M, Freiwald A, Volohonsky E (2003) Calcareous, alluvial and lacustrine deposits in the Old Red Sandstone of central north Spitsbergen (Wood Bay Formation, Early Devonian). Norweg J Geol 83:281–298Google Scholar
  37. Bohacs KM, Hasiotis ST, Demko TD (2007) Continental ichnofossils of the Green River and Wasatch Formations, Eocene, Wyoming: a preliminary survey and proposed relation to lake-basin type. Mountain Geol 44:79–108Google Scholar
  38. Bordy EM (2008) Enigmatic trace fossils from the aeolian Lower Jurassic Clarens Formation, Southern Africa. Palaeont Electr 11:16a–16p.Google Scholar
  39. Bordy EM, Bumby AJ, Catuneanu O, Eriksson PG (2004) Advanced Early Jurassic termite (Insecta: Isoptera) nests: evidence from the Clarens Formation in the Tuli Basin, Southern Africa. Palaios 19:68–78CrossRefGoogle Scholar
  40. Bordy EM, Bumby AJ, Catuneanu O, Eriksson PG (2005) Reply. Palaios 20:308–312CrossRefGoogle Scholar
  41. Bordy EM, Bumby AJ, Catuneanu O, Eriksson PG (2009) Possible trace fossils of putative termite origin in the Lower Jurassic (Karoo Supergroup) of South Africa and Lesotho. S Afr J Sci 105:356–362Google Scholar
  42. Boucot AJ, Dewey JF, Dineley DL, Fletcher R, Fyson WK, Griffin JG, Hickox CF, McKerrow WS, Ziegler AM (1974) Geology of the Arisaig area, Antigonish County, Nova Scotia. Geol Soc Am Spec Paper 139:1–191CrossRefGoogle Scholar
  43. Bown TM (1982) Ichnofossils and rhizoliths of the nearshore fluvial Jebel Qatrani Formation (Oligocene), Fayum Province, Egypt. Palaeogeogr Palaeoclimat Palaeoecol 40:255–309CrossRefGoogle Scholar
  44. Bown TM, Genise JF (1993) Fossil nests and gallery systems of termites (Isoptera) and ants (Formicidae) from the Early Miocene of Southern Ethiopia and the Late Miocene of Abu Dhabi Emirate, U.A.E. In: Geol Soc Am. Abstracts with Programs, Rocky Mountains Section 25, p 58Google Scholar
  45. Bown TM, Kraus MJ (1983) Ichnofossils of the alluvial Willwood Formation (Lower Eocene), Bighorn Basin, Northwestern Wyoming, U.S.A. Palaeogeogr Palaeoclimat Palaeoecol 43:95–128CrossRefGoogle Scholar
  46. Bown TM, Kraus MJ (1987) Integration of channel and flood plain suites in aggrading fluvial systems. 1. Developmental sequence and lateral relations of lower Eocene alluvial palaeosols, Willwood Formation, Bighorn Basin, Wyoming. J Sed Petr 57:587–601Google Scholar
  47. Bown TM, Laza JH (1990) A Miocene fossil termite nest from southern Argentina and its paleoclimatological implications. Ichnos 1:73–79CrossRefGoogle Scholar
  48. Bown TM, Ratcliffe BC (1988) The origin of Chubutolithes Ihering, ichnofossils from the Eocene and Oligocene of Chubut Province, Argentina. J Paleont 62:163–167CrossRefGoogle Scholar
  49. Bown TM, Larriestra CN, Powers DW (1988) Análisis paleoambiental de la Fm. Pinturas (Mioceno Inferior), Provincia de Santa Cruz. Actas de la II Reunión Argentina de Sedimentología, Buenos Aires. pp 31–35Google Scholar
  50. Bown TM, Hasiotis ST, Genise JF, Maldonado F, Brouwers EM (1997) Trace fossils of Hymenoptera and other insects and paleoenvironments of the Claron Formation (Paleocene and Eocene), Southwestern Utah. U S Geol Surv Bull 2153:42–58Google Scholar
  51. Brady SG, Larkin L, Danforth BN (2009) Bees, ants and stinging wasp (Aculeata). In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, New York, pp 264–269Google Scholar
  52. Brenchley P, Harper D (1998) Palaeoecology, ecosystems, environments and evolution. Chapman & Hall, London, 402 ppGoogle Scholar
  53. Bromley RG, Buatois LA, Genise JF, Labandeira CC, Mángano MG, Melchor RN, Schlirf M, Uchman A (2007) Comments on the paper “Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses” by Stephen T. Hasiotis. Sediment Geol 200:141–150CrossRefGoogle Scholar
  54. Brown RW (1934) Celliforma spirifer the fossil larval chambers of mining bees. J Wash Acad Sci 24:532–539Google Scholar
  55. Brown RW (1935) Further notes on fossil larval chambers of mining bees. J Wash Acad Sci 25:526–528Google Scholar
  56. Buatois LA, Mángano MG (2007) Chapter 17—invertebrate ichnology of continental freshwater environments. In: William M III (ed) Trace fossils. Elsevier, Amsterdam, pp 285–323CrossRefGoogle Scholar
  57. Buatois LA, Mangano MG (2011) Ichnology: organism-substrate interations in space and time. Cambridge University Press, Cambridge, 358 ppCrossRefGoogle Scholar
  58. Buckup L (2003) Familia Parastacidae. In: Melo GAS (ed) Manual de identificação dos Crustacea Decapoda de água doce do Brasil. Loyola, São Paulo, pp 317–398Google Scholar
  59. Cabrera A (1971) Fitogeografía de la República Argentina. Bol Soc Arg Bot 14:1–42Google Scholar
  60. Calvet Rovira F, Pomar Gomá L, Esteban Cerdá M (1975) Las rizoconcreciones del Pleistoceno de Mallorca. Instituto de Investigaciones Geológicas, Universidad de Barcelona 30:35–60Google Scholar
  61. Cantil LF, Sánchez MV, Bellosi ES, González MG, Sarzetti LC, Genise JF (2013) Coprinisphaera akatanka isp. nov.: the first fossil brood ball attributable to necrophagous dung beetles associated with an Early Pleistocene environmental stress in the Pampean region (Argentina). Palaeogeogr Palaeoclimat Palaeoecol 386:541–554Google Scholar
  62. Cascales-Minana B, Muñoz-Beromeu J, Ros R, Segura J (2010) Trends and patterns in the evolution of vascular plants: macroevolutionary implications of a multilevel taxonomic analysis. Lethaia 43:545–557CrossRefGoogle Scholar
  63. Chin K, Gill BD (1996) Dinosaurs, dung beetles, and conifers: participants in a Cretaceous food web. Palaios 11:280–285CrossRefGoogle Scholar
  64. Cladera G, Andreis R, Archangelsky S, Cúneo R (2002) Estratigrafía del Grupo Baqueró, Patagonia (provincia de Santa Cruz, Argentina). Ameghiniana 39:3–20Google Scholar
  65. Clapperton CM, Vera R (1986) The Quaternary glacial sequence in Ecuador: a reinterpretation of the work of Walter Sauer. J Quat Sci 1:45–56CrossRefGoogle Scholar
  66. Cleveland DM, Nordt LC, Atchley SC (2008) Paleosols, trace fossils, and precipitation estimates of the uppermost Triassic strata in northern New Mexico. Palaeogeogr Palaeoclimat Palaeoecol 257:421–444CrossRefGoogle Scholar
  67. Cohen AS (1982) Paleoenvironments of root casts from the Koobi Fora Formation, Kenya. J Sed Petr 52:401–414Google Scholar
  68. Contreras VH (1996) Paleontología, paleoecología y cronoestratigrafía del Neógeno de Puchuzum, Provincia de San Juan, Argentina. Ameghiniana 33:462Google Scholar
  69. Conway Morris S, Pickerill RK, Harland TL (1982) A possible annelid from the Trenton Limestone (Ordovician) of Quebec, with a review of fossil oligochaetes and other annulate worms. Can J Earth Sci 19:2150–2157CrossRefGoogle Scholar
  70. Cooper KW (1941) Davispia bearcreekensis Cooper a new cicada from the Paleocene, with a brief review of the fossil Cicacidae. Am J Sci 239:286–304CrossRefGoogle Scholar
  71. Cosarinsky MI, Bellosi ES, Genise JF (2005) Micromorphology of modern epigean termite nests and possible termite ichnofossils: a comparative analysis (Isoptera). Sociobiology 45:745–778Google Scholar
  72. Cramer MD, Hawkins HJ (2009) A physiological mechanism for the formation of root casts. Palaeogeogr Palaeoclimat Palaeoecol 274:125–133CrossRefGoogle Scholar
  73. Crandall KA, Harris DJ, Fetzner JW (2000) The monophyletic origin of freshwater crayfish estimated from nuclear and mitochondrial DNA sequences. Proc R Soc Lond B 2000:1679–1686CrossRefGoogle Scholar
  74. Danforth BD, Poinar GO (2011) Morphology, classification and antiquity of Melittosphex burmensis (Apoidea: Melittosphecidae) and implications for early bee evolution. J Paleontol 85:882–891CrossRefGoogle Scholar
  75. Darling DC, Sharkey MJ (1990) Order Hymenoptera. Bull Am Mus Nat Hist 195:124–129Google Scholar
  76. Darlington JP (2005) Distinctive fossilized termite nests at Laetoli, Tanzania. Insect Soc 52:408–409CrossRefGoogle Scholar
  77. Darlington JP (2011) Trace fossils interpreted in relation to the extant termite fauna at Laetoli, Tanzania. In: Harrison T (ed) Paleontology and geology of Laetoli: human evolution in context. Springer, New York, pp 555–565CrossRefGoogle Scholar
  78. Davies NS, Rygel MC, Gibling MR (2010) Marine influence in the Upper Ordovician Juniata Formation (Potters Mills, Pennsylvania): implications for the history of life on land. Palaios 25:527–539CrossRefGoogle Scholar
  79. Decelles PG, Carrapa B, Horton BK, Gehrels GE (2011) Cenozoic foreland basin system in the central Andes of northwestern Argentina: implications for Andean geodynamics and modes of deformation. Tectonics 30, TC6013CrossRefGoogle Scholar
  80. De Gibert JM, Sáez A (2009) Paleohydrological significance of trace fossil distribution in Oligocene fluvial-fan-to-lacustrine systems of the Ebro Basin, Spain. Palaeogeogr Palaeoclimat Palaeoecol 272:162–175CrossRefGoogle Scholar
  81. Del Fueyo G, Seoane L, Archangelsky A, Guler V, Llorens M, Archangelsky S, Gamerro J, Musacchio E, Passalia M, Barreda V (2007) Biodiversidad de las paleofloras de Patagonia austral durante el Cretacico Inferior. Publ Esp Asoc Paleont Argent 11:101–122Google Scholar
  82. Del Papa CE (2006) Estratigrafía y paleoambientes de la Formación Lumbrera, Grupo Salta, noroeste argentino. Rev Asoc Geol Argent 61:313–327Google Scholar
  83. Demko TM, Currie BS, Nicoll KA (2004) Regional paleoclimatic and stratigraphic implications of paleosols and fluvial/overbank architecture in the Morrison Formation (Upper Jurassic), Western Interior, USA. Sed Geol 167:115–135CrossRefGoogle Scholar
  84. Dlussky GM (1996) Ants (Hymenoptera: Formicidae) from Burmese amber. Paleontol J 30:449–454Google Scholar
  85. Domínguez-Alonso P, Coca-Abia MM (1998) Nidos de avispas minadoras en el Mioceno de Tegucigalpa (Honduras, América Central). Coloq Paleontol 49:93–114Google Scholar
  86. Driese SG, Mora CI (2001) Evolution and diversification of Siluro-Devonian root traces: influence on paleosol morphology and estimates of paleoatmospheric CO2 levels. In: Gensel PG, Edwards D (eds) Early land plants and their environments. Columbia University Press, New York, pp 237–253Google Scholar
  87. Driese SG, Mora CI, Elick JM (1997) Morphology and taphonomy of root and stump casts of the earliest trees (Middle to Late Devonian), Pennsylvania and New York, U.S.A. Palaios 12:524–537CrossRefGoogle Scholar
  88. Ducreux JL, Billaud Y, Truc G (1988) Traces fossiles d’insectes dans les paleosols rouges de l’Eocene superieur du nordest du Massif central Francais: Celliforma arvernensis ichnosp. nov. Bull Soc Geol Fr 8:167–173Google Scholar
  89. Dunagan SP, Driese SG (1999) Control of terrestrial stabilization on Late Devonian palustrine carbonate deposition, Catskill Magnafacies, New York, U.S.A. J Sed Res 69:772–783CrossRefGoogle Scholar
  90. Duringer P, Schuster M, Genise JF, Likius A, Mackaye H, Vignaud P, Brunet M (2006) The first fossil fungus gardens of Isoptera: oldest evidence of symbiotic termite fungiculture (Miocene, Chad basin). Naturwissenschaften 93:610–615CrossRefGoogle Scholar
  91. Duringer P, Schuster M, Genise JF, Mackaye HT, Vignaud P, Brunet M (2007) New termite trace fossils: galleries, nests and fungus combs from the Chad basin of Africa (Upper Miocene-Lower Pliocene). Palaeogeogr Palaeoclimat Palaeoecol 251:323–353CrossRefGoogle Scholar
  92. Edwards N, Jarzembowski EA, Pain T, Daley B (1998) Cocoon-like trace fossils from the lacustrine-palustrine Bembridge Limestone Formation (Late Eocene), Southern England. Proc Geol Assoc 109:25–32CrossRefGoogle Scholar
  93. Elick JM, Driese SG, Mora CI (1998) Very large plant and root traces from the Early to Middle Devonian: implications for early terrestrial ecosystems and atmospheric p(CO2). Geology 26:143–146CrossRefGoogle Scholar
  94. Elliott DK, Nations JD (1998) Bee burrows in the Late Cretaceous (Late Cenomanian) Dakota Formation, northeastern Arizona. Ichnos 5:243–253CrossRefGoogle Scholar
  95. Engel MS (2000) A new interpretation of the oldest fossil bee (Hymenoptera: Apidae). Am Mus Nov 3296:1–11CrossRefGoogle Scholar
  96. Engel MS (2001) A monograph of the Baltic bees and evolution of the Apoidea (Hymenoptera). Bull Am Mus Nat Hist 259:1–192CrossRefGoogle Scholar
  97. Engel MS, Delclòs X (2010) Primitive termites in Cretaceous amber from Spain and Canada (Isoptera). J Kans Entom Soc 83:111–128CrossRefGoogle Scholar
  98. Engel MS, Grimaldi DA (2006) The first Cretaceous spider wasp (Hymenoptera: Pompilidae). J Kans Entom Soc 79:359–368CrossRefGoogle Scholar
  99. Engel MS, Grimaldi DA, Krishna K (2007) Primitive termites from the Early Cretaceous of Asia (Isoptera). Stutt Beitr Nat B 371:1–32Google Scholar
  100. Engel MS, Grimaldi DA, Krishna K (2009) Termites (Isoptera): Their phylogeny, classification, and rise to ecologic dominance. Am Mus Nov 3485:1–23CrossRefGoogle Scholar
  101. Engelmann G, Chure D, Fiorillo A (2004) The implications of a dry climate for the paleoecology of the fauna of the Upper Jurassic Morrison Formation. Sediment Geol 167:297–308CrossRefGoogle Scholar
  102. Eschenbrenner V (1986) Contribution des termites a la micro-agragation des sols tropicaux. Cahier ORSTOM Série Pedologie 22:397–408Google Scholar
  103. Evans HE (1969) Three new Cretaceous aculeate wasps (Hymenoptera). Psyche 76:251–261CrossRefGoogle Scholar
  104. Fastovsky DE, Mcsweeney K (1991) Paleocene paleosols of the petrified forests of Theodore Roosevelt National Park, North Dakota; a natural experiment in compound pedogenesis. Palaios 6:67–80CrossRefGoogle Scholar
  105. Fastovsky DE, Mcsweeney K, Norton LD (1989) Pedogenic development at the Cretaceous-Tertiary boundary, Garfield County, Montana. J Sediment Res 59:758–767Google Scholar
  106. Faure K, de Wit MJ, Willis JP (1995) Late Permian global coal hiatus linked to 13C-depleted CO2 flux into the atmosphere during the final consolidation of Pangea. Geology 23:507–510CrossRefGoogle Scholar
  107. Feakes CR, Retallack GJ (1988) Recognition and chemical characterization of fossil soils developed on alluvium: a Late Ordovician example. In: Reinhardt J, Sigleo WR (eds) Paleosols and weathering through geologic time: principles and applications. Geol Soc Amer Spec Pap 216:5–48Google Scholar
  108. Fejfar O, Kaiser TM (2005) Insect bone-modification and paleoecoloy of Oligocene mammal-bearing sites in the Doupov Mountains, Northwestern Bohemia. Palaeont Electr 8:1–11,
  109. Feldmann RM, Pole M (1994) A new species of Paranephrops White, 1842: a fossil crayfish (Decapoda: Parastacidae) from the Manuherikia Group (Miocene), Central Otago, New Zealand. N Z J Geol Geophys 37:163–167CrossRefGoogle Scholar
  110. Fernandes de Aquino Santos M, Mermudes JRM, Medina Da Fonseca VM (2011) A specimen of Curculioninae (Curculionidae, Coleoptera) from the Lower Cretaceous, Araripe Basin, north-eastern Brazil. Palaeontology 54:807–814CrossRefGoogle Scholar
  111. Fiorillo AR (1999) Non-marine trace fossils from the Morrison Formation (Jurassic) of Curecanti National Recreation Area, Colorado. In: Santucci VL, McCleland L (eds) National Park Service, Paleontological Research volume, Technical report NPS/NRGRD/GRDTR-99/03. pp 42–46Google Scholar
  112. Fontaine J, Ballesteros JM, Powell JE (1995) Artefactos del comportamiento de escarabajos (Coleoptera, Scarabaeidae) como evidencias paleoclimáticas y paleoambientales en el Cuaternario (Pleistoceno Superior) del Valle del Tafí, Provincia de Tucumán, Argentina. Resúmenes de la V Reunión Nacional de la Asociación Argentina de Ciencias del Comportamiento, San Miguel de Tucumán. p 12Google Scholar
  113. Frenguelli J (1938) Bolas de escarabeidos y nidos de véspidos fósiles. Physis 12:348–352Google Scholar
  114. Frenguelli J (1939) Nidos fósiles de insectos en el Terciario del Neuquén y Río Negro. Notas Mus La Plata (Paleont) 4:379–402Google Scholar
  115. Fujiyama I (1968) A Miocene fossil of tropical dung beetle from Noto, Japan (Tertiary Insect Fauna of Japan, 2). Bull Nat Sci Mus Tokyo 11:201–210Google Scholar
  116. Fürsich FT, Wilmsen M, Taheri J (2010) Cellicalichnus antiquus isp. nov., an Early Middle Jurassic arthropod brood structure from the Shemshak Group of north-eastern Iran. Neues Jahr Geol Palaeont Abhand 256:61–68CrossRefGoogle Scholar
  117. Garassino A (1997) The macuran decapod crustaceans of the Lower Cretaceous (Lower Barremian) of Las Hoyas (Cuenca, Spain). Atti Soc Ital Sci Nat Mus Civ di Stor Nat Mil 137:101–126Google Scholar
  118. Gastaldo RA, Rolerson MW (2008) Katbergia gen. gov., a new trace fossil from Upper Permian and Lower Triassic rocks of the Karoo Basin: implications for palaeoenvironmental conditions at the P/Tr extinction event. Palaeontology 51:215–229CrossRefGoogle Scholar
  119. Genise JF (1997) A fossil termite nest from the Marplatan stage (Late Pliocene) of Argentina: paleoclimatic indicator. Palaeogeogr Palaeoclimat Palaeoecol 136:139–144CrossRefGoogle Scholar
  120. Genise JF (2000) The ichnofamily Celliformidae for Celliforma and allied ichnogenera. Ichnos 7:267–282CrossRefGoogle Scholar
  121. Genise JF (2001) Una nueva traza meniscada en paleosuelos de la Formación Bajo Tigre (Cretácico Inferior) de Santa Cruz (Argentina). In: Resúmenes de la IV Reunión Argentina de Icnología y II Reunión de Icnología del Mercosur, Tucumán. p 43Google Scholar
  122. Genise JF (2016) Ichnoentomology. Insect traces in soils and paleosols. Topics in Geobiology 37. SpringerGoogle Scholar
  123. Genise JF, Bellosi E (2004) Continental trace fossils of the Laguna Palacios Formation (Upper Cretaceous) from the San Bernardo range (Chubut province). In: Bellosi E, Melchor RN (eds) Ichnia 2004, First international congress on ichnology, fieldtrip guidebook, Trelew. pp 33–43Google Scholar
  124. Genise JF, Bown TM (1990) The constructor of the ichnofossil Chubutolithes. J Paleontol 64:482–483Google Scholar
  125. Genise JF, Bown TM (1994a) New Miocene scarabeid and hymenopterous nests and Early Miocene (Santacrucian) paleoenvironments, Patagonian Argentina. Ichnos 3:107–117CrossRefGoogle Scholar
  126. Genise JF, Bown TM (1994b) New trace fossils of termites (Insecta: Isoptera) from the Late Eocene-Early Miocene of Egypt, and the reconstruction of ancient isopteran social behavior. Ichnos 3:155–183CrossRefGoogle Scholar
  127. Genise JF, Bown TM (1996) Uruguay Roselli 1938 and Rosellichnus, n. ichnogenus: two ichnogenera for cluster of fossil bee cells. Ichnos 4:199–217CrossRefGoogle Scholar
  128. Genise JF, Cladera G (2004) Chubutolithes gaimanensis and other wasp trace fossils: breaking through the taphonomic barrier. J Kans Entom Soc 77:626–638CrossRefGoogle Scholar
  129. Genise JF, Edwards N (2003) Ichnotaxonomy, origin, and paleoenvironment of Quaternary insect cells from Fuerteventura, Canary Islands, Spain. J Kans Entom Soc 76:320–327Google Scholar
  130. Genise JF, Hazeldine PL (1998a) The ichnogenus Palmiraichnus Roselli for fossil bee cells. Ichnos 6:151–166CrossRefGoogle Scholar
  131. Genise JF, Hazeldine PL (1998b) 3D-reconstruction of insect trace fossils: Ellipsoideichnus meyeri Roselli. Ichnos 5:167–175CrossRefGoogle Scholar
  132. Genise JF, Laza JH (1998) Monesichnus ameghinoi Roselli: a complex insect trace fossil produced by two distinct trace makers. Ichnos 5:213–223CrossRefGoogle Scholar
  133. Genise JF, Sarzetti LC (2011) Fossil cocoons associated with a dinosaur egg from Patagonia, Argentina. Palaeontology 54:815–823CrossRefGoogle Scholar
  134. Genise JF, Verde M (2000) Corimbatichnus fernandezi: a cluster of fossil bee cells from the Late Cretaceous-early tertiary of Uruguay. Ichnos 7:115–125CrossRefGoogle Scholar
  135. Genise JF, Verde M (2010) Crustacean calichnia. In: Abstract book of the workshop on Crustacean bioturbation. Lepe, España, pp 33–37Google Scholar
  136. Genise JF, Zelich MR (2001) Trazas fósiles de insectos de la Formación Puerto Unzué (Cretácico Superior-Paleógeno) de Entre Ríos. In: Resúmenes de la IV Reunión Argentina de Icnología y II Reunión de Icnología del Mercosur, Tucumán. p 44Google Scholar
  137. Genise JF, Pazos PJ, González MG, Tófalo RO, Verde M (1998) Hallazgo de termiteros y tubos meniscados en la Formación Asencio (Cretácico Superior-Terciario Inferior) R.O. del Uruguay. In: Resúmenes de la III Reunión Argentina de Icnología y I Reunión de Icnología del Mercosur, Mar del Plata. pp 12–13Google Scholar
  138. Genise JF, Mángano MG, Buatois LA, Laza JH, Verde M (2000) Insect trace fossil associations in paleosols: the Coprinisphaera ichnofacies. Palaios 15:49–64CrossRefGoogle Scholar
  139. Genise JF, Cladera G, Tancoff S (2001a) La presencia de Eatonichnus claronensis en el Paleoceno del Chubut (Argentina). In: Resúmenes de la IV Reunión Argentina de Icnología y II Reunión de Icnología del Mercosur, Tucumán. p 45Google Scholar
  140. Genise JF, Contreras VH, Cilla G (2001b) Trazas de Equisetales en paleosuelos de la Formación Ischigualasto (Triásico) de San Juan. In: Resúmenes de la IV Reunión Argentina de Icnología y II Reunión de Icnología del Mercosur, Tucumán. p 46Google Scholar
  141. Genise JF, Sciutto JC, Laza JH, González MG, Bellosi ES (2002a) Fossil bee nests, coleopteran pupal chambers and tuffaceous paleosols from the Late Cretaceous Laguna Palacios Formation, Central Patagonia (Argentina). Palaeogeogr Palaeoclimat Palaeoecol 177:215–235CrossRefGoogle Scholar
  142. Genise JF, Laza JH, Fernández W, Frogoni J (2002b) Cámaras pupales fósiles de coleópteros: el icnogénero Rebuffoichnus Roselli. Rev Mus Argent Cienc Nat 4:159–165CrossRefGoogle Scholar
  143. Genise JF, Bellosi ES, González, MG (2004) An approach to the description and interpretation of ichnofabrics in paleosols. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis. Spec Publ Geol Soc Lond 228:355–382Google Scholar
  144. Genise JF, Bellosi ES, Melchor RN, Cosarinsky MI (2005) Comment—advanced early Jurassic Termite (Insecta: Isoptera) nests: evidence from the Clarens formation in the Tuli Basin, Southern Africa (Bordy et al., 2004). Palaios 20:303–308CrossRefGoogle Scholar
  145. Genise JF, Melchor RN, Bellosi ES, González MG, Krause JM (2007) New insect pupation chambers (Pupichnia) from the Upper Cretaceous of Patagonia, Argentina. Cretaceous Res 28:545–559CrossRefGoogle Scholar
  146. Genise JF, Bedatou E, Melchor RN (2008a) Terrestrial crustacean breeding trace fossils from the Cretaceous of Patagonia (Argentina): palaeobiological and evolutionary significance. Palaeogeogr Palaeoclimat Palaeoecol 264:128–139CrossRefGoogle Scholar
  147. Genise JF, Melchor RN, Bellosi ES, Sánchez MV, Krause JM, Sarzetti LC, Verde M, Bedatou E (2008b) Evolution of Mesozoic-Cenozoic terrestrial ichnofaunas from Southern South America. In: Abstracts of the Second International Congress on Ichnology, Ichnia 2008, Kracow. p 41Google Scholar
  148. Genise JF, Alonso-Zarza AM, Krause JM, Sánchez MV, Sarzetti LC, Farina JL, González MG, Cosarinsky M, Bellosi ES (2010a) Rhizolith balls from the Lower Cretaceous of Patagonia: just roots or the oldest evidence of insect agriculture? Palaeogeogr Palaeoclimat Palaeoecol 287:128–142CrossRefGoogle Scholar
  149. Genise JF, Melchor RN, Bellosi ES, Verde M (2010b) Invertebrate and vertebrate trace fossils in carbonates. In: Alonso-Zarza AM, Tanner L (eds) Carbonates in Continental Settings. Developments in Sedimentology 61, Elsevier, Amsterdam. pp 319–369Google Scholar
  150. Genise JF, Alonso-Zarza AM, Verde M, Meléndez A (2013a) Insect trace fossils in aeolian deposits and calcretes from the Canary Islands: their ichnotaxonomy, producers, and palaeoenvironmental significance. Palaeogeogr Palaeoclimat Palaeoecol 377:110–124CrossRefGoogle Scholar
  151. Genise JF, Melchor RN, Sánchez MV, González MG (2013b) Attaichnus kuenzelii revisited: A Miocene record of fungus-growing ants from Argentina. Palaeogeogr Palaeoclimat Palaeoecol 386:349–363Google Scholar
  152. Genise JF, Farina JL, Verde M (2013c) Teisseirei barattinia Roselli 1939: the first sphinx moth trace fossil from palaeosols and its distinct type of wall. Lethaia 46:480–489Google Scholar
  153. Gierliński G, Pieńkowski G, Niedźwiedzki G (2004) Tetrapod track assemblage in the Hettangian of Soltyków, Poland, and its paleoenvironmental background. Ichnos 11:195–213CrossRefGoogle Scholar
  154. Gierlowski-Kordesch E (1991) Ichnology of an ephemeral lacustrine/alluvial plain system: Jurassic East Berlin Formation, Hartford Basin, USA. Ichnos 1:221–232CrossRefGoogle Scholar
  155. Gill S, Yemane K (1996) Implications of a Lower Pennsylvanian Ultisol for equatorial Pangean climates and early, oligotrophic, forest ecosystems. Geology 24:905–908CrossRefGoogle Scholar
  156. Gobetz KE, Martin LD (2006) Burrows of a gopher-like rodent, possibly Gregorymys (Geomyoidea: Geomyidae: Entoptychtinae), from the early Miocene Harrison Formation, Nebraska. Palaeogeogr Palaeoclimat Palaeoecol 237:305–314CrossRefGoogle Scholar
  157. González M (1999) Los paleosuelos de la Formación Laguna Palacios (Cretácico Superior) de Patagonia y la Formación Asencio (Cretácico Superior—Terciario Inferior) de Uruguay. In: Boletim do 5° Simposio sobre o Cretáceo do Brasil, San Pablo. pp 65–70Google Scholar
  158. Gratshev VG, Zherikhin VV (2003) The fossil record of weevils and related beetle families. In: Krzeminska E, Krzeminski W (eds) Proceedings of the 2nd congress on palaeoentomology (Krakow, Poland). Acta Zool Cracov 46:129–138Google Scholar
  159. Gregory MR, Campbell KA (2003) A “Phoebichnus look-alike”: a fossilised root system from Quaternary coastal dune sediments, New Zealand. Palaeogeogr Palaeoclimat Palaeoecol 192:247–258CrossRefGoogle Scholar
  160. Gregory MR, Martin AJ, Campbell KA (2004) Compound trace fossils formed by plant and animal interactions: quaternary of New Zealand and Sapelo Island, Georgia (USA). Foss Str 51:88–105Google Scholar
  161. Gregory MR, Campbell KA, Alfaro AC, Hudson N (2009) Bee and ant burrows in Quaternary “coffee rock” and Holocene sand dunes, Kowhai Bay, Northland, New Zealand. Palaeogeogr Palaeoclimat Palaeoecol 273:102–110CrossRefGoogle Scholar
  162. Grimaldi DA (1999) The co-radiations of pollinating insects and angiosperms in the Cretaceous. Ann MO Bot Gard 86:373–406CrossRefGoogle Scholar
  163. Grimaldi DA, Engel MS (2005) Evolution of the insects. Cambridge University Press, New York, 755 ppGoogle Scholar
  164. Gromov VV, Dimitriev V, Zherikhin VV, Lebedev EL, Ponomarenko AG, Rasnitsyn AP, Sukatsheva ID (1993) Cretaceous insect faunas of the Ulya River Basin, West Okhotsk Region. In: Ponomarenko AG (ed) Mesozoiskie Nasekomye i Ostracody Azii. Trudy Paleontol Inst Ross Akad Nauk 252:5–60Google Scholar
  165. Grow L (1981) Burrowing behaviour in the crayfish Cambarus diogenes diogenes Girard. Anim Behav 29:351–356CrossRefGoogle Scholar
  166. Growns IO, Richardson AMM (1988) Diet and burrowing habitat of the freshwater crayfish, Parastacoides tasmanicus tasmanicus Clark (Decapoda: Parastacidae). Aust J Mar Freshwat Res 39:525–534CrossRefGoogle Scholar
  167. Halffter G, Edmonds WD (1982) The nesting behavior of dung beetles. An ecological and evolutive approach. Publ Inst Ecol México 10:1–176Google Scholar
  168. Hallan A (1994) An outline of Phanerozoic biogeography. Oxford Univ. Press, Oxford, 246 ppGoogle Scholar
  169. Hamer JMM, Sheldon ND, Nichols GJ, Collinson ME (2007) Late Oligocene–early Miocene paleosols of distal fluvial systems, Ebro Basin, Spain. Palaeogeogr Palaeoclimat Palaeoecol 247:220–235CrossRefGoogle Scholar
  170. Hamr P, Richardson A (1994) Life history of Parastacoides tasmanicus tasmanicus Clark, a burrowing freshwater crayfish from south-western Tasmania. Mar Freshwat Res 45:455–470CrossRefGoogle Scholar
  171. Hanski I, Cambefort Y (1991) Dung beetle ecology. Princeton University Press, New Jersey, 481 pCrossRefGoogle Scholar
  172. Harris TM (1961) The Yorkshire Jurassic Flora I. Thallophyta-Pteridophyta. British Museum Natural History, LondonCrossRefGoogle Scholar
  173. Harris TM, Rest JA (1966) The flora of the Brora Coal. Geol Mag 103:101–109CrossRefGoogle Scholar
  174. Hasiotis ST (1993) Ichnology of Triassic and Holocene cambarid of North America: an overview of burrowing behaviour and morphology as reflected by their morphologies in the geological record. Fresh Cray 9:407–418Google Scholar
  175. Hasiotis ST (1999) Continental ichnofossils from the Upper Jurassic Morrison Formation, Western Interior, USA: what organism behavior tell us about Jurassic environments and climates. In: Santucci VL, McCleland L (eds) National Park Service, Paleontological Research. pp 121–125Google Scholar
  176. Hasiotis ST (2000) The invertebrate invasion and evolution of Mesozoic soil ecosystems: the ichnofossil record of ecological innovations. In: Gastaldo RA, DiMichele WA (eds) Phanerozoic Terrestrial Ecosystems. Paleont Soc Pap 6:141–169Google Scholar
  177. Hasiotis ST (2003) Complex ichnofossils of solitary to social soil organisms: understanding their evolution and roles in terrestrial paleoecosystems. Palaeogeogr Palaeoclimat Palaeoecol 192:259–320CrossRefGoogle Scholar
  178. Hasiotis ST (2004) Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses. Sediment Geol 167:177–268CrossRefGoogle Scholar
  179. Hasiotis ST, Bown TM (1996) A short note about crayfish burrows from the Paleocene-Eocene Claron Formation, southwestern Utah, USA. Fresh Cray 11:121–129Google Scholar
  180. Hasiotis ST, Demko T (1996) Terrestrial and freshwater trace fossils, Upper Jurassic Morrison Formation, Colorado Plateau. In: Morales M (ed) The Continental Jurassic. Mus North Ariz Bull 60:355–370Google Scholar
  181. Hasiotis ST, Demko T (1998) Ichnofossils from Garden Park Paleontological Area, Colorado: implications for paleoecologic and paleoclimatic reconstructions of the Upper Jurassic. Modern Geol 22:461–479Google Scholar
  182. Hasiotis ST, Dubiel RF (1993a) Trace fossil assemblages in Chinle Formation alluvial deposits at The Teepes, Petrified Forest National Park. In: Lucas SG, Morales M (eds) The Nonmarine Triassic. New Mexico Mus Nat Hist Sci Bull 3:G42–G43Google Scholar
  183. Hasiotis ST, Dubiel RF (1993b) Crayfish burrows and their paleohydrologic significance—upper Triassic Chinle Formation, Ft. Wingate, New Mexico. In: Lucas SG, Morales M (eds) The nonmarine Triassic. New Mexico Mus Nat Hist Sci Bull 3:G24–G26Google Scholar
  184. Hasiotis ST, Dubiel RF (1994) Ichnofossil tiering in Triassic alluvial paleosols: implications for Pangean continental rocks and paleoclimate. Mem Can Soc Petrol Geol 17:311–317Google Scholar
  185. Hasiotis ST, Dubiel RF (1995) Termite (Insecta: Isoptera) nest ichnofossils from the Upper Triassic Chinle Formation, Petrified Forest National Park, Arizona. Ichnos 4:119–130CrossRefGoogle Scholar
  186. Hasiotis ST, Honey JG (1995) Crayfish burrows and their paleohydrologic significance in Paleocene continental deposits, Washakie, great Divide, and Hanna Basins, Wyoming, USA. Fresh Cray 10:105–117Google Scholar
  187. Hasiotis ST, Honey JG (2000) Paleohydrologic and stratigraphic significance of crayfish burrows in continental deposits: examples from several Paleocene Laramide Basins in the Rocky Mountains. J Sediment Res 70:127–139CrossRefGoogle Scholar
  188. Hasiotis ST, Kirkland JI (1997) Crayfish fossils and burrows (Decapoda: Cambaridae), Upper Jurassic Morrison Formation, Colorado Plateau, USA. Fresh Cray 11:106–120Google Scholar
  189. Hasiotis ST, Mitchell CE (1993) A comparison of crayfish burrow morphologies: Triassic and Holocene fossil, paleo- and neo-ichnological evidence, and the identification of their burrowing signatures. Ichnos 2:291–314CrossRefGoogle Scholar
  190. Hasiotis ST, Aslan A, Bown TM (1993a) Origin, architecture, and paleoecology of the Early Eocene continental ichnofossils Scaphichnium hamatum, integration of ichnology and paleopedology. Ichnos 3:1–9CrossRefGoogle Scholar
  191. Hasiotis ST, Mitchell CE, Dubiel RF (1993b) Application of morphologic burrow interpretations to discern continental burrow architects: lungfish or crayfish? Ichnos 2:315–333CrossRefGoogle Scholar
  192. Hasiotis ST, Kirkland JI, Callison G (1998) Crayfish fossils and burrows from the Upper Jurassic Morrison Formation of Western Colorado. Modern Geol 22:481–491Google Scholar
  193. Hasiotis ST, Wellner RW, Martin AJ, Demko TM (2004) Vertebrate burrows from Triassic and Jurassic continental deposits of North America and Antarctica: their paleoenvironmental and paleoecological significance. Ichnos 11:103–124CrossRefGoogle Scholar
  194. Hembree DI (2009) Neoichnology of burrowing millipedes: Linking modern burrow morphology, organism behavior, and sediment properties to interpret continental ichnofossils. Palaios 24:425–439CrossRefGoogle Scholar
  195. Hembree DI, Hasiotis ST (2007) Paleosols and ichnofossils of the White River Formation of Colorado: insight into soil ecosystems of the North American Midcontinent during the Eocene-Oligocene transition. Palaios 22:123–142CrossRefGoogle Scholar
  196. Hembree DI, Hasiotis ST (2008) Miocene vertebrate and invertebrate burrows defining compound paleosols in the Pawnee Creek Formation, Colorado, U.S.A. Palaeogeogr Palaeoclimat Palaeoecol 270:349–365CrossRefGoogle Scholar
  197. Hembree DI, Nadon GC (2011) A paleopedologic and ichnologic perspective of the terrestrial Pennsylvanian landscape in the distal Appalachian Basin, U.S.A. Palaeogeogr Palaeoclimat Palaeoecol 312:138–166CrossRefGoogle Scholar
  198. Hembree DI, Hasiotis ST, Martin LD (2005) Torridorefugium eskridgensis (new ichnogenus and ichnospecies): amphibian aestivation burrows from the Lower Permian Speiser Shale of Kansas. J Paleontol 79:583–593CrossRefGoogle Scholar
  199. Hillier RD, Edwards D, Morrissey LB (2008) Sedimentological evidence for rooting structures in the Early Devonian Anglo-Welsh Basin (UK), with speculation on their producers. Palaeogeogr Palaeoclimat Palaeoecol 270:366–380CrossRefGoogle Scholar
  200. Horn GH (1876) Notes on some coleopterous remains from the bone cave at Port Kennedy, Penna. Trans Am Entom Soc 5:241–245Google Scholar
  201. Horwitz P, Knott B (1983) The burrowing behaviour of the Koonac Cherax plebejus (Decapoda: Parastacidae). West Aust Nat 15:113–117Google Scholar
  202. Horwitz P, Knott B (1991) The faunal assemblage in freshwater crayfish burrows in sedgeland and forest at Lightning Plains, Western Tasmania. Pap Proc Roy Soc Tasm 125:29–32Google Scholar
  203. Horwitz P, Richardson AMM, Cramp PM (1985) Aspects of the life story of the burrowing freshwater crayfish Engaeus leptorhyncus at Rattrays marsh, North East Tasmania. Tasm Nat 82:1–5Google Scholar
  204. Houston TF (1987) Fossil brood cells of stenotritid bee (Hymenoptera, Apoidea) from the Pleistocene of South Australia. Trans Roy Soc South Aust 3:93–97Google Scholar
  205. Humphreys GS (2003) Evolution of terrestrial burrowing invertebrates. In: Roach IC (ed) Advances in Regolith. CRC LEME, Camberra, Australia, pp 211–215Google Scholar
  206. Huner JV, Barr JE (1991) Red swamp crayfish: biology and exploitation. Louisiana State University, Baton RougeGoogle Scholar
  207. Inozemtsev SA, Naugolnykh SV, Yakimenko EY (2011) Upper Permian paleosols developed from limestone in the middle reaches of the Volga River: morphology and genesis. Eurasian Soil Sci 44:604–617CrossRefGoogle Scholar
  208. Iriondo M, Krohling DM (1996) Los sedimentos eólicos del noroeste de la llanura pampeana (Cuaternario superior). In: Actas del XIII Congreso Geológico Argentino y III Congreso de Hidrocarburos 1, Buenos Aires. pp 27–48Google Scholar
  209. Jansson IM, McLoughlin S, Vajda V (2008) Early Jurassic annelid cocoons from eastern Australia. Alcheringa 32:285–296CrossRefGoogle Scholar
  210. Jenik J (1978) Roots and root systems in tropical trees. Morphologic and ecologic aspects. In: Tomlinson PB, Zimmermann MH (eds) Tropical trees as living systems. Cambridge University Press, Cambridge, pp 323–349Google Scholar
  211. Johnston PA, Eberth DA, Anderson PK (1996) Alleged vertebrate eggs from Upper Cretaceous redbeds, Gobi Desert, are fossil insect (Coleoptera) pupal chambers: Fictovichnus new ichnogenus. Can J Earth Sci 33:511–525CrossRefGoogle Scholar
  212. Jones B, Ng KC (1988) The structure and diagenesis of rhizoliths from Cayman Brac, British West Indies. J Sediment Res 58:457–467Google Scholar
  213. Jordan F, Babbitt KJ, McIvor CC, Miller SJ (2000) contrasting patterns of habitat use by prawns and crayfish in a headwater marsh of the St. Johns River, Florida. J Crustacean Biol 20:769–776CrossRefGoogle Scholar
  214. Kabanov PB, Alekseeva TV, Alekseeva VA, Alekseev AO, Gubin SV (2010) Paleosols in Late Moscovian (Carboniferous) marine carbonates of the East European Craton revealing “Great Calcimagnesian Plain” paleolandscapes. J Sediment Res 80:195–215CrossRefGoogle Scholar
  215. Kessler JLP, Soreghan GS, Wacker HJ (2001) Equatorial aridity in Western Pangea: lower Permian loessite and dolomitic paleosols in Northeastern New Mexico, U.S.A. J Sediment Res 71:817–832CrossRefGoogle Scholar
  216. Kim JY, Kim KS, Pickerill RK (2002) Cretaceous nonmarine trace fossils from the Hasandong and Jinju Formations of the Namhae Area, Kyongsangnamdo, Southeast Korea. Ichnos 9:41–60CrossRefGoogle Scholar
  217. Kindle EM (1923) A note on rhizoconcretions. J Geol 33:744CrossRefGoogle Scholar
  218. Kitching IJ, Sadler S (2011) Lepidoptera, Insecta. In: Harrison T (ed) Paleontology and geology of Laetoli: human evolution in context, vol 2, Fossil hominids and the associated fauna. Springer, Berlin, pp 549–554CrossRefGoogle Scholar
  219. Klappa CF (1980) Rhizoliths in terrestrial carbonates: classification, recognition, genesis and significance. Sedimentology 27:613–629CrossRefGoogle Scholar
  220. Knoll M, James W (1987) Effect of the advent and diversification of vascular plants on mineral weathering through geological time. Geology 15:1099–1102CrossRefGoogle Scholar
  221. Kosir A (2004) Microcodium revisited: root calcification products of terrestrial plants on carbonate-rich substrates. J Sediment Res 74:845–857CrossRefGoogle Scholar
  222. Kowalewski M, Demko T, Hasiotis ST, Newell D (1998) Quantitative ichnology of Triassic crayfish burrows (Camborygma eumekenomos): ichnofossils as linkages to population paleoecology. Ichnos 6:5–21CrossRefGoogle Scholar
  223. Kramarz AG, Bellosi ES (2005) Hystricognath rodents from the Pinturas Formation, Early-Middle Miocene of Patagonia, biostratigraphic and paleoenvironmental implications. J South Am Earth Sci 18:199–212CrossRefGoogle Scholar
  224. Kraus MJ, Hasiotis ST (2006) Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: examples from Paleogene paleosols, Bighorn Basin, Wyoming, U.S.A. J Sediment Res 76:633–646CrossRefGoogle Scholar
  225. Krause JM, Bellosi ES (2006) Paleosols from the Koluel Kaike Formation (Lower-Middle Eocene) in south-central Chubut, Argentina: a preliminary análisis. In: Resúmenes del IV Congreso Latinoamericano de Sedimentología y XI Reunión Argentina de Sedimentología, Bariloche. p 125Google Scholar
  226. Krause JM, Genise JF (2004) Chubutolithes Ihering en Bahía Solano, Comodoro Rivadavia, Chubut, Argentina. Consideraciones sedimentológicas e icnológicas. In: Resúmenes de la X Reunión Argentina de Sedimentología, San Luis. pp 84–85Google Scholar
  227. Krause JM, Bellosi ES, Genise JF (2007) Evolución de la icnofauna terrestre de la Patagonia Central II. El Grupo Río Chico: desde el K-T hasta la explosión del Eoceno Medio. In: Resúmenes de la V Reunión Argentina de Icnología y III Reunión de Icnología del MERCOSUR, Ushuaia. p 38Google Scholar
  228. Krause JM, Bown TM, Bellosi ES, Genise JF (2008) Trace fossils of cicadas in the Cenozoic of Central Patagonia, Argentina. Palaeontology 51:405–418CrossRefGoogle Scholar
  229. Krause JM, Genise JF, Puerta P (2010). New trace fossils of cicadas from the Middle Cenozoic of Chubut, Argentina. In: Resúmenes del Primer Simposio Latinoamericano de Icnología, São Leopoldo, Brazil. p 42Google Scholar
  230. Krell FT (2006) Fossil record and evolution of Scarabaeoidea (Coleoptera, Polyphaga). Coleopt Soc Monogr 5:120–143Google Scholar
  231. Krell FT (2007) Catalogue of fossil Scarabaeoidea (Coleoptera, Polyphaga) of the Mesozoic and Tertiary. Denver Mus Nat Sci Tech Rep 2007–8:1–79Google Scholar
  232. Krell FT, Schawaller W (2011) Beetles (Insecta: Coleoptera). In: Harrison T (ed) Paleontology and Geology of Laetoli: Human Evolution in Context. Springer, Berlin, pp 535–548CrossRefGoogle Scholar
  233. Kröhling DM (1999) Sedimentological maps of the typical loessic units in North Pampa, Argentina. Quat Int 62:49–55CrossRefGoogle Scholar
  234. Kuntz P (2010) 30 Ans déjà! ASAM Bull 10:39–45Google Scholar
  235. Kuntz P (2012) Révision des ovoïdes du Lutétien de Bouxwiller en Alsace. Gazette de la Association Strasbourgeoise des Amis de la Minéralogie. On-line.
  236. Kusnezov N (1941) A revision of Amber Lepidoptera. Paleontological Institute, USSR Academy of Sciences, Moscow & Leningrad, 135 ppGoogle Scholar
  237. La Roche F, Genise JF, Castillo C, Quesada ML, García-Gotera CM, De la Nuez J (2014) Fossil bee cells from the Canary Islands. Ichnotaxonomy, palaeobiology and palaeoenvironments. Palaeogeogr Palaeoclimat Palaeoecol 409:249–264Google Scholar
  238. Labandeira C (2011) Evidence for an earliest Late Carboniferous divergence time and the early larval ecology and diversification of major Holometabola lineages. Entomol Am 117:9–21Google Scholar
  239. Lake PS, Newcombe KJ (1975) Observations on the ecology of the crayfish Parastacoides tasmanicus (Decapoda: Parastacidae) from South-Western Tasmania. Aust Zool 18:197–214Google Scholar
  240. Laza JH (1982) Signos de actividad atribuibles a Atta (Myrmicidae, Hymenoptera), en el Mioceno de la Provincia de La Pampa, República Argentina. Significación paleozoogeográfica. Ameghiniana 19:109–124Google Scholar
  241. Laza JH (1986a) Icnofósiles de paleosuelos del Cenozoico mamalífero de Argentina. I Paleógeno. Bol Asoc Pal Arg 15:19Google Scholar
  242. Laza JH (1986b) Icnofósiles de paleosuelos del Cenozoico mamalífero de Argentina. II Neógeno. Bol Asoc Pal Arg 15:13Google Scholar
  243. Laza JH (1995) Signos de actividad de insectos. In: Alberdi TM, Leone G, Tonni EP (eds) Evolución biológica y climática de la región pampeana durante los últimos cinco millones de años. Consejo de Investigaciones Científicas de España, Madrid, pp 347–361Google Scholar
  244. Laza JH (1997) Signos de actividad atribuibles a dos especies de Acromyrmex (Myrmicinae, Formicidae, Hymenoptera) del Pleistoceno en la provincia de Buenos Aires. República Argentina Significado paleoambiental Geociencias 2:56–62Google Scholar
  245. Laza JH (2006a) Termiteros del Plioceno y Pleistoceno de la provincia de Buenos Aires, República Argentina. Significación paleoambiental y paleozoogeográfica. Ameghiniana 43:641–648Google Scholar
  246. Laza JH (2006b) Dung-beetle fossil brood balls: the ichnogenera Coprinisphaera Sauer and Quirogaichnus (Coprinisphaeridae). Ichnos 13:217–235CrossRefGoogle Scholar
  247. Laza JH, Reguero MA (1990) Extensión faunística de la antigua Región Neotropical en la Península Antártica durante el Eoceno. Ameghiniana 26:245Google Scholar
  248. Lea AM (1925) Notes on some calcareous insect puparia. Rec South Aust Mus 3:35–36Google Scholar
  249. Lefebvre F, Nel A, Papier F, Grauvogel-Stamm L, Gall JC (1998) The first “cicada-like Homoptera” from the Triassic of the Vosges, France. Palaeontology 41:1195–1200Google Scholar
  250. Legalov AA (2010) Checklist of Mesozoic Curculionoidea (Coleoptera) with description of new taxa. Baltic J Col 10:71–101Google Scholar
  251. Lin Q (1980) Fossil insects. In: Zhongguo K, Nanjing D, Gushengwu Y (eds) Fossils of Mesozoic deposits of volcanic origin in Zhejiang and Anhui. Acad Sinica Nanj Inst Geol Palaeontol, Science Press, Beijing, pp 211–244Google Scholar
  252. Longrich NR, Bhullar B-AS, Gauthier JA (2012) Mass extinction of lizards and snakes at the Cretaceous–Paleogene boundary. PNAS 109:21396–21401CrossRefGoogle Scholar
  253. Loope DB, Dingus L (1999) Mud-filled Ophiomorpha from Upper Cretaceous continental redbeds of southern Mongolia; an ichnologic clue to the origin of detrital, grain-coating clays. Palaios 14:451–458CrossRefGoogle Scholar
  254. Lucas SG, Minter NJ, Hunt AP (2010) Re-evaluation of alleged bees’ nests from the Upper Triassic of Arizona. Palaeogeogr Palaeoclimat Palaeoecol 286:194–201CrossRefGoogle Scholar
  255. MacEachern JA, Pemberton SG, Gingras MK, Bann KL (2007) The ichnofacies paradigm: a fifty-year retrospective. In: Miller W III (ed) Trace fossils; concepts, problems, prospects. Elsevier, Amsterdam, pp 52–77Google Scholar
  256. MacEachern JA, Bann KL, Gingras MK, Zonneveld JP, Dashgardt SE, Pemberton SG (2012) The ichnofacies paradigm. In: Knaust D, Bromley R (eds) Trace fossils as indicators of sedimentary environments, vol 64, Developments in sedimentology. Elsevier, Amsterdam, pp 103–138CrossRefGoogle Scholar
  257. Mack GH, Leeder M, Perez-Arlucea M, Bailey BDJ (2003) Early Permian silt-bed fluvial sedimentation in the Orogrande Basin of the Ancestral Rocky Mountains, New Mexico, USA. Sediment Geol 160:159–178CrossRefGoogle Scholar
  258. Macleod N, Rawson PF, Forey PL, Banner FT, Boudagher-Fadel MK, Bown PR, Burnett JA, Chambers P, Culver S, Evans SE, Jeffery C, Kaminski MA, Lord AR, Milner AC, Milner AR, Morris N, Owen E, Rosen BR, Smith AB, Taylor PD, Urquhart E, Young JR (1997) The cretaceous-tertiary biotic transition. J Geol Soc 154:265–292CrossRefGoogle Scholar
  259. Manum SB, Bose MN, Sawyer RT (1991) Clitellate cocoons in freshwater deposits since the Triassic. Zool Scrip 20:347–366CrossRefGoogle Scholar
  260. Martin LD, Bennett DK (1977) The burrows of the Miocene beaver Palaeocastor, Western Nebraska, U.S.A. Palaeogeogr Palaeoclimat Palaeoecol 22:173–193CrossRefGoogle Scholar
  261. Martin AJ, Rich TH, Poore GCB, Schultz MB, Autin CM, Kool L, Vickers-Rich P (2008) Fossil evidence in Australia for oldest known freshwater crayfish of Gondwana. Gond Res 14:287–296CrossRefGoogle Scholar
  262. Martin AJ, Varricchio DJ (2011) Paleoecological utility of insect trace fossils in dinosaur nesting sites of the Two Medicine Formation (Campanian), Choteau, Montana. Hist Biol 23:15–25CrossRefGoogle Scholar
  263. Martínez S, Veroslavsky G, Verde M (1997) Primer registro del Paleoceno en el Uruguay: paleosuelos calcáreos en la Cuenca de Santa Lucía. Rev Bras Geoc 27:295–302Google Scholar
  264. Martínez S, Veroslavsky G, Verde M (2001) Paleoecología de los paleosuelos calcáreos fosilíferos (“Calizas del Queguay” Paleoceno) de las regiones sur y litoral del Uruguay. In: Actas del XI Congreso Latinoamericano de Geología y III Congreso Uruguayo de Geología, Montevideo. p 10Google Scholar
  265. Mas G, Ripoll J (2010) Cambres de pupació d’insectes coleòpters del Pliocè—Pleistocè inferior de Mallorca (Illes Balears, Mediterrània occidental). Significació paleoambiental i cronoestratigràfica. Boll Soc Hist Nat Balears 53:91–106Google Scholar
  266. McKenna DD, Sequeira AS, Marvaldi AE, Farell BD (2009) Temporal lags and overlap in the diversification of weevils and flowering plants. PNAS 106:7083–7088CrossRefGoogle Scholar
  267. Meco J, Petit-Maire N, Ballester J, Betancort JF, Ramos AJG (2010) The Acridian plagues, a new Holocene and Pleistocene palaeoclimatic indicator. Global Planet Change 72:318–320CrossRefGoogle Scholar
  268. Meco J, Muhs DR, Fontugne M, Ramos AJG, Lomoschitz A, Patterson D (2011) Late Pliocene and Quaternary Eurasian locust infestations in the Canary Archipelago. Lethaia 44:440–454CrossRefGoogle Scholar
  269. Melchor RN (2002) Depósitos continentales eocenos del sudoeste de La Pampa, Argentina. In: Cingolani CA, Linares E, López de Luchi MG, Ostera HA, Panarello HO (eds) In: Actas del XV Congreso Geológico Argentino, El Calafate. pp 694–698Google Scholar
  270. Melchor RN, Bellosi ES, Genise JF, Verde M (2001) Invertebrate trace fossils from Triassic continental sequences of San Juan province, Argentina. Asoc Pal Arg Publ Esp 7:127–131Google Scholar
  271. Melchor RN, Genise JF, Miquel SE (2002) Ichnology, sedimentology and paleontology of Eocene calcareous paleosols from a palustrine sequence, Argentina. Palaios 17:16–35CrossRefGoogle Scholar
  272. Melchor RN, Genise JF, Buatois LA, Umazano AM (2012) Fluvial environments. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Developments in sedimentology. Elsevier, Amsterdam, pp 329–378CrossRefGoogle Scholar
  273. Meunier F (1921) Die Insektenreste aus dem Lutetien von Messel bei Darmstadt. Abhand Hessis Geol Land Darmstadt 7:1–16Google Scholar
  274. Michaelson P (2002) Mass extinction of peat-forming plants and the effect on fluvial styles across the Permian-Triassic boundary, northern Bowen Basin, Australia. Paleogeogr Paleoclimatol Paleoecol 179:173–188CrossRefGoogle Scholar
  275. Michener CD, Grimaldi D (1988a) The oldest fossil bee: apoid history, evolutionary stasis, and antiquity of social behavior. Proc Natl Acad Sci U S A 85:6424–6426CrossRefGoogle Scholar
  276. Michener CD, Grimaldi D (1988b) A Trigona from Late Cretaceous amber of New Jersey (Hymenoptera: Apidae: Meliponinae). Am Mus Nov 2917:1–10Google Scholar
  277. Mikúlaš R, Genise JF (2003) Traces within traces: holes, pits and galleries in walls and filling of insect trace fossils in paleosols. Geol Acta 1:339–348Google Scholar
  278. Miller MF, Collinson JW (1994) Trace fossils from Permian and Triassic sandy braided stream deposits, central Transantarctic Mountains. Palaios 9:605–610CrossRefGoogle Scholar
  279. Miller MF, Smail SE (1996) Permian and Triassic biogenic structures, Shackleton Glacier and Mount Weaver areas, Transantarctic Mountains. Antarctic J 31:5–7Google Scholar
  280. Miller WR, Mason TR (2000) Stellavelum arborensis igen. isp. nov., Stellavelum uncinum igen. isp. nov., Termitichnus namibiensis isp. nov., new ichnofossils from Cenozoic deposits of Namaqualand, South Africa. Ichnos 7:195–215CrossRefGoogle Scholar
  281. Miller MF, Hasiotis ST, Babcock LE, Isbell JL, Collinson JW (2001) Tetrapod and large burrows of uncertain origin in Triassic high paleolatitude floodplain deposits, Antarctica. Palaios 16:218–232CrossRefGoogle Scholar
  282. Moore JM, Picker MD (1991) Heuweltjies (earth mounds) in the Clanwilliam district, Cape Province, South Africa: 4000-year-old termite nests. Oecologia 86:424–432CrossRefGoogle Scholar
  283. Morrissey LB, Braddy SJ (2004) Terrestrial trace fossils from the Lower Old Red Sandstone, southwest Wales. Geol J 39:315–336CrossRefGoogle Scholar
  284. Morrissey LB, Hillier RD, Marriott SB (2012) Late Silurian and Early Devonian terrestrialisation: Ichnological insights from the Lower Old Red Sandstone of the Anglo-Welsh Basin, U.K. Palaeogeogr Palaeoclimat Palaeoecol 337–338:194–215CrossRefGoogle Scholar
  285. Mossa J, Schumacher BA (1993) Fossil tree casts in South Louisiana soils. J Sediment Res 63:707–713Google Scholar
  286. Mount JF, Cohen AS (1984) Petrology and geochemistry of rhizoliths from Plio-Pleistocene fluvial and marginal lacustrine deposits, East Lake Turkana, Kenya. J Sed Petr 54:263–275Google Scholar
  287. Mueller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New YorkGoogle Scholar
  288. Nanzyo M (2002) Unique properties of volcanic ash soils. Global Environ Res 6:83–97Google Scholar
  289. Nel A, Perrault G, Perrichot V, Néraudeau D (2004) The oldest ant in the Lower Cretaceous amber of Charente-Maritime (SW France) (Insecta: Hymenoptera: Formicidae). Geol Acta 2:23–29Google Scholar
  290. Nel A, Roques P, Nel P, Prokop J, Steyer JS (2007) The earliest holometabolous insect from the Carboniferous: a “crucial” innovation with delayed success (Insecta, Protomeropina, Protomeropidae). Ann Soc Entomol Fr 43:349–355Google Scholar
  291. Netto RG, Tognoli FMW, De Gibert JM, De Oliveira MZ (2007) Paleosol evolution in nearshore fluviatile Pleistocene deposits of the Chuí Formation, South of Brazil. V Reunión Argentina de Icnología y Tercera Reunión de Icnología del Mercosur, Ushuaia, p 55Google Scholar
  292. Niklas K, Tiffney B, Knoll A (1985) Patterns in vascular land plant diversification: an analysis at species level. In: Valentine JW (ed) Phanerozoic diversity patterns: profiles in macroevolution. Princeton Univ Press, Princeton, pp 97–128Google Scholar
  293. Nikolajev GV (1993) Taxonomic criteria and generic composition of Mesozoic lamellicorn beetles (Coleoptera, Scarabaeidae). Paleont J 26:96–111Google Scholar
  294. Nikolajev GV (1998) Pleurostict lamellicorn beetles (Coleoptera, Scarabaeidae) from the Lower Cretaceous of Transbaikalia. Paleont J 32:513–521Google Scholar
  295. Nikolajev GV (2007) Mezozoiskii Etap Evolyutsii Plastinchatousykh (Insecta: Coleoptera: Scarabaeoidea). Kazak Universiteti, Almaty, 222 ppGoogle Scholar
  296. Noro CK (2007) A historia natural de Parastacus defossus Faxon, 1898. Um lagostin fossorial de Brasil meridional (Crustacea, Decapoda, Parastacidae). PhD, Instituto de Biociencias. Porto Alegre, Universidade Federal do Rio Grande do Sul. 242 pGoogle Scholar
  297. Oberprieler RG, Marvaldi AE, Anderson RS (2007) Weevils, weevils, weevils everywhere. Zootaxa 1668:491–520Google Scholar
  298. O’Geen AT, Busacca AJ (2001) Faunal burrows as indicators of paleo-vegetation in eastern Washington, USA. Palaeogeogr Palaeoclimat Palaeoecol 169:23–37CrossRefGoogle Scholar
  299. Paredes JM, Hudecek R, Foix N, Rodríguez JF, Nillni A (2003) Análisis paleoambiental de la Formación Matasiete (Aptiano) en su área tipo, Noroeste de la Cuenca del Golfo de San Jorge. Rev Asoc Arg Sed 10:81–101Google Scholar
  300. Paredes JM, Foix N, Colombo Piñol F, Nillni A, Allard JO, Marquillas RA (2007) Volcanic and climatic controls on fluvial style in a high-energy system: the Lower Cretaceous Matasiete Formation, Golfo San Jorge basin, Argentina. Sed Geol 202:96–123CrossRefGoogle Scholar
  301. Parrish JT, Peterson F, Turner CE (2004) Jurassic “savannah”—plant taphonomy and climate of the Morrison Formation (Upper Jurassic, Western USA). Sediment Geol 167:137–162CrossRefGoogle Scholar
  302. Pascual R, Bondesio P (1981) Sedimentitas Cenozoicas. In: Relatorio del VIII Congreso Geológico Argentino, San Luis. pp 117–154Google Scholar
  303. Paulian R (1976) Three fossil dung beetles (Coleoptera: Scarabaeidae) from the Kenya Miocene. J East Afr Nat Hist Soc Nat Mus 31:1–4Google Scholar
  304. Pazos P (2011) Icnología. In: Leanza H et al (eds) Geología y recursos naturales de la provincia del Neuquén. Relatorio del 18vo Cong Geol Arg. pp 591–598Google Scholar
  305. Perrichot V, Lacau S, Néraudeau D, Nel A (2007) Fossil evidence for the early ant evolution. Naturwissenschaften 95:85–90CrossRefGoogle Scholar
  306. Perrichot V, Nel A, Néraudeau D, Lacau S, Guyot T (2008) New fossil ants in French Cretaceous amber (Hymenoptera: Formicidae). Naturwissenschaften 95:91–97CrossRefGoogle Scholar
  307. Pfefferkorn H, Fuchs K (1991) A field classification of fossil plant-substrate interactions. N Jahr Geol Pal Abhand 183:17–36Google Scholar
  308. Piénkowski G, Niedźwiedzki G (2008) Invertebrate trace fossil assemblages from the Lower Hettangian of Sołtyków, Holy Cross Mountains, Poland. Vol Jurass 6:109–113Google Scholar
  309. Pierce WD (1946) Descriptions of the dung beetles (Scarabaeidae) of the tar pits. Bull South Calif Acad Sci 45:119–131Google Scholar
  310. Pierce TG, Oates K, Carruthers WJ (1990) A fossil earthworm embryo (Oligochaeta) from beneath a Late Bronze Age midden at Potterne, Wiltshire, UK. J Zool 220:537–542CrossRefGoogle Scholar
  311. Pietsch D, Kühn P (2012) Early Holocene paleosols at the southwestern Ramlat As-Sab’atayn desert margin: new climate proxies for southern Arabia. Palaeogeogr Palaeoclimat Palaeoecol 365–366:154–165CrossRefGoogle Scholar
  312. Poinar GOJ, Danforth BN (2006) A fossil bee from early Cretaceous Burmese amber. Science 314:614CrossRefGoogle Scholar
  313. Prather BE (1985) An Upper Pennsylvanian desert paleosol in the D-zone of the Lansing-Kansas City Groups, Hitchcock County, Nebraska. J Sediment Res 55:213–221Google Scholar
  314. Radies D, Hasiotis ST, Preusser F, Neubert E, Matter A (2005) Paleoclimatic significance of Early Holocene faunal assemblages in wet interdune deposits of the Wahiba Sand Sea, Sultanate of Oman. J Arid Environ 62:109–125CrossRefGoogle Scholar
  315. Rasnitsyn AP (1975) Hymenoptera Apocrita of the Mesozoic. Trans Paleont Inst Acad Sci USSR 147:1–134Google Scholar
  316. Rasnitsyn AP (1980) Origin and evolution of Hymenoptera. Trans Paleont Inst Acad Sci USSR 174:1–192Google Scholar
  317. Rasnitsyn AP (2000) New genus and two new species of the Lower Cretaceous digger wasps from Spain (Hymenoptera: Sphecidae, Angarosphecinae). Acta Geol Hisp 35:55–58Google Scholar
  318. Rasnitsyn AP (2002) Superorder Vespidea Laicharting, 1781. Order Hymenoptera Linné, 1758 (=Vespida Laicharting, 1781). In: Rasnitsyn AP, Quicke DLJ (eds) History of insects. Kluwer Academic Publications, Dordrecht, pp 242–254CrossRefGoogle Scholar
  319. Rasnitsyn AP (2008) New Hymenopteran Insects (Insecta: Vespida) from the Lower or Middle Jurassic of India. Paleont J 42:81–85Google Scholar
  320. Rasnitsyn AP, Ansorge J (2000) Two new Lower Cretaceous hymenopterous insects (Insecta: Hymenoptera) from Sierra del Montsec (Spain). Acta Geol Hisp 35:59–64Google Scholar
  321. Rasnitsyn AP, Martinez-Delclòs X (2000) Wasps (Insecta: Vespida = Hymenoptera) from the Early Cretaceous of Spain. Acta Geol Hisp 35:65–95Google Scholar
  322. Rasnitsyn AP, Jarzembowski EA, Ross AJ (1998) Wasps (Insecta: Vespida = Hymenoptera) from the Purbeck and Wealden (Lower Cretaceous) of southern England and their biostratigraphical and palaeoenvironmental significance. Cret Res 19:329–391CrossRefGoogle Scholar
  323. Rasnitsyn AP, Pulawski WJ, Martínez-Delclòs X (1999) Cretaceous digger wasps of the new genus Bestiola Pulawski and Rasnitsyn (Hymenoptera: Sphecidae, Angarosphecinae). J Hym Res 8:23–34Google Scholar
  324. Ratcliffe BC, Smith DM, Erwin D (2005) Oryctoantiquus borealis, new genus and species from the Eocene of Oregon, U.S.A., the world’s oldest fossil dynastine and largest fossil scarabaeid (Coleoptera: Scarabaeidae: Dynastinae). Coleop Bull 59:127–135CrossRefGoogle Scholar
  325. Rebata HLA, Räsänen ME, Gingras MK, Vieira JV, Barberi M, Irion G (2006) Sedimentology and ichnology of tide-influenced Late Miocene successions in western Amazonia: the gradational transition between the Pebas and Nauta formations. J South Am Earth Sci 21:96–119CrossRefGoogle Scholar
  326. Retallack GJ (1976) Triassic palaeosols in the Upper Narrabeen Group of New South Wales. Part I: Features of the palaeosols. J Geol Soc Aust 23:383–399CrossRefGoogle Scholar
  327. Retallack GJ (1983) A paleopedological approach to the interpretation of terrestrial sedimentary rocks: the mid-Tertiary fossil soils of Badlands National Park, South Dakota. Geol Soc Am Bull 94:823–840CrossRefGoogle Scholar
  328. Retallack GJ (1984) Trace fossils of burrowing beetles and bees in an Oligocene paleosol, Badlands National Park, South Dakota. J Paleont 58:571–592Google Scholar
  329. Retallack GJ (1985) Fossil soils as grounds for interpreting the advent of large plants and animals on land. Philos Trans R Soc Lond B 309:105–142CrossRefGoogle Scholar
  330. Retallack GJ (1986) The fossil record of soils. In: Wright V (ed) Paleosols: their recognition and interpretation. Blackwell, Oxford, pp 1–57Google Scholar
  331. Retallack GJ (1988) Field recognition of paleosols. In: Reinhardt J, Sigleo WR (eds) Paleosols and weathering through geologic time: techniques and applications. Geol Soc Am Spec Papers 216:l–20Google Scholar
  332. Retallack GJ (1990) Soils of the pasts, 1st edn. Unwin Hyman, Boston, 520 ppCrossRefGoogle Scholar
  333. Retallack GJ (1991a) Miocene paleosols and ape habitats of Pakistan and Kenya. Oxford University Press, New York, 346 ppGoogle Scholar
  334. Retallack GJ (1991b) The early evolution of plant life of South-western Australia: comment. J Roy Soc West Aust 73:77–78Google Scholar
  335. Retallack GJ (1992a) Paleozoic paleosols. In: Martini IP, Chesworth W (eds) Weathering, soil and paleosols. Elsevier, Amsterdam, pp 543–564CrossRefGoogle Scholar
  336. Retallack GJ (1992b) How to find a Precambrian paleosol. In: Schidlowski M, Golubic S, Kimberley MM, McKirdy DM, Trudinger PA (eds) Early organic evolution and mineral and energy resources. Springer, Berlin, pp 16–30CrossRefGoogle Scholar
  337. Retallack GJ (1993) Late Ordovician paleosols of the Juniata Formation near Potters Mills, PA. In: Driese SG (ed) Paleosols, paleoclimate and paleoatmospheric CO2: paleozoic paleosols of Pennsylvania, vol 22, Univ Tennessee Stud Geol., pp 33–49Google Scholar
  338. Retallack GJ (1997a) Palaeosols in the Upper Narrabeen group of New South Wales as evidence of Early Triassic palaeoenvironments without exact modern analogues. Aust J Earth Sci 44:185–201CrossRefGoogle Scholar
  339. Retallack GJ (1997b) Early forest soils and their role in Devonian global change. Science 276:583–585CrossRefGoogle Scholar
  340. Retallack GJ (1997c) Dinosaurs and dirt. In: Wolberg DL, Stump E, Rosenberg GD (eds) Dinofest international. Academy of Natural Sciences, Philadelphia, pp 345–359Google Scholar
  341. Retallack GJ (1999a) Carboniferous fossil plants and soils of an early tundra ecosystem. Palaios 14:324–336CrossRefGoogle Scholar
  342. Retallack GJ (1999b) Post-apocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney Basin, Australia. Geol Soc Am Bull 111:52–70CrossRefGoogle Scholar
  343. Retallack GJ (2001a) Soils of the past. An introduction to paleopedology. Blackwell Science, Oxford, 404 ppGoogle Scholar
  344. Retallack GJ (2001b) Scoyenia burrows from Ordovician palaeosols of the Juniata Formation in Pennsylvania. Palaeontology 44:209–235CrossRefGoogle Scholar
  345. Retallack GJ (2004) Late Oligocene bunch grassland and early Miocene sod grassland paleosols from central Oregon, USA. Palaeogeogr Palaeoclimat Palaeoecol 207:203–237CrossRefGoogle Scholar
  346. Retallack GJ (2008) Cambrian paleosols and landscapes of South Australia. Aust J Earth Sci 55:1083–1106CrossRefGoogle Scholar
  347. Retallack GJ (2009) Cambrian-Ordovician non-marine fossils from South Australia. Alcheringa 33:355–391CrossRefGoogle Scholar
  348. Retallack GJ, Alonso-Zarza AM (1998) Middle Triassic paleosols and paleoclimate of Antarctica. J Sediment Res 68:169–184CrossRefGoogle Scholar
  349. Retallack GJ, Dilcher D (1981) A coastal hypothesis for the dispersal and rise to dominance of flowering plants. In: Niklas K (ed) Paleobotany, paleoecology and evolution 2. Praeger, New York, pp 27–77Google Scholar
  350. Retallack GJ, Dilcher D (1986) Cretaceous angiosperm invasion of North America. Cret Res 7:227–252CrossRefGoogle Scholar
  351. Retallack GJ, Feakes CJ (1987) Trace fossil evidence for Late Ordovician animals on land. Science 235:61–63CrossRefGoogle Scholar
  352. Retallack GJ, Germán-Heins J (1994) Evidence from paleosols for the geological antiquity of rain forests. Science 265:499–502CrossRefGoogle Scholar
  353. Retallack GJ, Krull ES (1999) Ecosystem shift at the Permian-Triassic boundary in Antarctica. Aust J Earth Sci 46:785–812CrossRefGoogle Scholar
  354. Retallack GJ, Bestland EA, Dugas DP (1995) Miocene paleosols and habitats of Proconsul on Rusinga Island, Kenya. J Human Evol 29:53–91CrossRefGoogle Scholar
  355. Retallack GJ, Krull ES, Robinson SE (1996a) Permian and Triassic paleosols and paleoenvironments of the central Transantarctic Mountains, Antarctica. Antarctic J 31:29–32Google Scholar
  356. Retallack GJ, Veevers JJ, Morante R (1996b) Global early Triassic coal gap between Late Permian extinction and MiddleTriassic recovery of peat-forming plants. Geol Soc Am Bull 108:195–207CrossRefGoogle Scholar
  357. Retallack GJ, Krull ES, Robinson SE (1997) Permian and Triassic paleosols and paleoenvironments of southern Victoria Land, Antarctica. Antarctic J 33:33–36Google Scholar
  358. Retallack GJ, Bestland EA, Fremd TJ (2000) Eocene and Oligocene paleosols of Central Oregon and environmental change in central Oregon. Spec Pap Geol Soc Am 344:1–192Google Scholar
  359. Retallack GJ, Tanaka S, Tate T (2002a) Late Miocene advent of tall grassland paleosols in Oregon. Palaeogeogr Palaeoclimat Palaeoecol 183:329–354CrossRefGoogle Scholar
  360. Retallack GJ, Wynn JG, Benefit BR, McCrossin ML (2002b) Paleosols and paleoenvironments of the middle Miocene, Maboko Formation, Kenya. J Hum Evol 42:659–703CrossRefGoogle Scholar
  361. Retallack GJ, Smith RMH, Ward PD (2003) Vertebrate extinction across Permian–Triassic boundary in Karoo Basin, South Africa. Geol Soc Am Bull 115:1133–1152CrossRefGoogle Scholar
  362. Retallack GJ, Jahren A, Sheldon N, Chakrabarti R, Metzger CA, Smith R (2005) The Permian–Triassic boundary in Antarctica. Antarctic Sci 17:241–258CrossRefGoogle Scholar
  363. Retallack GJ, Sheldon N, Carr P, Fanning M, Thompson C, Williams M, Jones B, Hutton A (2011) Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction. Palaeogeogr Palaeoclimat Palaeoecol 308:233–251CrossRefGoogle Scholar
  364. Rice C, Ashcroft W, Batten D, Boyce AJ, Caulfield JBD, Fallick AE, Hole MJ, Jones E, Pearson MJ, Rogers G, Saxton JM, Stuart FM, Trewin NH, Turner G (1995) A Devonian auriferous hot spring system, Rhynie, Scotland. J Geol Soc Lond 152:229–250CrossRefGoogle Scholar
  365. Richardson AMM (1983) The effect of the burrows of a crayfish on the respiration of the surrounding soil. Soil Biol Biochem 15:239–242CrossRefGoogle Scholar
  366. Richardson AMM, Wong V (1995) The effect of a burrowing rcayfish, Parastacoides sp., on the vegetation of Tasmanian wet heathlands. Fresh Crayf 10:174–182Google Scholar
  367. Ritchie JM (1987) Trace fossils of burrowing Hymenoptera from Laetoli. In: Leakey MD, Harris JM (eds) Laetoli, a Pliocene Site in Northern Tanzania. Oxford Science Publications, New York, pp 433–438Google Scholar
  368. Roberts EM, Tapanila L (2006) A new social insect nest from the Upper Cretaceous Kaiparowits Formation of southern Utah. J Paleont 80:768–774CrossRefGoogle Scholar
  369. Roberts DL, Bateman MD, Murray-Wallace CV, Carr AS, Holmes PJ (2008) Last interglacial fossil elephant trackways dated by OSL/AAR in coastal aeolianites, Still Bay, South Africa. Palaeogeogr Palaeoclimat Palaeoecol 257:261–279CrossRefGoogle Scholar
  370. Robertson DS, McKenna MC, Toon OB, Hope S, Lillegraven JA (2004) Survival in the first hours of the Cenozoic. Geol Soc Am Bull 116:760–768CrossRefGoogle Scholar
  371. Rode AL, Babcock LE (2003) Phylogeny of fossil and extant freshwater crayfish and some closely related nephropid lobsters. J Crust Biol 23:418–435CrossRefGoogle Scholar
  372. Roselli FL (1987) Paleoicnología. Nidos de insectos fósiles de la cubertura Mesozoica del Uruguay. Publ Mus Mun Nueva Palmira 1:1–56Google Scholar
  373. Ross A (1996) Chasing hawkmoths. J Biogeogr 23:265–267Google Scholar
  374. Rudolph EH (1997) Aspectos fisicoquímicos del hábitat y morfología de las galerías del camarón excavador Parastacus nicoleti (Philippi, 1882) (Decapoda: Parastacidae) en el sur de Chile. Gayana 61:97–108Google Scholar
  375. Rudolph EH, Crandall KA (2005) A new species of burrowing crayfish, Virilastacus rucapihuelensis (Crustacea: Decapoda: Parastacidae), from southern Chile. Proc Biol Soc Wash 118:765–776CrossRefGoogle Scholar
  376. Sacchi E, Petti M (2008) Insect pupation chambers from the Pleistocene paleosols of Santo Stefano Island (Pontine Archipelago, Central Italy). Stud Trent Sci Nat Acta Geol 83:205–210Google Scholar
  377. Sánchez MV, Genise JF (2009) Cleptoparasitism and detritivory in dung beetle fossil brood balls from Patagonia, Argentina. Palaeontology 52:837–848CrossRefGoogle Scholar
  378. Sánchez MV, Krause JM, González MG, Dinghi PA, Genise JF (2010a) The pupation chamber of dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae). Coleop Bull 64:277–284CrossRefGoogle Scholar
  379. Sánchez MV, Laza JH, Bellosi ES, Genise JF (2010b) Ichnostratigraphy of middle Cenozoic Coprinisphaera from central Patagonia: Insights into the evolution of dung beetles, herbivores and grass-dominated habitats. Palaeogeogr Palaeoclimat Palaeoecol 297:633–648CrossRefGoogle Scholar
  380. Sánchez MV, González MG, Genise JF (2010c) Phytolith analysis of Coprinisphaera, unlocking dung beetle behaviour, herbivore diets and palaeoenvironments along de Middle Eocene-Early Miocene of Patagonia. Palaeogeogr Palaeoclimat Palaeoecol 285:224–236CrossRefGoogle Scholar
  381. Sánchez MV, Genise JF, Bellosi ES, Román-Carrión JL, Cantil LF (2013) Dung beetle brood balls from the Pleistocene highland palaeosols of Andean Ecuador: A reassessment of Sauerʼs Coprinisphaera and their palaeoenvironments. Palaeogeogr Palaeoclimat Palaeoecol 386:257–274Google Scholar
  382. Sandau SD (2005) The paleoclimate and paleoecology of a Uintan (late middle Eocene) flora and fauna from the Uinta basin, Utah. Unpublished MSc thesis, Brigham Young University, 106 ppGoogle Scholar
  383. Sands WS (1987) Ichnocoenoses of probable termite origin from Laetoli. In: Leakey MD, Harris JM (eds) Laetoli, a Pliocene Site in Northern Tanzania. Oxford Science Publications, New York, pp 409–433Google Scholar
  384. Sarjeant WAS (1975) Plant trace fossils. In: Frey RW (ed) The study of trace fossils. Springer, New York, pp 163–179CrossRefGoogle Scholar
  385. Sarzetti LC, Dinghi P, Genise JF, Bedatou E, Verde M (2014) Curved fossil bee cells as tools for reconstructing the evolutionary history and geographic palaeodistribution of Diphaglossinae (Apoidea, Colletidae). Palaeontology 57:447–455Google Scholar
  386. Sauer W (1955) Coprinisphaera ecuadoriensis, un fósil singular del Pleistoceno. Bol Inst Cienc Nat 1:123–132Google Scholar
  387. Sauer E, Schremmer F (1969) Fossil Insekten-Bauten aus dem Tertiar des Hegaus (S-Deutschland). Senckenberg Leth 50:1–19Google Scholar
  388. Savrda CE, Blanton-Hooks AD, Collier JW, Drake RA, Graves RL, Hall AG, Nelson AI, Slone JC, Williams DD, Wood HA (2000) Taenidium and associated ichnofossils in fluvial deposits, Cretaceous Tuscaloosa Formation, Eastern Alabama, Southeastern U.S.A. Ichnos 7:227–242CrossRefGoogle Scholar
  389. Schaefer C (2001) Brazilian latosols and their B horizon microstructure as long-term biotic constructs. Aust J Soil Res 39:909–926CrossRefGoogle Scholar
  390. Schütze E (1907) Die Lagerungsverhalttenisse Bunter Breccie an der Bahnlinie Donaukworth-Trreuchtlingen und ihre Bedeutung fur das Riesproblem. In: Branca W, Fraas E (eds) Physilakische Abhandlungen der Koniglich Preussischen Akademie der Wissenschaften Berlin 2. pp 25–26Google Scholar
  391. Schwert DP (1979) Description and significance of a fossil earthworm (Oligochaeta: Lumbricidae) cocoon from postglacial sediments in southern Ontario. Can J Zool 57:1402–1405CrossRefGoogle Scholar
  392. Sciutto JC (1981) Geología del Codo del Senguerr, Chubut, Argentina. In: Actas del VII Congreso Geológico Argentino, San Luis. pp 203–219Google Scholar
  393. Sciutto JC (1995) Estratigrafía y paleoecología del lote 37, norte de Sarmiento, Chubut, Argentina. Nat Patagonica (Cienc Tierra) 3:45–55Google Scholar
  394. Sciutto JC, Martínez RD (1996) El Grupo Chubut en el anticlinal Sierra Nevada, Chubut, Argentina. In: Actas del XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos 1. pp 67–75Google Scholar
  395. Shcherbakov CD (2008) Review of the fossil and extant genera of the cicada family Tettigarctidae (Hemiptera: Cicadoidea). Russian Ent J 17:343–348Google Scholar
  396. Sheehan PM, De F (1992) Major extinctions of land-dwelling vertebrates at the Cretaceous-Tertiary boundary, eastern Montana. Geology 20:556–560CrossRefGoogle Scholar
  397. Sheldon ND, Tabor NJ (2009) Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Sci Rev 95:1–52CrossRefGoogle Scholar
  398. Sheldon ND, Hamer JMM (2010) Evidence for an Early Sagebrush Ecosystem in the Latest Eocene of Montana. J Geol 118:435–445CrossRefGoogle Scholar
  399. Skalski AW (1990) Lepidoptera in fossil resins with emphasis on new investigations. Prace Muz Ziemi 41:163–164Google Scholar
  400. Smith RMH (1995) Changing fluvial environments across the Permian-Triassic boundary in the Karoo Basin, South Africa, and possible causes of tetrapod extinctions. Palaeogeogr Palaeoclimat Palaeoecol 117:81–104CrossRefGoogle Scholar
  401. Smith RMH, Kitching J (1997) Sedimentology and vertebrate taphonomy of the Tritylodon Acme Zone: a reworked palaeosol in the Lower Jurassic Elliot Formation, Karoo Supergroup, South Africa. Palaeogeogr Palaeoclimat Palaeoecol 131:29–50CrossRefGoogle Scholar
  402. Smith RMH, Mason TR (1998) Sedimentary environments and trace fossils of tertiary oasis deposits in the central Namib Desert, Namibia. Palaios 13:547–559CrossRefGoogle Scholar
  403. Smith RMH, Mason TR, Ward JD (1993) Flash-flood sediments and ichnofacies of the Late Pleistocene Homeb Silts, Kuiseb River, Namibia. Sediment Geol 85:579–599CrossRefGoogle Scholar
  404. Smith JJ, Hasiotis ST, Kraus MJ, Woody DT (2008a) Naktodemasis bowni: new ichnogenus and ichnospecies for adhesive meniscate burrows (AMB), paleoenvironmental implications, Paleogene Willwood Formation, Bighorn Basin, Wyoming. J Paleontol 82:267–278CrossRefGoogle Scholar
  405. Smith JJ, Hasiotis ST, Kraus MJ, Woody DT (2008b) Relationship of floodplain ichnocoenoses to paleopedology, paleohydrology, and paleoclimate in the Willwood Formation, Wyoming, during the Paleocene-Eocene Thermal Maximum. Palaios 23:683–699CrossRefGoogle Scholar
  406. Smith JJ, Hasiotis ST, Woody DT, Kraus MJ (2008c) Paleoclimatic implications of crayfish-mediated prismatic structures in paleosols of the Paleogene Willwood Formation, Bighorn Basin, Wyoming, U.S.A. J Sediment Res 78:323–334CrossRefGoogle Scholar
  407. Smith JJ, Hasiotis ST, Kraus MJ, Woody DT (2009) Transient dwarfism of soil fauna during the Paleocene-eocene thermal maximum. Proc Natl Acad Sci U S A 106:17655–17660CrossRefGoogle Scholar
  408. Smith JJ, Platt BF, Ludvigson GA, Thomasson JR (2011) Ant-nest ichnofossils in honeycomb calcretes, Neogene Ogallala Formation, High Plains region of western Kansas, U.S.A. Palaeogeogr Palaeoclimat Palaeoecol 308:383–394CrossRefGoogle Scholar
  409. Sohn JC, Labandeira CC, Davis D, Mitter CM (2012) An annotated catalog of fossil and subfossil Lepidoptera (Insecta: Holometabola) of the world. Zootaxa 3286:1–132Google Scholar
  410. Sokol A (1987) A note on the existence of pre-Pleistocene fossils of parastacid crayfish. Victorian Nat 104:81–82Google Scholar
  411. Souza Carvalho I, Gracioso DE, Sequeira Fernandes AC (2009) Uma câmara de coleóptero (Coprinisphaera) do Cretáceo Superior, Bacia Bauru. Rev Bras Geociências 39:679–684Google Scholar
  412. Spicer RA, Parrish JT (1987) Plant megafossils, vertebrate remains, and paleoclimate of the Kogosukruk Tongue (Late Cretaceous), North Slope, Alaska. Accomplishments in Alaska. US Geol Surv Circ 988:47–48Google Scholar
  413. Stewart BS, Thorson PH (1994) Natural erosion of fossil root concretions in the Caliche Forest, San Miguel Island, California, 1984–1991. In: Halvorson WL, Maender GJ (eds) The Fourth California Islands Symposium: update on the status of resources. Santa Barbara Museum of Natural History, Santa Barbara, CA, pp 303–310Google Scholar
  414. Suter PJ, Richardson AMM (1977) The biology of two species of Engaeus (Decapoda: Parastacidae) in Tasmania. III. Habitat, food, associated fauna and distribution. Mar Freshwat Res 28:95–103CrossRefGoogle Scholar
  415. Tandon SK, Naug B (1984) Facies-trace fossil relationships in a Plio-Pleistocene fluvial sequence, the Upper Siwalik Subgroup, Punjab Sub-Himalaya, India. Palaeogeogr Palaeoclimat Palaeoecol 47:277–299CrossRefGoogle Scholar
  416. Tanner LH (1996) Pedogenic record of Early Jurassic climate in the Fundy Rift Basin, Eastern Canada. In: Morales M (ed) The Continental Jurassic. Museum of Northern Arizona, Flagstaff, AZ, pp 565–574Google Scholar
  417. Tanner LH (2000) Palustrine-lacustrine and alluvial facies of the (Norian) Owl Rock Formation (Chinle Group), Four Corners Region, Southwestern U.S.A: implications for Late Triassic Paleoclimate. J Sediment Res 70:1280–1289CrossRefGoogle Scholar
  418. Tanner LH, Lucas SG (2012) Carbonate facies of the Upper Triassic Ojo Huelos Member, San Pedro Arroyo Formation (Chinle Group), southern New Mexico: paleoclimatic implications. Sediment Geol 273–274:73–90CrossRefGoogle Scholar
  419. Tapanila L, Roberts EN (2012) The earliest evidence of holometabolan insect pupation in conifer wood. PLoS One 7(2):e3166CrossRefGoogle Scholar
  420. Tauber AA (1996) Los representantes del género Protypotherium (Mam. Notoungulata, Interatheridae) del Mioceno Temprano del sudoeste de la provincia de Santa Cruz. Misc Acad Nac Cienc Córdoba 95:3–29Google Scholar
  421. Thackray GD (1994) Fossil nest of sweat bees (Halictinae) from a Miocene paleosol, Rusinga Island, Western Kenya. J Paleont 68:795–800CrossRefGoogle Scholar
  422. Therrien F (2005) Palaeoenvironments of the latest Cretaceous (Maastrichtian) dinosaurs of Romania: insights from fluvial deposits and paleosols of the Transylvanian and Hateg basins. Palaeogeogr Palaeoclimat Palaeoecol 218:15–56CrossRefGoogle Scholar
  423. Therrien F, Fastovsky DE (2000) Paleoenvironments of Early Theropods, Chinle Formation (Late Triassic), Petrified Forest National Park, Arizona. Palaios 15:194–211CrossRefGoogle Scholar
  424. Therrien F, Zelenitsky DK, Weishampel DB (2009) Palaeoenvironmental reconstruction of the Late Cretaceous Sânpetru Formation (Hateg Basin, Romania) using paleosols and implications for the “disappearance” of dinosaurs. Palaeogeogr Palaeoclimat Palaeoecol 272:37–52CrossRefGoogle Scholar
  425. Thomas SG, Tabor NJ, Yang W, Myers TS, Yang Y, Wang D (2011) Palaeosol stratigraphy across the Permian-Triassic boundary, Bogda Mountains, NW China: implications for palaeoenvironmental transition through earth’s largest mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 308:41–64CrossRefGoogle Scholar
  426. Tófalo OR, Pazos PJ (2010) Paleoclimatic implications (Late Cretaceous-Paleogene) from micromorphology of calcretes, palustrine limestones and silcretes, southern Paraná Basin, Uruguay. J South Am Earth Sci 29:665–675CrossRefGoogle Scholar
  427. Tonello MS, Zárate M, Mancini MV (2002) Trazas radicales ferrosas en una secuencia aluvial del río Quequén Grande (Buenos Aires): implicancias estratigráficas y ambientales. Ameghiniana 39:163–174Google Scholar
  428. Toon A, Pérez-Losada M, Schweitzer CE, Feldmann RM, Carlson M, Crandall KA (2010) Gondwanan radiation of the Southern Hemisphere crayfishes (Decapoda: Parastacidae): evidence from fossils and molecules. J Biogeogr 37:2275–2290CrossRefGoogle Scholar
  429. Tosolini AMP, Pole M (2010) Insect and clitellate annelid traces in mesofossil assemblages from the Cretaceous of Australasia. Alcheringa 34:397–419CrossRefGoogle Scholar
  430. Turner BR (1993) Paleosols in Permo-Triassic continental sediments from Prydz Bay, East Antarctica. J Sed Res 63:694–706Google Scholar
  431. Turner CE, Peterson F (2004) Reconstruction of the Upper Jurassic Morrison Formation extinct ecosystem—a synthesis. Sediment Geol 167:309–355CrossRefGoogle Scholar
  432. Ubilla M (1996) Paleozoología del Cuaternario continental de la Cuenca Norte del Uruguay: biogeografía, cronología y aspectos climático-ambientales. Tesis doctoral, Universidad de la República, Montevideo, 232 ppGoogle Scholar
  433. Uchman A, Alvaro JJ (2000) Non-marine invertebrate trace fossils from the Tertiary Calatayud-Teruel Basin, NE Spain. Rev Esp Paleont 15:203–218Google Scholar
  434. Umazano AM, Bellosi ES, Visconti G, Melchor RN (2008) Mechanisms of aggradation in fluvial systems influenced by explosive volcanism: an example from the Upper Cretaceous Bajo Barreal Formation, San Jorge Basin, Argentina. Sediment Geol 203:213–228CrossRefGoogle Scholar
  435. Vanstone SD (1991) Early Carboniferous (Mississippian) paleosols from Southwest Britain, influence of climatic change on soil development. J Sediment Res 61:445–457Google Scholar
  436. Varela AN, Veiga GD, Poiré DG (2012) Sequence stratigraphic analysis of Cenomanian greenhouse palaeosols: a case study from southern Patagonia, Argentina. Sediment Geol 271–272:67–82CrossRefGoogle Scholar
  437. Verde M, Genise JF (2007) Un nuevo icnotaxón de nidos de abejas en las “Calizas del Queguay”, Paleoceno-Eoceno, Uruguay. In: Resúmenes de la V reunión Argentina de Icnología y III Reunión de Icnología del Mercosur, Ushuaia. p 59Google Scholar
  438. Verde M, Genise JF (2010) Elipsoideichnus meyeri Roselli 1987, a fossil bee nest from the Eocene of Uruguay. In: Resúmenes del Primer Simposio Latinoamericano de Icnología, São Leopoldo, Brasil. p 66Google Scholar
  439. Verde M, Ubilla M, Jimenez JJ, Genise JF (2007) A new earthworm trace fossil from paleosols: aestivation chambers from the Late Pleistocene Sopas Formation of Uruguay. Palaeogeogr Palaeoclimat Palaeoecol 243:339–347CrossRefGoogle Scholar
  440. Veroslavsky G, Martinez S (1996) Registros no depositacionales del Paleoceno-Eoceno del Uruguay: nuevo enfoque para viejos problemas. Rev Univ Guarulhos Geociencias 1:32–41Google Scholar
  441. Veroslavsky G, Martinez S, De Santa AH (1997) Calcretas de aguas subterráneas y pedogénicas: génesis de los depósitos carbonáticos de la Cuenca de Santa Lucía, sur del Uruguay (Cretácico Superior?-Paleógeno). Rev Asoc Arg Sed 4:25–35Google Scholar
  442. Villafañe A, Pérez ME, Abello A, Bedatou E, Bond M (2008) Nueva localidad fosilífera del Mioceno Medio en el noroeste de la provincia del Chubut. In: Resumenes del III Congreso Latinoamericano de Paleontología de Vertebrados, Neuquén, Argentina. p 265Google Scholar
  443. Visscher H, Looy C, Collinson M, Brinkhuis H, van Konijnenburg-van Cittert J, Kürschner W, Sephton M (2004) Environmental mutagenesis during the end-Permian ecological crisis. Proc Natl Acad Sci U S A 101:12952–12956CrossRefGoogle Scholar
  444. Voigt S (2007) Tunnel-and-chamber burrrows: evidence for fossorial behavior of insects in Permo-Carboniferous alluvial-plain deposits? In: Bromley RG, Buatois LM, Mángano MG, Genise JF, Melchor RN (eds) Sediment-organism interactions: a multifaceted ichnology. SEPM Special Publications, Kansas, pp 361–371Google Scholar
  445. Volohonsky E, Wisshak M, Blomeier D, Seilacher A, Snigirevsky S (2008) A new helical trace fossil from the Lower Devonian of Spitsbergen (Svalbard) and its palaeoenvironmental significance. Palaeogeogr Palaeoclimat Palaeoecol 267:17–20CrossRefGoogle Scholar
  446. Wang Y, Edwards D, Bassett M, Xu H-H, Xiao J, Jiang Q, Zhang X (2013) Enigmatic occurrence of Permian plant roots in lower Silurian rocks, Guizhou Province, China. Palaeontology 56:679–683CrossRefGoogle Scholar
  447. Ward PS (2007) Phylogeny, classification, and species-level taxonomy of ants (Hymenoptera: Formicidae). Zootaxa 1668:549–563Google Scholar
  448. Ward PD, Montgomery DR, Smith R (2000) Altered river morphology in South Africa related to the Permian-Triassic extinction. Science 289:1740CrossRefGoogle Scholar
  449. Weyenbergh H (1869) Sur les insectes fossiles du calcaire lithographique de la Bavière, qui se trouvent au Musée Teyler. Arch Mus Teyler 2:247–294Google Scholar
  450. Whitmore N, Huryn AD, Arbuckle CJ, Jansma F (2000) Ecology and distribution of the freshwater crayfish Paranephrops zealandicus in Otago. Implications for conservation. Sci Conserv 148:42Google Scholar
  451. Wiegmann BM, Trautwein MD, Kim J, Cassel BK, Bertone MA, Winterton SL, Yeates DK (2009) Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biol 7:1–16CrossRefGoogle Scholar
  452. Willis K, McElwain J (2002) The evolution of plants. Oxford Univ Press, Oxford, 378 ppGoogle Scholar
  453. Wnuk C, Pfefferkorn HW (1987) A Pennsylvanian-age terrestrial storm deposit; using plant fossils to characterize the history and process of sediment accumulation. J Sediment Res 57:212–221Google Scholar
  454. Wright VP, Platt NH, Marriott SB, Beck VH (1995) A classification of rhizogenic (root-formed) calcretes, with examples from the Upper Jurassic-Lower Cretaceous of Spain and Upper Cretaceous of southern France. Sediment Geol 100:143–158CrossRefGoogle Scholar
  455. Woodburne M, Goin F, Bond M, Carlini A, Gelfo J, López G, Iglesias A, Zimicz A (2014) Paleogene land mammal faunas of South America; a response to global climatic changes and indigenous floral diversity. J Mamm Evol 21:1–73CrossRefGoogle Scholar
  456. Yakimenko E, Targul’yan V, Chumakov N, Arefev M, Inozemtsev S (2000) Paleosols in upper permian sedimentary rocks, Sukhona river (Severnaya Dvina basin). Lithol Min Resour 35:331–344CrossRefGoogle Scholar
  457. Yelinek K, Chin K (2007) Probable dung beetle burrows associated with Daemonelix, beaver burrows in the Miocene Harrison Formation, Nebraska, U.S.A. In: Bromley RG, Buatois LM, Mángano MG, Genise JF, Melchor RN (eds) Sediment-organism interactions: a multifaceted ichnology. SEPM Special Publications, Kansas, pp 343–350Google Scholar
  458. Zeuner FE (1927) Eine Sphingidenraupe aus dem Obermiozän von Böttingen. Palaeont Zeit 8:321–326CrossRefGoogle Scholar
  459. Zeuner FE, Manning FJ (1976) A monograph on fossil bees (Hymenoptera, Apoidea). Bull Br Mus Nat Hist (Geol) 27:149–268Google Scholar
  460. Zhang JF, Sun B, Zhang X (1994) Miocene insects and spiders from Shanwang, Shandong. Science Press, Beijing, China, 298 ppGoogle Scholar
  461. Zonneveld JP, Lavigne JM, Bartels WS, Gunnell GF (2006) Lunulichnus tuberosus ichnogen. and ichnosp. nov. from the Early Eocene Wasatch Formation, Fossil Butte National Monument, Wyoming: an arthropod-constructed trace fossil associated with alluvial firmgrounds. Ichnos 13:87–94CrossRefGoogle Scholar
  462. Zucol A, Brea M, Bellosi ES (2010) Phytolith analysis in Gran Barranca (central Patagonia): the middle-late Eocene. In: Madden R, Carlini A, Vucetich M, Kay R (eds) The paleontology of Gran Barranca: evolution and environmental change through the Middle Cenozoic of Patagonia. Cambridge University Press, New York, pp 317–340Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Jorge F. Genise
    • 1
  • Emilio Bedatou
    • 2
  • Eduardo S. Bellosi
    • 1
  • Laura C. Sarzetti
    • 1
  • M. Victoria Sánchez
    • 1
  • J. Marcelo Krause
    • 3
  1. 1.CONICET, División IcnologíaMuseo Argentino de Ciencias NaturalesBuenos AiresArgentina
  2. 2.CONICET, INCITAP, Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de La PampaSanta RosaArgentina
  3. 3.CONICETMuseo Paleontológico Egidio FeruglioTrelewArgentina

Personalised recommendations