Skip to main content

The Mesozoic Lacustrine Revolution

Part of the Topics in Geobiology book series (TGBI,volume 40)

Abstract

The Mesozoic Lacustrine Revolution (MLR) represents a significant evolutionary event for continental ecosystems. Evidence from the ichnologic and body-fossil records yields major insights into the timing and nature of this evolutionary breakthrough. Lacustrine ichnofaunas preceding the MLR, although present in lake-margin and permanent subaqueous settings, tend to be dominated by very shallow-tier structures reflecting an empty to underutilized infaunal ecospace. Pre-MLR freshwater biotas had poorly developed food webs; detritivores and top predators as near-exclusive consumers and herbivory largely was absent.

Lower Triassic ichnofaunas are poorly documented and appear similar to those of the late Paleozoic. Ichnologic data suggest that the Middle to Late Triassic was a time of significant evolutionary innovations in lacustrine communities that were established in lake-margin settings whose trace-fossil assemblages would typify these environments during the rest of the Phanerozoic. The picture in fully lacustrine settings is slightly different because profundal lake deposits display some ichnofaunas reminiscent of the late Paleozoic, supplemented by more penetrative burrows typical of the rest of the Mesozoic and Cenozoic. Triassic aquatic biotas after the end-Permian crisis are taxonomically depauperate and dominated by planktonic- and substrate-attached algal groups and generalist feeding insects. The diversity and abundance of plants, insects, and vertebrates increased significantly during the Middle and especially Late Triassic, as insect taxa functionally expanded their repertoire of feeding styles, and in particular evolved structures for active predation. Minimal aquatic herbivory was incorporated as microvory, and conspicuous herbivory was virtually nonexistent, except for a few interactions with aquatic macrophytes.

The ichnotaxonomic composition of Jurassic lake-margin invertebrate ichnofaunas is generally similar to those of the Middle to Upper Triassic, and no major evolutionary novelties or innovations are apparent. However, the appearance of extensive trampled surfaces produced by dinosaurs significantly altered lake-margin sediments. Trace-fossil information from Jurassic fully lacustrine environments provides a different picture of ichnodiversity levels similar to those of the Middle to Upper Triassic and even to those of the late Paleozoic. However, the principal difference is the degree of infaunalization, as revealed by widespread occupation of mid-tiers in deep-lacustrine sediments and exemplified by Jurassic lacustrine insects that consist of similar groups of today but with different proportional abundances and ecological tolerances. Jurassic aquatic-insect diets were overwhelmingly detritivorous (including microvory), omnivorous, and carnivorous. As in the Triassic, insect herbivory was minimal as was evidence for aquatic plants, except phytoplankton and charophytes. The only significant macrophytes were ferns, which colonized Jurassic lake-margin habitats. Augmenting the Jurassic insect-predator component were teleost fish, frogs, crocodilians and, late in the period, birds. Nevertheless, as in the Triassic, Jurassic body-fossils suggest continental aquatic biotas in hypotrophic settings still expressed similar, detritivore-driven, trophically simplified food-webs, albeit taxonomic diversity was higher.

Sparse ichnologic information available for the Cretaceous suggests continuation at lake-margin environments of the same trends occurring in earlier settings. Fully lacustrine deposits include intensely bioturbated deposits, suggesting establishment of a lacustrine mixed layer. Predatory Cretaceous lacustrine insect faunas expanded in a variety of habitats. The basic insect feeding types remained the same compared to the Late Jurassic, although there are significant proportional changes in taxa. A conspicuous exception is emergence of the herbivore feeding guild of aquatic insects along lake margins that paralleled expansion of aquatic angiosperms enriched in ferns and overshadowing long-standing phytoplankton and charophyte floras. A significant but modestly developed, Early Cretaceous lacustrine trophic chain appeared in the mesolimnion and epilimnion that linked diverse aquatic plants, herbivorous insects, and their arthropod and vertebrate predators. This trophic chain included links to adjacent terrestrial communities resulting in ecological adjustments key toward launching the MLR. Later global events, such as the mid-Cretaceous eutrophication crisis, end-Cretaceous ecological crisis, and repeated, transitory hyperthermal events during the Paleogene, modified long-term effects of the MLR. Combined body- and trace-fossil data indicate that the MLR was a protracted process that began during the later Triassic in the hypolimnion and benthos, and culminated during the Late Jurassic to Early Cretaceous in the mesolimnion and epilimnion.

Keywords

  • Aquatic insects
  • Behavioral convergence
  • Benthic fauna
  • Bioturbation
  • Body fossils
  • Detritivory
  • Food web
  • Fully lacustrine biota
  • Herbivory
  • Ichnodiversity
  • Insects, Macrophytes, Mesozoic Lacustrine Revolution
  • Salinity barrier
  • Trace fossils, Vertebrates

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-017-9597-5_4
  • Chapter length: 85 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-94-017-9597-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 11.1
Fig. 11.2
Fig. 11.3
Fig. 11.4
Fig. 11.5
Fig. 11.6
Fig. 11.7
Fig. 11.8
Fig. 11.9
Fig. 11.10
Fig. 11.11
Fig. 11.12
Fig. 11.13
Fig. 11.14
Fig 11.15

References

  • Abbate E, Bruni P, Landucci F, Pellicano G (2012) Unusual ichnofossils in Homo erectus-bearing beds of the Pleistocene lake deposits in central-eastern Eritrea, East Africa. Palaios 27:97–102

    CrossRef  Google Scholar 

  • Adam DP, Mahood AD (1981) Chrysophyte cysts as potential environmental indicators. Geol Soc Am Bull 92:839–844

    CrossRef  Google Scholar 

  • Alifanov VR, Kurochkin EN (2011) Kyrgyzsaurus bukhanchenkoi gen. et sp. nov., a new reptile from the Triassic of southwestern Kyrgyzstan. Paleontol J 45:639–647

    CrossRef  Google Scholar 

  • Allison PA, Maeda H, Tuzino T, Maeda Y (2008) Exceptional preservation within Pleistocene lacustrine sediments of Shiobara, Japan. Palaios 23:260–266

    CrossRef  Google Scholar 

  • Anderson NM (1998) Water striders from the Paleogene of Denmark with a review of the fossil record and evolution of semiaquatic bugs (Hemiptera, Gerromorpha). Biol Skr Dan Vid Sel 50:1–157

    Google Scholar 

  • Anderson RY, Dean WE (1988) Lacustrine varve formation through time. Palaeogeogr Palaeoclimatol Palaeocol 62:215–235

    CrossRef  Google Scholar 

  • Anderson OJ, Lucas SG (1996) Stratigraphy and depositional environments of Middle and Upper Jurassic rocks, southeastern San Juan Basin, New Mexico. New Mexico Geol Soc Guidebook, 47th Conf, pp 205–210

    Google Scholar 

  • Anderson LC, Wesslingh FP, Hartman J (2010) A phylogenetic and morphologic context for the radiation of an endemic fauna in a long-lived lake: Corbulidae (Bivalvia; Myoida) in the Miocene Pebas Formation of western Amazonia. Paleobiology 36:534–554

    CrossRef  Google Scholar 

  • Archer AW, Maples CG (1984) Trace-fossil distribution across a marine-to-nonmarine gradient in the Pennsylvanian of southwestern Indiana. J Paleontol 58:448–466

    Google Scholar 

  • Archibald JD, Bryant LJ (1990) Differential Cretaceous–Tertiary extinctions of non-marine vertebrates: evidence from northeastern Montana. In: Sharpton VL, Ward P (eds) Global Catastrophes in Earth History: an interdisciplinary conference on impacts, Volcanism, and mass mortality. Geol Soc Am Spec Pap 247:549–562

    Google Scholar 

  • Ashley G, Liutkus CM (2002) Tracks, trails and trampling by large vertebrates in a rift valley paleo-wetland, lowermost Bed II, Olduvai Gorge, Tanzania. Ichnos 9:23–32

    CrossRef  Google Scholar 

  • Askevold IS (1990) Classification of tertiary fossil Donaciinae of North America and their implications about the evolution of the Donaciinae (Coleoptera: Chrysomelidae). Can J Zool 68:2135–2145

    CrossRef  Google Scholar 

  • Aswasereelert W, Meyers SR, Carroll AR, Peters SE, Smith ME, Feigl KL (2013) Basin-scale cyclostratigraphy of the Green River Formation, Wyoming. Geol Soc Am Bull 125:216–228

    CrossRef  Google Scholar 

  • Babinszski E, Sztanó O, Magyari Á (2003) Episodic deposition in the Kála bay of Lake Pannon: sedimentology and trace fossils of Kálla Sand. Foldtani Kozlony 133:363–382

    Google Scholar 

  • Bailey JV, Cohen AS, Kring DA (2005) Lakes in well-buffered catchments: implications for fossil preservation and survival of freshwater organisms following the Cretaceous–Tertiary boundary acid rain trauma. Palaios 20:376–389

    CrossRef  Google Scholar 

  • Barrett PM (2000) Evolutionary consequences of dating the Yixian Formation. Trends Ecol Evol 15:99–103

    CrossRef  CAS  Google Scholar 

  • Bechley G (1998) Phylogeny and Systematics of Fossil Dragonflies (Insecta: Odonatoptera) with Special Reference to Some Mesozoic Outcrops. Ph.D. thesis, Eberhard Karls University, Tubingen

    Google Scholar 

  • Behrensmeyer AK, Kidwell SM (1985) Taphonomy’s contributions to paleobiology. Paleobiology 11:105–119

    CrossRef  Google Scholar 

  • Behrensmeyer AK, Kidwell SM, Gastaldo RA (2000) Taphonomy and paleobiology. Paleobiology 26(4):103–147

    CrossRef  Google Scholar 

  • Benner JS, Ridge JC, Knecht RJ (2009) Timing of post-glacial reinhabitation and ecological development of two New England, USA, drainages based on trace fossil evidence. Palaeogeogr Palaeoclimatol Palaeocol 272:212–231

    CrossRef  Google Scholar 

  • Bertone MA, Courtney GW, Wiegmann BM (2008) Phylogenetics and temporal diversification of the earliest true flies (Insecta: Diptera) based on multiple nuclear genes. Syst Entomol 33:668–687

    CrossRef  Google Scholar 

  • Bilton DT, Freeland JR, Okamura B (2001) Dispersal in freshwater invertebrates. Ann Rev Ecol Syst 32:159–181

    CrossRef  Google Scholar 

  • Boag DA (1985) Dispersal in pond snails: potential role of waterfowl. Can J Zool 64:904–909

    CrossRef  Google Scholar 

  • Bohacs KM, Carroll AR, Neal JE, Mankiewicz PJ (2000) Lake-Basin type, source potential, and hydrocarbon character: an integrated sequence-stratigraphic-geochemical framework. In Gierlowski-Kordesch D, Kelts K (ed) Lake basins through space and time. AAPG Studies in Geol 46:3–34

    Google Scholar 

  • Bohacs KM, Hasiotis ST, Demko TD (2007) Continental ichnofossils of the Green River and Wasatch Formations, Eocene, Wyoming: a preliminary survey and proposed relation to lake-basin type. Mt Geol 44:79–108

    Google Scholar 

  • Bottjer DJ, Droser ML, Jablonski D (1988) Palaeoenvironmental trends in the history of trace fossils. Nature 333:252–255

    CrossRef  Google Scholar 

  • Bradbury JP, Kirkland DW (1966) Upper Jurassic aquatic Hemiptera from the Todilto Formation. Geol Soc Am Spec Pap 101:24 [abstract]

    Google Scholar 

  • Brenner W, Foster CB (1994) Chlorophycean algae from the Triassic of Australia. Rev Palaeobot Palyno 80:209–234

    CrossRef  Google Scholar 

  • Bromley RG (1996) Trace fossils: biology, taphonomy and applications. Chapman & Hall, London

    CrossRef  Google Scholar 

  • Bromley RG, Asgaard U (1979) Triassic freshwater ichnocoenoses from Carlsberg Fjord, East Greenland. Palaeogeogr Palaeoclimatol Palaeocol 28:39–80

    CrossRef  Google Scholar 

  • Bromley RG, Asgaard U (1991) Ichnofacies: a mixture of taphofacies and biofacies. Lethaia 24:153–163

    Google Scholar 

  • Bromley RG, Asgaard U, Jensen M (1997) Experimental study of sediment structures created by a spatangoid echinoid, Echinocardium mediterraneum. Proc Geol Assoc 108:183–189

    CrossRef  Google Scholar 

  • Buatois LA, Mángano MG (1993a) Ecospace utilization, paleoenvironmental trends and the evolution of early nonmarine biotas. Geology 21:595–598

    CrossRef  Google Scholar 

  • Buatois LA, Mángano MG (1993b) Trace fossils from a Carboniferous turbiditic lake: implications for the recognition of additional nonmarine ichnofacies. Ichnos 2:237–258

    CrossRef  Google Scholar 

  • Buatois LA, Mángano MG (1993c) The ichnotaxonomic status of Plangtichnus and Treptichnus. Ichnos 2:217–224

    CrossRef  Google Scholar 

  • Buatois LA, Mángano MG (1995) The paleoenvironmental and paleoecological significance of the lacustrine Mermia ichnofacies: an archetypical subaqueous nonmarine trace fossil assemblage. Ichnos 4:151–161

    CrossRef  Google Scholar 

  • Buatois LA, Mángano MG (1998) Trace fossil analysis of lacustrine facies and basins. Palaeogeogr Palaeoclimatol Palaeocol 183:71–86

    CrossRef  Google Scholar 

  • Buatois LA, Mángano MG (2004) Animal-substrate interactions in freshwater environments: applications of ichnology in facies and sequence stratigraphic analysis of fluvio-lacustrine successions. In: McIlroy D (ed) The Application of ichnology to palaeoenvironmental and stratigraphic analysis. Geol Soc London Spec Pub 228:311–333

    Google Scholar 

  • Buatois LA, Mángano MG (2007) Invertebrate ichnology of continental freshwater environments. In: Miller W (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam

    Google Scholar 

  • Buatois LA, Mángano MG (2009) Applications of ichnology in lacustrine sequence stratigraphy: potential and limitations. Palaeogeogr Palaeoclimatol Palaeocol 272:127–142

    CrossRef  Google Scholar 

  • Buatois LA, Mángano MG (2011a) Ichnology: organism–substrate interactions in space and time. Cambridge University Press, Cambridge

    CrossRef  Google Scholar 

  • Buatois LA, Mángano MG (2011b) The Déjà vu effect: recurrent patterns in the exploitation of ecospace, the establishment of the mixed layer, and the distribution of matgrounds. Geology 39:1163–1166

    CrossRef  Google Scholar 

  • Buatois LA, Mángano MG (2013) Ichnodiversity and ichnodisparity: significance and caveats. Lethaia 46:281–292

    CrossRef  Google Scholar 

  • Buatois LA, Mángano MG, Wu X, Zhang G (1995) Vagorichnus, a new ichnogenus for feeding burrow systems and its occurrence as discrete and compound ichnotaxa in Jurassic lacustrine turbidites of Central China. Ichnos 3:265–272

    CrossRef  Google Scholar 

  • Buatois LA, Mángano MG, Wu X, Zhang G (1996) Trace fossils from Jurassic lacustrine turbidites of the Anyao Formation (central China) and their environmental and evolutionary significance. Ichnos 4:287–303

    CrossRef  Google Scholar 

  • Buatois LA, Mángano MG, Genise JF, Taylor TN (1998a) The ichnologic record of the continental invertebrate invasion: evolutionary trends in environmental expansion, ecospace utilization, and behavioral complexity. Palaios 13:217–240

    CrossRef  Google Scholar 

  • Buatois LA, Mángano MG, Maples CG, Lanier WP (1998b) Ichnology of an Upper Carboniferous fluvio—estuarine paleovalley: the Tonganoxie Sandstone, Buildex Quarry, eastern Kansas. J Paleontol 71:152–180

    CrossRef  Google Scholar 

  • Buatois LA, Mángano MG, Fregenal-Martinez MA, de Gibert JM (2000a) Short-term colonization trace-fossil assemblages in a carbonate lacustrine Konservat-Lagerstätte (Las Hoyas fossil site, Lower Cretaceous, Cuenca, central Spain). Facies 43:145–156

    CrossRef  Google Scholar 

  • Buatois LA, Mángano MG, Wu X, Zhang G (2000b) Jurassic lake deposits from the Anyao Formation, Central China. In: Gierlowski-Kordesch E, Kelts K (eds) Lake Basins through space and time. Am Assn Petrol Geol Stud Geol 46:189–194

    Google Scholar 

  • Buscalioni AD, Poyato-Ariza FJ, Marugán-Lobón J, Fregenal-Martínez M; Sanisidro O, Navalón G, de Miguel C (2016) The wetland of Las Hoyas. In: Poyato-Ariza F, Buscalioni AD, (eds.) Las Hoyas: a Cretaceous Wetland. A Multidisciplinary Synthesis after 25 Years of Research on an Exceptional Fossil Deposit from Spain. Pfeil, Munich

    Google Scholar 

  • Carpenter SR, Kitchell JF (1993) The Trophic Cascade in Lakes. Cambridge University Press, Cambridge

    CrossRef  Google Scholar 

  • Carpenter SR, Lodge DM (1986) Effects of submersed macrophytes on ecosystem processes. Aquat Bot 26:341–370

    CrossRef  Google Scholar 

  • Chacón-Bacca E, Beraldi-Campesi H, Cevallos-Ferriz CRS, Knoll AH, Golubic S (2002) 70 Ma nonmarine diatoms from northern Mexico. Geology 30:279–280

    CrossRef  Google Scholar 

  • Chamberlain CK (1975) Recent lebensspuren in nonmarine aquatic environments. In: Frey RW (ed) The study of trace fossils. Springer, New York, pp 431–458

    CrossRef  Google Scholar 

  • Charbonneau P, Hare L (1998) Burrowing behavior and biogenic structures of mud-dwelling insects. J No Am Benthol Soc 17:239–249

    CrossRef  Google Scholar 

  • Chetel LM, Carroll AR (2010) Terminal infill of Eocene Lake Gosiute, Wyoming, USA. J Sediment Res 80:492–514

    CrossRef  Google Scholar 

  • China WE, Henson H, Hobby BM, Hinton HE, Macan TT, Richards OW, Wigglesworth VB (1958) The terms ‘larva’ and ‘nymph’ in entomology. Trans Soc Br Entomol 13:17–24

    Google Scholar 

  • Clarkson ENK, Miller AR, Coates MI (1993) Paleoecology of the Viséan of East Kirkton, West Lothian, Scotland. Trans Roy Soc Edinburgh Earth 84:417–425

    CrossRef  Google Scholar 

  • Cobben RH (1978) Evolutionary trends in Heteroptera—Part 2: mouthpart structures and feeding strategies. Meded Landbouwhogesch Wageningen 78:1–407

    Google Scholar 

  • Cohen AS (1982) Paleoenvironments of root casts from the Koobi Fora Formation, Kenya. J Sediment Petrol 52:401–414

    Google Scholar 

  • Cohen AS (1984) Effect of Zoobenthic standing crop on laminae preservation in tropical Lake sediment, Lake Turkana, East Africa. J Paleontol 58:499–510

    Google Scholar 

  • Cohen AS (2003) Paleolimnology. Oxford University Press, Oxford

    Google Scholar 

  • Cohen A, Lockley M, Halfpenny J, Michel AE (1991) Modern vertebrate track taphonomy at Lake Manyara, Tanzania. Palaios 6:371–389

    CrossRef  Google Scholar 

  • Cohen A, Halfpenny J, Lockley M, Michel AE (1993) Modern vertebrate tracks from Lake Manyara, Tanzania, and their paleobiological implications. Paleobiology 19:433–458

    CrossRef  Google Scholar 

  • Cohen AS, McGlue M, Ellis G, Zani H, Swarzenski P, Assine M, Silva A. (2015) Lake formation, characteristics and evolution in retroarc deposystems: A synthesis of the modern Andean Orogen and its associated basins. In: DeCelles PG, Ducea MN, Carrapa B, Kapp PA (eds) Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile. Geological Society of America Memoir 212:309–335

    Google Scholar 

  • Coiffard C, Gomez B, Thevenard F (2007) Early Cretaceous angiosperm invasion of western Europe and major environmental changes. Ann Bot 100:545–553

    CrossRef  CAS  Google Scholar 

  • Colbourne K, Hebert PDN (1996) The systematics of North American Daphnia (Crustacea: Anomopoda): a molecular phylogenetic approach. Phil Trans Biol Sc 351:349–360

    CrossRef  CAS  Google Scholar 

  • Collette JH, Getty PR, Hagadorn HW (2011) Insights into an Early Jurassic dinosaur habitat: ichnofacies and enigmatic structures from the Portland Formation, Hoover Quarry, Massachusetts, U.S.A. Atlantic Geology 47:81–98

    CrossRef  Google Scholar 

  • Cornell WC (1979) Mesozoic silicoflagellates and archaeomonads. Am Assoc Strat Palyn Contrib Series 5B:31–47

    Google Scholar 

  • Corsetti FA, Grotzinger JP (2005) Origin and significance of tube structures in Neoproterozoic post-glacial cap carbonates: example from Noonday Dolomite, Death Valley, United States. Palaios 20:348–362

    CrossRef  Google Scholar 

  • Covich AP, Palmer MA, Crowl TA (1999) The role of benthic invertebrate species in freshwater ecosystems. BioScience 49:119–127

    CrossRef  Google Scholar 

  • Crane PR (1987) Vegetational consequences of the angiosperm diversification. In: Friis EM, Chaloner WG, Crane PR (eds) The origins of angiosperms and their biological consequences. Cambridge University Press, Cambridge, pp 107–144

    Google Scholar 

  • Crane PR, Friis EM, Pedersen KR (1995) The origin and early diversification of angiosperms. Nature 374:27–33

    CrossRef  CAS  Google Scholar 

  • Crimes TP, Anderson MM (1985) Trace fossils from Late Precambrian–Early Cambrian strata of southeastern Newfoundland (Canada): temporal and environmental implications. J Paleontol 59:310–343

    Google Scholar 

  • Cziczer I, Magyar I, Pipík R, Böhme M, Ćorić S, Bakrač K, Sütö-Szentai M, Lantos M, Babinszski E, Müller P (2009) Life in the sublittoral zone of long-lived Lake Pannon: paleontological analysis of the Upper Miocene Szák formation, Hungary. Int J Earth Sci (Geol Rundsch) 98:1741–1766

    CrossRef  CAS  Google Scholar 

  • D’Rozario A, Labandeira CC, Guo WY, Yao YI, Li CS (2011) Spatiotemporal extension of the Eurasian Psaronius component community to the Late Permian of Cathaysia: In situ coprolites in P. housuoensis stems from Yunnan Province, southern China. Palaeogeogr Palaeoclimatol Palaeocol 133:127–133

    CrossRef  Google Scholar 

  • Dam G, Stemmerik L (1994) East Greenland lacustrine complexes. In: Gierlowski-Kordesh E, Kelts K (eds) Global Geological Record of Lake Basins, 1. Cambridge University Press, Cambridge

    Google Scholar 

  • Davies RG (1958) The terminology of the juvenile phases of insects. Trans Soc Br Entomol 13:25–36

    Google Scholar 

  • de Gibert JM, Sáez A (2009) Paleohydrological significance of trace fossil distribution in Oligocene fluvial-fan-to-lacustrine systems of the Ebro Basin, Spain. Palaeogeogr Palaeoclimatol Palaeocol 272:162–175

    CrossRef  Google Scholar 

  • de Gibert JM, Buatois LA, Fregenal-Martinez MA, Mángano MG, Ortega F, Poyato-Ariza FJ, Wenz S (1999) The fish trace fossil Undichna from the Cretaceous of Spain: taphonomic and palaeoenvironmental implications for the ichnogenus. Palaeontology 42:409–427

    CrossRef  Google Scholar 

  • de Gibert JM, Fregenal-Martínez MA, Buatois LA, Mángano MG (2000) Trace fossils and their palaeoecological significance in Lower Cretaceous lacustrine conservation deposits, El Montsec, Spain. Palaeogeogr Palaeoclimatol Palaeocol 156:89–101

    CrossRef  Google Scholar 

  • de Gibert JM, Moratalla JJ, Mángano MG, Buatois LA (2016) Palaeoichnology. In: Poyato-Ariza F, Buscalioni AD, (eds.) Las Hoyas: a Cretaceous Wetland. A multidisciplinary synthesis after 25 years of research on an exceptional fossil deposit from Spain. Pfeil, Munich

    Google Scholar 

  • Delclòs X, Nel A, Azar D, Bechly G, Dunlop JA, Engel MS, Heads SW (2008) The enigmatic Mesozoic insect taxon Chresmodidae (Polyneoptera): new palaeobiological and phylogenetic data, with the description of a new species from the Lower Cretaceous of Brazil. Neues Jahrb Geol Pal A 247:353–381

    CrossRef  Google Scholar 

  • Demko TM, Parrish JT (1998) Paleoclimatic setting of the Upper Jurassic Morrison Formation. Mod Geol 22:283–296

    Google Scholar 

  • Deocampo DM (2002) Sedimentary structures generated by Hippopotamus amphibius in a lake-margin wetland, Ngorongoro Crater, Tanzania. Palaios 17:212–217

    Google Scholar 

  • Díez-Canseco D, Buatois LA, Mángano MG, Díaz-Molina M, Benito MI (2016) Ichnofauna from coastal meandering channel systems (Upper Cretaceous Tremp Formation, South-Central Pyrenees, Spain): Delineating the fluvial-tidal transition. J Paleo 90:250–268

    Google Scholar 

  • Dilcher DL, Sun G, Ji Q, Li H (2007) An early infructescence Hyrcantha decussata (comb. nov.) from the Yixian Formation in northeastern China. Proc Natl Acad Sci USA 104:9370–9374

    CrossRef  CAS  Google Scholar 

  • Dobruskina IA (1995) Keuper (Triassic) flora from Middle Asia (Madygen, southern Fergana). New Mexico Mus Nat Hist Sci Bull 5:1–49

    Google Scholar 

  • Du Plessis PI, Le Roux JP (1995) Late Cretaceous alkaline saline lake complexes of the Kalahari Group in northern Botswana. J Afr Earth Sci 20:7–15

    CrossRef  Google Scholar 

  • Duck RW, McManus J (1984) Traces produced by chironomid larvae in sediments of an ice-contact proglacial lake. Boreas 13:89–93

    CrossRef  Google Scholar 

  • Dunne J, Williams R, Martinez ND (2002) Network topology and species loss in food webs: robustness increases with connectance. Santa Fe Inst Work Pap 02-03-013:1–17

    Google Scholar 

  • Dunne J, Labandeira CC, Williams R (2014) Highly resolved early Eocene food webs show development of modern trophic structure after the end-Cretaceous extinction. Proc Roy Soc B 281:20133280.

    CrossRef  Google Scholar 

  • Eggleton P, Belshaw R (1992) Insect parasitoids: an evolutionary overview. Proc Roy Soc Lond B 337:1–20

    Google Scholar 

  • Ekdale AA, Brown FH, Feibel CS (1989) Nonmarine macroborings in early Pleistocene algal biolithites (stromatolites) of the Turkana Basin, northern Kenya. Palaios 4:389–396

    CrossRef  Google Scholar 

  • Engelmann GF, Chure DJ, Fiorillo AR (2004) The implications of a dry climate for the paleoecology of the fauna of the Upper Jurassic Morrison Formation. Sed Geol 167:297–308

    CrossRef  Google Scholar 

  • Erwin DH (2012) Novelties that change carrying capacity. J Experim Zool Part B (Mol Devel Evol) 318:460–465

    CrossRef  Google Scholar 

  • Erwin DH, Krakauer DC (2004) Insights into innovation. Science 304:1117–1119

    CrossRef  CAS  Google Scholar 

  • Evenhuis NL (1994) Catalogue of the fossil flies of the World (Insecta: Diptera). Backhuys, Leiden

    Google Scholar 

  • Feibel CS (1987) Fossil fish nests from the Koobi Fora Formation (Plio-Pleistocene) of northern Kenya. J Paleontol 61:130–134

    CrossRef  Google Scholar 

  • Feist M, Liu J, Tafforeau P (2005) New insights into Paleozoic charophyte morphology and phylogeny. Am J Bot 92:1152–1160

    CrossRef  Google Scholar 

  • Ferber CT, Wells NA (1995) Paleolimnology and taphonomy of some fish deposits in “Fossil” and “Uinta” lakes of the Eocene Green River Formation, Utah and Wyoming. Palaeogeogr Palaeoclimatol Palaeocol 117:185–210

    CrossRef  Google Scholar 

  • Fischer J, Voigt S, Schneider JW, Buchwitz M, Voigt S (2011) A selachian freshwater fauna from the Triassic of Kyrgyzstan and its implication for Mesozoic shark nurseries. J Vertebr Paleontol 31:937–953

    CrossRef  Google Scholar 

  • Flint S, Stewart DJ, Van Riessen ED (1989) Reservoir geology of the Sirikit oilfield, Thailand: Lacustrine deltaic sedimentation in a Tertiary intermontane basin. In: Whateley MKG, Pickering KT (eds) Deltas: Sites and Traps for Fossil Fuels. Geological Society Special Publication 41:223–237

    Google Scholar 

  • Foster J, Lockley MG (2006) Preservation and abundance patterns in the ichnological record of the Morrison Formation (Upper Jurassic, North America). In: Foster R, Lucas SG (eds) Paleontology and Geology of the Upper Jurassic Morrison Formation. New Mexico Mus Nat Hist Sci Bull 36:203–216

    Google Scholar 

  • Fraser NC, Grimaldi DA, Olsen PE, Axsmith B (1996) A Triassic Lagerstätte from eastern North America. Nature 380:615–619

    CrossRef  CAS  Google Scholar 

  • Friis EM, Doyle JA, Endress PK, Leng Q (2003) Archaefructus—angiosperm precursor or specialized early angiosperm? Trends Plant Sci 8:369–373

    CrossRef  CAS  Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2010) Diversity in obscurity: fossil flowers and the early history of angiosperms. Phil Trans R Soc B 365:369–382

    CrossRef  Google Scholar 

  • Galewski K, Glazek J (1997) Upper Miocene Dytiscidae (Coleoptera) from Przeworno (Lower Silesia) and the problem of Dytiscidae evolution. B Pol Acad Sci, Biological Sciences Series 25:781–789

    Google Scholar 

  • Gall JC (1996) Triassic insects of Western Europe. Paleontol Lombarda (NS) 5:1–60

    Google Scholar 

  • Gandolfo MA, Nixon KC, Crepet WL (2004) Cretaceous flowers of Nymphaeaceae and implications for complex insect entrapment pollination mechanisms in early angiosperms. Proc Natl Acad Sci USA 101:8056–8060

    CrossRef  CAS  Google Scholar 

  • Gastaldo RA, DiMichele WA, Pfefferkorn HW (1996) Out of the icehouse into the greenhouse: a late Paleozoic analog for modern global vegetational change. GSA Today 6:1–7

    Google Scholar 

  • Genise JF (2000) The ichnofamily Celliformidae for Celliforma and allied ichnogenera. Ichnos 7:267–282

    CrossRef  Google Scholar 

  • Genise JF (2004) Ichnotaxonomy and ichnostratigraphy of chambered trace fossils in palaeosols attributed to coleopterans, ants and termites. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geological Society of London Special Publication 228:419–453

    Google Scholar 

  • Genise JF, Melchor RN, Archangelsky M, Baia LO, Straneck R, Valais S (2009) Application of neoichnological studies to behavioural and taphonomic interpretation of fossil bird-like tracks from lacustrine settings: The Late Triassic–Early Jurassic? Santo Domingo Formation, Argentina. Palaeogeogr Palaeoclimatol Palaeocol 272:143–161

    CrossRef  Google Scholar 

  • Gibbard PL (1977) Fossil tracks from varved sediments near Lammi, south Finland. Bull Geol Soc Finl 49:53–57

    Google Scholar 

  • Gibbard PL, Dreimanis A (1978) Trace fossils from late Pleistocene glacial lake sediments in southwestern Ontario, Canada. Can J Earth Sci 15:1967–1976

    CrossRef  Google Scholar 

  • Gibbard PL, Stuart AJ (1974) Trace fossils from proglacial lake sediments. Boreas 3:69–74

    CrossRef  Google Scholar 

  • Gibling MR, Tantisukrit C, Uttamo W, Thanasuthipitak T, Haraluck M (1985) Oil shale sedimentology and geochemistry in Cenozoic Mae Sot Basin, Thailand. Am Assoc Petrol Geol B 69:767–780

    CAS  Google Scholar 

  • Gierlowski-Kordesch E (1991) Ichnology of an ephemeral lacustrine/alluvial plain system: Jurassic East Berlin Formation, Hartford Basin, USA. Ichnos 1:221–232

    CrossRef  Google Scholar 

  • Gierlowski-Kordesch E, Park LE (2004) Comparing species diversity in the modern and fossil record of lakes. J Geol 112:703–717

    CrossRef  Google Scholar 

  • Gilbert SF (2014) Developmental biology, 10th edn. Sinauer, Sunderland, MA

    Google Scholar 

  • Gillette L, Pemberton SG, Sarjeant WAS (2003) A late triassic invertebrate ichnofauna from Ghost Ranch, New Mexico. Ichnos 10:141–151

    CrossRef  Google Scholar 

  • Godfray HCJ (1994) Parasitoids. Princeton University Press, Princeton

    Google Scholar 

  • Goldring R, Pollard JE, Radley JD (2005) Trace fossils and pseudofossils from the Wealden strata (non-marine Lower Cretaceous) of southern England. Cretaceous Res 26:665–685

    CrossRef  Google Scholar 

  • Good SC (2004) Paleoenvironmental and paleoclimatic significance of freshwater bivalves in the Upper Jurassic Morrison Formation, Western Interior, USA. Sediment Geol 167:163–176

    CrossRef  Google Scholar 

  • Graf DL, Cummings KS (2006) Palaeoheterodont diversity (Mollusca: Trigonioida + Unionoida): what we know and what we wish we knew about freshwater mussel evolution. Zool J Linn Soc 148:343–394

    CrossRef  Google Scholar 

  • Granéli W, Solander D (1988) Influence of aquatic macrophytes on phosphorus cycling in lakes. Hydrobiologia 170:245–266

    CrossRef  Google Scholar 

  • Green AJ, Figuerola J (2005) Recent advances in the study of long-distance dispersal of aquatic invertebrates via birds. Divers Distrib 11:149–156

    CrossRef  Google Scholar 

  • Greenwalt D, Labandeira CC (2013) The amazing fossil insects of the Eocene Kishenehn Formation in northwestern Montana. Rocks Miner 88:434–439

    CrossRef  Google Scholar 

  • Grenier H (1974) The Albert Formation of New Brunswick: A Paleozoic lacustrine model. Geol Rundsch 63:1102–1113

    Google Scholar 

  • Grimaldi DA, Engel MS (2005) Evolution of the insects. Cambridge University Press, New York

    Google Scholar 

  • Hamblin AH, Lockley MG, Milner ARC (2006) More reports of theropod dinosaur tracksites from the Kayenta Formation (Lower Jurassic), Washington County, Utah: implications for describing the Springdale megatracksite. In: Harris HD, Lucas SG, Spielmann GA, Lockley MG, Milner ARC, Kirkland JI (eds) The triassic–jurassic terrestrial transition. New Mexico Mus Nat Hist Sci Bull 37:276–281

    Google Scholar 

  • Hasiotis ST (2002) Continental trace fossils. SEPM Short Course Notes 51. doi: 10.2110/scn.06.51

    Google Scholar 

  • Hasiotis ST (2004) Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: Paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses. Sediment Geol 167:177–268

    CrossRef  Google Scholar 

  • Hasiotis ST, Mitchell CE (1993) A comparison of crayfish burrow morphologies: Triassic and Holocene fossil, paleo- and neo-ichnological evidence, and the identification of their burrowing signatures. Ichnos 2:291–314

    CrossRef  Google Scholar 

  • Hennequin S, Schuettpelz E, Pryer KM, Ebihara A, Dubuisson JY (2008) Divergence and the evolution of epiphytism in filmy ferns (Hymenophyllaceae) revisited. Int J Plant Sci 169:1278–1287

    CrossRef  Google Scholar 

  • Hminna A, Saber H, Schneider JW, Voigt S, Klein H, Lagnaoui A, Hmich D, Belahmira A (2015) First occurrence of non-marine trace fossils from the Machraa Abbass Member (Late Triassic, Sidi Saïd Maachou Basin, Morocco). First International Congress on Continental Ichnology, Proceedings of Abstracts, pp 32–33

    Google Scholar 

  • Hobbs HH Jr (1981) The crayfishes of Georgia. Smithson Contrib Zool 318:1–549

    CrossRef  Google Scholar 

  • Hoffmann HJ, Pearson DAB, Wilson BH (1980) Stromatolites and fenestral fabric in Early Proterozoic Huronian Supergroup, Ontario. Can J Earth Sci 17:1351–1357

    CrossRef  Google Scholar 

  • Hsiao LH, Graham SA, Tilander N (2010) Stratigraphy and sedimentation in a rift basin modified by synchronous strike-slip deformation: southern Xialiao Basin, Bohai, offshore China. Basin Res 22:61–78

    CrossRef  Google Scholar 

  • Hu B, Wang G, Goldring R (1998) Nereites (or Neonereites) from Lower Jurassic lacustrine turbidites of Henan, Central China. Ichnos 6:203–209

    CrossRef  Google Scholar 

  • Hunt AP, Lucas SG (2006) Tetrapod ichnofacies of the Upper Jurassic Morrison Formation, western United States. In: Foster R, Lucas SG (eds) Paleontology and geology of the Upper Jurassic Morrison Formation. New Mexico Mus Nat Hist Sci Bull 36:217–222

    Google Scholar 

  • Hyžný M, Šimo V, Starek D (2015) Ghost shrimps (Decapoda: Axiidea: Callianassidae) as producers of an Upper Miocene trace fossil association from sublittoral deposits of Lake Pannon (Vienna Basin, Slovakia). Paleogeogr Palaeoclimatol Palaeocol 425:50–66

    CrossRef  Google Scholar 

  • Illies J (1967) Megaloptera and Plecoptera (Ins.) aus den jungpliocänen Süswassermergeln von Willershausen. Ber Naturhist Ges Hannover 111:47–55

    Google Scholar 

  • Jablonski D (2005) Evolutionary innovations in the fossil record: the intersection of ecology, development, and macroevolution. J Exp Zool Part B 304:504–519

    CrossRef  Google Scholar 

  • Jablonski D, Sepkoski JJ Jr, Sheehan PM (1983) Onshore-offshore patterns in the evolution of Phanerozoic shelf communities. Science 222:1123–1124

    CrossRef  CAS  Google Scholar 

  • Jell P, Duncan PM (1986) Invertebrates, mainly insects, from the freshwater, Lower Cretaceous Koonwarra fossil bed (Korumburra Group), South Gippsland, Victoria. In: Jell P, Roberts J (eds) Plants and invertebrates from the Lower Cretaceous Koonwarra Fossil Bed, South Gippsland, Victoria. Memoirs of the Association of Australasian Paleontologists 3:111–205

    Google Scholar 

  • Jennings DS, Hasiotis ST (2006) Taphonomic analysis of a dinosaur feeding site using geographic information systems (GIS), Morrison Formation, southern Bighorn Basin, Wyoming, USA. Palaios 21:480–492

    CrossRef  Google Scholar 

  • Jensen S, Mens K (1999) Lower Cambrian shallow-water occurrence of the branching ‘deep-water’ type of trace fossil Dendrorhaphe from the Lontova Formation, eastern Latvia. Palaeontol Z 73:187–193

    CrossRef  Google Scholar 

  • Jeram AJ, Selden PA (1993) Eurypterids from the Viséan of East Kirkton, West Lothian, Scotland. T Roy Soc Edinburgh: Earth Sci 84:301–308

    CrossRef  Google Scholar 

  • Johnson CL, Graham SA (2004) Sedimentology and reservoir architecture of a synrift lacustrine delta, southeastern Mongolia. J Sediment Res 74:770–785

    CrossRef  Google Scholar 

  • Kalugina NS (1980) Insects in fresh-water ecosystems of the past. In: Rohdendorf BB, Rasnitsyn AP (eds) Historical development of the Class Insecta. Trud Paleontol Inst 175:224–240 [in Russian]

    Google Scholar 

  • Kim JY, Paik IS (1997) Nonmarine Diplocraterion luniforme (Blanckenhorn 1916) from the Hasandong Formation (Cretaceous) of the Jinju area, Korea. Ichnos 5:131–138

    CrossRef  Google Scholar 

  • Kim JY, Kim KS, Pickerill RK (2002) Cretaceous nonmarine trace fossils from the Hasandong and Jinju Formations of the Namhae Area, Kyongsangnamdo, Southeast Korea. Ichnos 9:41–60

    CrossRef  CAS  Google Scholar 

  • Kim JY, Keighley DG, Pickerill RK, Hwang W, Kim KS (2005) Trace fossil from marginal lacustrine deposits of the Cretaceous Jinju Formation, southern coast of Korea. Paleogeogr Palaeoclimatol Palaeocol 218:105–124

    CrossRef  Google Scholar 

  • Kim JY, Lockley MG, Seo SJ, Kim KS, Kim SH, Baek KS (2012a) A paradise of Mesozoic birds: The world’s richest and most diverse Cretaceous bird track assemblage from the Early Cretaceous Haman Formation of the Gajin tracksite, Jinju, Korea. Ichnos 19:28–42

    CrossRef  Google Scholar 

  • Kim JY, Lockley MG, Kim KS, Seo SJ, Lim SD (2012b) Enigmatic giant pterosaur tracks and associated ichnofauna from the Cretaceous of Korea: implication for the bipedal locomotion of pterosaurs. Ichnos 19:50–65

    CrossRef  Google Scholar 

  • Kim JY, Lockley MG, Woo JO, Kim SH (2012c) Unusual didactyl traces from the Jinju Formation (Early Cretaceous, South Korea) indicate a new ichnospecies of Dromaeosauripus. Ichnos 19:75–83

    CrossRef  Google Scholar 

  • Kluge NJ (1986) A recent mayfly species (Ephemeroptera, Heptageniidae) in Baltic amber. Paleontol J 20:106–107

    Google Scholar 

  • Knaust D (2010) Meiobenthic trace fossils comprising a miniature ichnofabric from Late Permian carbonates of the Oman Mountains. Palaeogeogr Palaeoclimatol Palaeocol 286:81–87

    CrossRef  Google Scholar 

  • Knaust D, Hauschke N (2004) Trace fossils versus pseudofossils in early Triassic playa deposits, Germany. Palaeogeogr Palaeoclimatol Palaeocol 215:87–97

    Google Scholar 

  • Knaust D, Hauschke N (2005) Living conditions in a Lower Triassic playa system of Central Germany: evidence from ichnofauna and body fossils. Hallesches Jahrb Geowiss B 19:95–108

    Google Scholar 

  • Knecht RJ, Benner JS, Rogers DC, Ridge JC (2009) Surculichnus bifurcauda n. igen., n. isp., a trace fossil from Late Pleistocene glaciolacustrine varves of the Connecticut River Valley, USA, attributed to notostracan crustaceans based on neoichnological experimentation. Palaeogeogr Palaeoclimatol Palaeocol 272:232–239

    CrossRef  Google Scholar 

  • Kocher TD, Conroy JA, McKaye KR, Stauffer JR (1993) Similar morphologies of cichlid fish in lakes Tanganyika and Malawi are due to convergence. Mol Phylogen Evol 2:158–65

    CrossRef  CAS  Google Scholar 

  • Kogan I, Schönberger K, Fischer J, Voigt S (2009) A nearly complete skeleton of Saurichthys orientalis (Pisces, Actinopterygii) from the Madygen Formation (Middle to Late Triassic, Kyrgyzstan, Central Asia)—preliminary results. Freiberg Forschungsh C 532:139–152

    Google Scholar 

  • Krapovickas V, Ciccioli PL, Mángano MG, Marsicano CA, Limarino CO (2009) Paleobiology and paleoecology of an arid–semiarid Miocene South American ichnofauna in anastomosed fluvial deposits. Palaeogeogr Palaeoclimatol Palaeocol 284:129–152

    CrossRef  Google Scholar 

  • Kräusel R (1958) Die Juraflora von Sassendorf bei Bamberg. I. Sporenpflanzen. Senck Leth 39:67–103

    Google Scholar 

  • Kuznetsov SI (1970) The microflora of lakes and its geochemical activity. Nakua, Leningrad [in Russian]

    Google Scholar 

  • Labandeira CC (1999) Insects and other arthropods. In: Singer R (ed) Encyclopedia of paleontology. Fitzroy Dearborn, Chicago, pp 603–624

    Google Scholar 

  • Labandeira CC (2002) Paleobiology of predators, parasitoids, and parasites: death and accommodation in the fossil record of continental invertebrates. In: Kowalewski M, Kelley PH (eds) The Fossil Record of Predation. Paleontological Society Papers 8:211–249

    Google Scholar 

  • Labandeira CC (2005a) Invasion of the continents: cyanobacterial crusts to tree-inhabiting arthropods. Trends Ecol Evol 20:253–262

    CrossRef  Google Scholar 

  • Labandeira CC (2005b) The fossil record of insect extinction: new approaches and future directions. Am Entomol 51:14–29

    CrossRef  Google Scholar 

  • Labandeira CC (2006) Silurian to Triassic plant and insect clades and their associations: new data, a review, and interpretations. Arth Syst Phylog 64:53–94

    Google Scholar 

  • Labandeira CC (2014) Why did terrestrial insect diversity not increase during the angiosperm radiation? Mid-mesozoic plant-associated insect lineages harbor clues. In: Pontarotti P (ed) Evolutionary biology, genome evolution, speciation, coevolution and origin of life. Springer, Berlin, pp 261–299.

    Google Scholar 

  • Labandeira CC, Johnson KR, Wilf P (2002) Impact of the terminal Cretaceous event on plant–insect associations. Proc Natl Acad Sci USA 99:2061–2066

    CrossRef  CAS  Google Scholar 

  • Labandeira CC, Yang Q, Santiago-Blay JA, Hotton CL, Monteiro A, Wang YJ, Goreva Y, Shih CK, Siljeström, Rose TR, Dilcher DL, Ren D (2016) The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies. Proc Roy Soc B 283:20152893.

    Google Scholar 

  • Lamond RE, Tapanila L (2003) Embedment cavities in lacustrine stromatolites: evidence of animal interactions from Cenozoic carbonates in USA and Kenya. Palaios 18:445–453

    CrossRef  Google Scholar 

  • Laporte LF, Behrensmeyer AK (1980) Tracks and substrate reworking by terrestrial vertebrates in Quaternary sediments of Kenya. J Sediment Res 50:1337–1346

    Google Scholar 

  • Laza JH (2006) Dung-beetle fossil brood balls: the ichnogenera Coprinisphaera Sauer and Quirogaichnus (Coprinisphaeridae). Ichnos 13:217–235

    CrossRef  Google Scholar 

  • Leliaert F, Verbruggen H, Zechman FW (2011) Into the deep: new discoveries at the base of the green plant phylogeny. BioEssays 33:683–692

    CrossRef  Google Scholar 

  • Li Y, Shao L, Eriksson KA, Tong X, Gao C, Chen C (2014) Linked sequence stratigraphy and tectonics in the Sichuan continental foreland basin, Upper Triassic Xujiahe Formation, southwest China. J Asian Earth Sci 88:116–136

    CrossRef  Google Scholar 

  • Lindqvist JK (1994) Lacustrine stromatolites and oncoids: Manuherikia Group (Miocene), New Zealand: In: Bertrand-Sarfati J, Monty C (eds) Phanerozoic stromatolites II. Kluwer Academic, Dordrecht, pp 227–254

    Google Scholar 

  • Lloyd GT, Davis KE, Pisani D, Tarver JE, Ruta M, Sakamoto M, Benton MJ (2008) Dinosaurs and the Cretaceous terrestrial revolution. Proc Royal Soc B 275:2483–2490

    CrossRef  Google Scholar 

  • Lockley MG, Houck KJ, Prince NK (1986) North America’s largest dinosaur trackway site: implications for Morrison Formation paleoecology. Geol Soc Am Bull 97:1163–1176

    CrossRef  Google Scholar 

  • Lockley MG, Lim JD, Kim JY, Kim KS, Huh M, Hwang KG (2012) Tracking Korea’s early birds: a review of Cretaceous avian ichnology and its implications for evolution and behavior. Ichnos 19:17–27

    CrossRef  Google Scholar 

  • Loewen MA, de Gibert JM (1999) The first occurrence of Cenozoic fish trails (Undichna) from Eocene Fossil Lake, Wyoming. J Vertebr Paleontol 19:59A [abstract]

    Google Scholar 

  • Looy CV, Brugman WA, Dilcher DA, Visscher H (1999) The delayed resurgence of equatorial forests after the Permian–Triassic ecologic crisis. Proc Natl Acad Sci USA 96:13857–13862

    CrossRef  CAS  Google Scholar 

  • Looy CV, Twitchett RJ, Dilcher DL, Van Konijnenburg-Van Cittert JHA, Visscher H (2001) Life in the end-Permian dead zone. Proc Natl Acad Sci USA 98:7879–7883

    CrossRef  CAS  Google Scholar 

  • Lovelace DN, Lovelace SD (2012) Paleoenvironments and paleoecology of a Lower Triassic invertebrate and vertebrate ichnoassemblage from the Red Peak Formation (Chugwater Group), central Wyoming. Palaios 26:636–657

    CrossRef  Google Scholar 

  • Lucas SG, Morgan GS, Hawley JW, Love DW, Myers RG (2002) Mammal footprints from the upper Pleistocene of the Tularosa Basin, Doña Ana County, New Mexico. In: Lueth V, Giles KA, Lucas SG, Kues BS, Myers RG, Ulmer-Scholle D (eds) Geology of White Sands. New Mexico Geological Society Guidebook 53:285–288

    Google Scholar 

  • Lucas SG, Lerner AJ, Milner AC, Lockley MG (2006) Lower Jurassic invertebrate ichnofossils from a clastic lake margin, Johnson Farm, Southwestern Utah. In: Harris HD, Lucas SG, Spielmann GA, Lockley MG, Milner ARC, Kirkland JI (eds) The triassic–jurassic terrestrial transition. New Mexico Mus Nat Hist Sci Bull 37:128–136

    Google Scholar 

  • Lucas SG, Spielmann JA, Klein H, Lerner AJ (2010) Ichnology of the Upper Triassic (Apachean) Redonda Formation, east-central New Mexico. New Mexico Mus Nat Hist Sci Bull 47:1–75

    Google Scholar 

  • Lutz H (1991) Autochthone aquatische Arthropoda aus dem Mittel-Eozän der Fundstítte Messel (Insecta, Heteroptera: Coleoptera; cf. Diptera-Nematocera; Crustacea: Cladocera). Cour Forschungsinst Senck 139:119–125

    Google Scholar 

  • Magyar I, Mihály Müller P, Sztanó O, Babinszki E, Lantos M (2006) Oxygen-related facies in Lake Pannon deposits (Upper Miocene) at Budapest-Köbánya. Facies 52:209–220

    CrossRef  Google Scholar 

  • Mai DH (1995) Tertiäre Vegetationsgeschichte Europas. Gustav Fischer, Jena

    Google Scholar 

  • Mángano MG, Buatois LA (2007) Trace fossils in evolutionary paleoecology. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Berlin, pp 391–409

    CrossRef  Google Scholar 

  • Mángano MG, Buatois LA (2014) Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: evolutionary and geobiological feedbacks. Proc R Soc B 281:20140038. doi:10.1098/rspb.2014.0038

    CrossRef  Google Scholar 

  • Mángano MG, Buatois LA (2015) The trace-fossil record of tidal flats through the phanerozoic: evolutionary innovations and faunal turnover. In: McIlroy D (ed) Ichnology: Papers from Ichnia III. Geol Assn Can Misc Publ 9:157–177

    Google Scholar 

  • Mángano MG, Buatois LA, Wu X, Sun J, Zhang G (1994) Sedimentary facies, depositional processes and climatic controls in a Triassic lake, Tanzhuang Formation, western Henan Province, China. J Paleolimnol 11:41–65

    CrossRef  Google Scholar 

  • Mángano MG, Buatois LA, West RR, Maples CG (2002) Ichnology of an equatorial tidal flat: the Stull Shale Member at Waverly, eastern Kansas. Kansas Geol Survey Bull 245:1–130

    Google Scholar 

  • Maples CG, Archer AW (1989) The potential of Paleozoic nonmarine trace fossils for paleoecological interpretations. Palaeogeogr Palaeoclimatol Palaeocol 73:185–195

    CrossRef  Google Scholar 

  • Marchal-Papier F (1998) Les Insectes du Buntsandstein des Vosges (NE de la France). Biodiversité et Contribution aus Modalites de la Crise Biologique du Permo-Trias. Unpublished Ph.D. thesis, Louis Pasteur University, Strasbourg

    Google Scholar 

  • Marsicano CA, Domnanovich N, Mancuso AC (2007) Dinosaur origins: evidence from the footprint record. Hist Biol 19:83–91

    CrossRef  Google Scholar 

  • Marsicano CA, Mancuso AC, Palma RM, Krapovickas V (2010) Tetrapod tracks in a marginal lacustrine setting (Middle Triassic, Argentina): Taphonomy and significance. Palaeogeogr Palaeoclimatol Palaeocol 291:388–399

    CrossRef  Google Scholar 

  • Martin AJ, Vazquez-Prokopec GM, Page M (2010) First known feeding trace of the Eocene bottom-dwelling fish Notogoneus osculus and its paleontological significance. PLoS ONE 5:1–8

    Google Scholar 

  • Martín-Closas C (2003) The fossil record and evolution of freshwater plants: a review. Geol Acta 1(4):315–338

    Google Scholar 

  • Martín-Closas C, Serra-Kiel J (1991) Evolutionary patterns of Clavatoraceae (Charophyta) analysed according to environmental change during Malm and Lower Cretaceous. Hist Biol 5:291–307

    CrossRef  Google Scholar 

  • Martínez-Delclòs X, Nel A, Popov YA (1995) Systematics and functional morphology of Iberonepa romerali n. gen. and sp., Belostomatidae from the Spanish Lower Cretaceous (Insecta, Heteroptera). J Paleontol 69:496–508

    CrossRef  Google Scholar 

  • McCall PL, Tevesz MJS (1982) The effects of benthos on physical properties of freshwater sediments. In: McCall PL, Tevesz MJS (eds) Animal-sediment relations: the biogenic alteration of sediments. Academic, New York, pp 105–176

    CrossRef  Google Scholar 

  • McCune A (1996) Biogeographic and stratigraphic evidence for rapid speciation in semionotid fishes. Paleobiology 22:34–48

    CrossRef  Google Scholar 

  • Melchior RC, Erickson BR (1979) Paleontological notes on the Wannagan Creek Quarry Site (Paleocene—North Dakota) Ichnofossils I. Scientific Pub Sci Mus of Minnesota 4:1–16

    Google Scholar 

  • Melchor RN (2001) Icnología y sedimentología de una sucesión lacustre influenciada por tormentas: Formación Los Rastros (Triásico), Talampaya, La Rioja. 4th Reunión Argentina de Icnología and 2nd Reunión de Icnología del Mercosur Abstracts, San Miguel de Tucumán, p 56

    Google Scholar 

  • Melchor RN (2004) Trace fossil distribution in lacustrine deltas: examples from the Triassic rift lakes of the Ischigualasto–Villa Union Basin, Argentina. In: McIlroy D (ed) The Application of ichnology to palaeoenvironmental and stratigraphic analysis. Geol Soc Lond Spec Publ 228:335–354

    Google Scholar 

  • Melchor RN (2007) Changing lake dynamics and sequence stratigraphy of synrift lacustrine strata in a half-graben: an example from the Triassic Ischigualasto-Villa Unión Basin, Argentina. Sedimentology 54:1417–1446

    CrossRef  Google Scholar 

  • Melchor RN, Bellosi ES, Genise JF (2003) Invertebrate and vertebrate trace fossils from a lacustrine delta: the Los Rastros Formation, Ischigualasto Provincial Park, San Juan, Argentina. Asoc Paleontól Arg Publ Espec 9:17–33

    Google Scholar 

  • Melchor RN, Bedatou E, de Valais S, Genise JF (2006) Lithofacies distribution of invertebrate and vertebrate trace-fossil assemblages in an Early Mesozoic ephemeral fluvio-lacustrine system from Argentina: Implications for the Scoyenia ichnofacies. Palaeogeogr Palaeoclimatol Palaeocol 239:253–285

    CrossRef  Google Scholar 

  • Memmott J, Godfray CJ (1993) Parasitoid webs. In: LaSalle J, Gauld ID (eds) Hymenoptera and biodiversity. Commonwealth Agricultural Board International, Walingford

    Google Scholar 

  • Merritt RW, Cummins KW (1984) An introduction to aquatic insects of North America, 2nd edn. Kendall-Hunt Publishing Company, Dubuque

    Google Scholar 

  • Metz R (1992) Trace fossils from the Lower Jurassic nonmarine Towaco Formation, New Jersey. Northeast Geol 14:29–34

    Google Scholar 

  • Metz R (1995) Ichnologic study of the Lockatong Formation (Late Triassic), Newark Basin, southeastern Pennsylvania. Ichnos 4:43–51

    CrossRef  Google Scholar 

  • Metz R (1996) Newark Basin ichnology: The Late Triassic Perkasie Member of the Passaic Formation, Sanatoga, Pennsylvania. Northeast Geol Environ Sci 18:118–129

    Google Scholar 

  • Metz R (2000) Triassic trace fossils from lacustrine shoreline deposits of the passaic formation, Douglassville, Pennsylvania. Ichnos 7:253–266

    CrossRef  Google Scholar 

  • Meyer CA, Hippler D, Lockley MG (2001) The Late Cretaceous vertebrate ichnofacies of Bolivia: facts and implications. Asoc Paleontól Arg Publ Espec 7:133–138

    Google Scholar 

  • Milana JP, Alcober O (1994) Modelo tectosedimentario de la Cuenca Triásica de Ischigualasto (San Juan, Argentina). Rev Asoc Geol Argent 49:217–235

    Google Scholar 

  • Miller MF (1984) Distribution of biogenic structures in Paleozoic non-marine and marine–margin sequences: an actualistic model. J Paleontol 58:550–570

    Google Scholar 

  • Miller MF, Labandeira CC (2002) Slow crawl across the salinity divide: Delayed colonization of freshwater ecosystems by invertebrates. GSA Today 12:4–10

    CrossRef  Google Scholar 

  • Miller W III, Vokes EH (1998) Large Phymatoderma in Pliocene slope deposits, Northwestern Ecuador: associated ichnofauna, fabrication, and behavioral ecology. Ichnos 6:23–45

    CrossRef  Google Scholar 

  • Miller MF, White DS (2007) Ecological and evolutionary controls on the composition of marine and lake ichnofacies. In: Miller W (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 531–544

    CrossRef  Google Scholar 

  • Miller MF, McDowell TA, Smail SE, Shyr Y, Kemp NR (2002) Hardly used habitats: dearth and distribution of burrowing in Paleozoic and Mesozoic stream and lake deposits. Geology 30:527–530

    CrossRef  Google Scholar 

  • Minter NJ, Lockley MG, Huh M, Hwang KG, Kim JY (2012) Lithographus, an abundant arthropod trackway from the Cretaceous Haenam tracksite of Korea. Ichnos 19:115–120

    CrossRef  Google Scholar 

  • Moisan P, Voigt S, Schneider JW, Kerp H (2012a) New fossil bryophytes from the Triassic Madygen Lagerstätte (SW Kyrgyzstan). Rev Palaeobot Palyno 187:29–37

    CrossRef  Google Scholar 

  • Moisan P, Labandeira CC, Matushkina NA, Wappler T, Voigt S, Kerp H (2012b) Lycopsid–arthropod associations and odonatopteran oviposition on Triassic herbaceous Isoetites. Palaeogr Palaeoclimatol Palaeocol 344–345:6–15

    CrossRef  Google Scholar 

  • Montgomery H, Barnes K (2012) Paleolimnology of uppermost Cretaceous lacustrine deposits in western Texas. Palaios 27:386–394

    CrossRef  Google Scholar 

  • Moratalla JJ, Hernán J (2009) Turtle and pterosaur tracks from the Los Cayos dinosaur tracksite, Cameros Basin (Cornago, La Rioja, Spain): Tracking the Lower Cretaceous bio-diversity. Rev Esp Paleontol 24:59–77

    Google Scholar 

  • Moratalla JJ, Lockley M, Buscalioni AD, Fregenal-Martínez MA, Meléndez N, Ortega F, Pérez-Moreno BP, Pérez-Asensio E, Sanz JL, Schultz RJ (1995) A preliminary note on the first tetrapod trackways from the lithographic limestones of Las Hoyas (Lower Cretaceous, Spain). Geobios 28:777–782

    CrossRef  Google Scholar 

  • Moussa MT (1968) Fossil tracks from the Green River Formation (Eocene) near Soldier Summit, Utah. J Paleontol 42:1433–1438

    Google Scholar 

  • Moussa MT (1970) Nematode fossil trails from the Green River Formation (Eocene) in the Uinta Basin, Utah. J Paleontol 44:304–307

    Google Scholar 

  • Muñiz-Guinea F, Mángano MG, Buatois LA, Podeniene V, Gamez JA, Mayoral E (2014) Compound biogenic structures resulting from ontogenetic variation: an example from a modern dipteran. Span J Palaeontol 29:83–94

    Google Scholar 

  • Murray DA (1976) Buchonomyia thienemanni Fittkau (Diptera, Chironomidae), a rare and unusual species recorded from Killarney, Ireland. Entomol Gaz 27:179–180

    Google Scholar 

  • Nel A, Roy R (1996) Revision of the fossil “mantid” and “ephemerid” species described by Piton from the Palaeocene of Menat (France) (Mantodea: Chaeteessidae, Mantidae; Ensifera: Tettigonioidea). Eur J Entomol 93:223–234

    Google Scholar 

  • Nichols DJ, Johnson KJ (2008) Plants and the KT Boundary. Cambridge University Press, Cambridge

    CrossRef  Google Scholar 

  • Novokshonov VG (1997) The early evolution of Scorpionflies (Insecta: Panorpida). Academy of Sciences, Moscow

    Google Scholar 

  • O’Brien NR, Pietraskek-Mattner S (1998) Origin of the fabric of laminated fine-grained glaciolacustrine deposits. J Sediment Res 68:832–840

    CrossRef  Google Scholar 

  • Oji T (1996) Is predation intensity reduced with increasing depth? Evidence from the west Atlantic stalked crinoid Endoxocrinus parvae (Gervais) and implications for the Mesozoic marine revolution. Paleobiology 22:339–351

    CrossRef  Google Scholar 

  • Olsen PE (1980) The latest Triassic and early Jurassic formations of the Newark basin (eastern North America, Newark Supergroup): stratigraphy, structure and correlation. Bull N J Acad Sci 25:25–51

    Google Scholar 

  • Olsen PE (1989) Newark Basin, New Jersey. In: Olsen PE, Schliche R, Gore PJ (eds) Tectonic, depositional, and paleoecologic history of early Mesozoic Rift Basins, Eastern North America. International Geological Congress Field Trip Guidebook, T-351:2

    Google Scholar 

  • Olsen PE, Flynn JJ (1989) Field guide to the vertebrate paleontology of Late Triassic age rocks in the southwestern Newark basin (Newark Supergroup, New Jersey and Pennsylvania). Mosasaur 4:1–43

    Google Scholar 

  • Opluštil S, Šimůnek Z, Zajíc J, Mencl V (2013) Climatic and biotic changes around the Carboniferous/Permian boundary recorded in the continental basins of the Czech Republic. Int J Coal Geol 119:114–151

    CrossRef  CAS  Google Scholar 

  • Ortí F, Rosell L, Anadón P (2003) Deep to shallow lacustrine evaporates in the Libros Gypsum (southern Teruel Basin, Miocene, NE Spain): an occurrence of pelletal gypsum rhythmites. Sedimentology 50:361–386

    CrossRef  Google Scholar 

  • Owen RB, Renaut RW, Scott JJ, Potts R, Behrensmeyer AK (2009) Wetland sedimentation and associated diatoms in the Pleistocene Olorgesailie Basin, southern Kenya Rift Valley. Sediment Geol 222:124–137

    CrossRef  Google Scholar 

  • Owen RB, Renaut RW, Stamatakis MG (2011) Late Miocene lacustrine sedimentation in the Mytilinii Basin, Samos Island, Greece. J Paleolimnol 46:151–166

    CrossRef  Google Scholar 

  • Paik IS, Lee YI, Kim HJ, Huh M (2012) Time, space and structure on the Korea Cretaceous dinosaur coast: cretaceous stratigraphy, geochronology, and paleoenvironments. Ichnos 19:6–16

    CrossRef  Google Scholar 

  • Pan Y, Sha J, Fürsich FT, Wang Y, Zhang X, Yao X (2011) Dynamics of the lacustrine fauna from the Early Cretaceous Yixian Formation, China: implications of volcanic and climatic factors. Lethaia 45:299–314

    CrossRef  Google Scholar 

  • Park LE, Gierlowski-Kordesch EH (2007) Paleozoic lake faunas: establishing aquatic life on land. Palaeogeogr Palaeoclimatol Palaeocol 249:160–179

    CrossRef  Google Scholar 

  • Perea D, Masquelin E, Verde M, Gueréquiz R (2001) Estratigrafía y paleontología de “Fossil Hill”, Península Fieldes, Isla Rey Jorge, Antártida: Un nuevo aporte. Inst Antárt Urug Act Cient 1998–2000 7:49–55

    Google Scholar 

  • Petrulevičius JF, Nel A, Rust J, Bechly G, Kohls D (2007) New Paleogene Epallagidae (Insecta: Odonata) recorded in North America and Europe. Biogeographic implications. Alavesia 1:15–25

    Google Scholar 

  • Pickerill RK (1990) Nonmarine Paleodictyon from the Carboniferous Albert Formation of southern New Brunswick. Atlantic Geol 26:157–163

    Google Scholar 

  • Ponomarenko AG (1969) The historical development of the Coleoptera Archostemmata. Trudy Paleontol Inst 125:1–241 [in Russian]

    Google Scholar 

  • Ponomarenko AG (1995) The geological history of beetles. In: Pakaluk J, Slipiński SA (eds) Biology phylogeny, and classification of Coleoptera: Papers celebrating the 80th birthday of Roy A. Crowson. Museum of and Institute of Zoology, Polish Academy of Sciences, Warsaw, pp 155–171

    Google Scholar 

  • Ponomarenko AG (1996) Evolution of continental aquatic ecosystems. Paleontol J 30:705–709

    Google Scholar 

  • Ponomarenko AG (1998) Paleobiology of angiospermization. Paleontol J 32:325–331

    Google Scholar 

  • Ponomarenko AG (2004) Beetles (Insecta, Coleoptera) of the Late Permian and Early Triassic. Paleontol J 38(Suppl 2):185–196

    Google Scholar 

  • Ponomarenko AG (2008) New Triassic beetles (Coleoptera) from northern European Russia. Paleontol J 42:600–606

    CrossRef  Google Scholar 

  • Ponomarenko AG (2009) The role of arthropods in the development of continental biota. Paleontol J 43:852–857

    CrossRef  Google Scholar 

  • Popov YA (1971) Historical development of the heteropterous Infraorder Nepomorpha. Trudy Paleontol Inst 129:1–228 [in Russian]

    Google Scholar 

  • Popov YA (1980) Superorder Cimicidea Laicharting, 1781. In: Rohdendorf BB, Rasnitsyn AP, (eds) Historical development of the Class Insecta. Trudy Paleontol Inst 175:58–69 [in Russian]

    Google Scholar 

  • Porsch O (1958) Alte Insektentypen als Blumenausbeuter. Osterr Bot Z 104:115–163

    CrossRef  Google Scholar 

  • Porter RJ, Gallois RW (2008) Identifying fluvio–lacustrine intervals in thick playa-lake successions: an integrated sedimentology and ichnology of arenaceous members in the mid–late Triassic Mercia Mudstone Group of south-west England, UK. Palaeogeogr Palaeoclimatol Palaeocol 270:381–398

    CrossRef  Google Scholar 

  • Pott C, Labandeira CC, Krings M, Kerp H (2008) Fossil insect eggs and ovipositional damage on bennettitalean leaf cuticles from the Carnian (Upper Triassic) of Austria. J Paleontol 82:778–789

    CrossRef  Google Scholar 

  • Pribyl L, Labandeira CC, Kohls D (1996) Eocene (Green River) fossil insects from the Piceance Creek Basin, Colorado. Paleontol Soc Spec Publ 8:313 [abstract]

    Google Scholar 

  • Price S, McCann TM (1990) Environmental significance of Arenicolites ichnosp. In: Pliocene lake deposits of southwest Turkey. Neues Jahrb Geol Pal Mn 1990:687–694

    Google Scholar 

  • Pritykina LN (1986) Two new dragonflies from the Lower Cretaceous deposits of West Mongolia. Odonatologica 15:169–184

    Google Scholar 

  • Retallack GJ (1997) Earliest Triassic origin of Isoetes and quillwort evolutionary radiation. J Paleontol 71:500–521

    CrossRef  Google Scholar 

  • Rodriguez-Aranda JP, Calvo JP (1998) Trace fossils and rhizoliths as a tool for sedimentological and palaeoenvironmental analysis of ancient continental evaporite successions. Palaegeogr Palaeoclimatol Palaeocol 140:383–399

    CrossRef  Google Scholar 

  • Rolfe WDA, Durant GP, Baird WH, Chaplin C, Paton RL, Reekie RJ (1993) The East Kirkton Limestone, Viséan, of West Lothian, Scotland: introduction and stratigraphy. T Roy Soc Edinburgh: Earth Sci 84:177–188

    CrossRef  Google Scholar 

  • Rossi C (1992) Bioturbación de invertebrados y microcodium en facies lacustres y fluviales: Thanetiense del Valle de Ager (Lérida). Geogaceta 12:111–113

    Google Scholar 

  • Rubinstein CV, Gerienne P, de la Puente GS, Astini RA, Steemans P (2010) Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytol 188:365–369

    CrossRef  CAS  Google Scholar 

  • Rylaarsdam JR, Varban BL, Plint AG, Buckley LG, McCrea RT (2006) Middle Turonian dinosaur paleoenvironments in the Upper Cretaceous Kaskapau Formation, northeast British Columbia. Can J Earth Sci 43:631–652

    CrossRef  Google Scholar 

  • Sander HL (1968) marine benthic diversity: A comparative study. American naturalist 102: 243–282

    Google Scholar 

  • Sacherová V, Hebert PDN (2003) The evolutionary history of the Chydoridae (Crustacea: Cladocera). Biol J Linnean Soc 79:629–643

    CrossRef  Google Scholar 

  • Salzburger W, Van Bocxlaer B, Cohen AS (2014) The ecology and evolution of the African Great Lakes and their faunas. Annual Rev Ecol Evol Syst 45:519–545.

    CrossRef  Google Scholar 

  • Samylina VA (1988) The Arkagala Stratoflora of North-East Asia. Nauka, Leningrad [in Russian]

    Google Scholar 

  • Santiago-Blay JA, Labandeira CC, Pribyl L, Hotton C, Martin LD (2001) The Sundance insect fauna (Middle Jurassic) of northern Wyoming and southern Montana. Geological Society of America Abstracts with Programs 33:A-266 [abstract]

    Google Scholar 

  • Schlirf M, Uchman A, Kümmel M (2001) Upper Triassic (Keuper) non-marine trace fossils from the Haßberge area (Franconia, south-eastern Germany). Palaeontol Zeit 75:71–96

    CrossRef  Google Scholar 

  • Schlische RW (2003) Progress in understanding the structural geology, basin evolution, and tectonic history of the eastern North American rift system. In: LeTorneau PM, Olsen PE (eds) The great rift valleys of Pangea in eastern North America, 1. Columbia University Press, New York

    Google Scholar 

  • Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallón S, Lupia R (2004) Ferns diversified in the shadow of angiosperms. Nature 428:553–557

    CrossRef  CAS  Google Scholar 

  • Schoch R, Voigt S, Buchwitz M (2010) A chroniosuchid from the Triassic of Kyrgyzstan and analysis of chroniosuchian relationships. Zool J Linn Soc 160:515–530

    CrossRef  Google Scholar 

  • Schudack ME (1998) Ostracoda (marine/nonmarine) and paleoclimate history in the Upper Jurassic of Central Europe and North America. Mar Micropaleontol 37:273–288

    CrossRef  Google Scholar 

  • Schweitzer MK, Steele A, Toporski JKW, Fogel ML (2007) Stable isotopic evidence for fossil food webs in Eocene Lake Messel. Paleobiology 33:590–609

    CrossRef  Google Scholar 

  • Scott JJ, Renaut RW, Buatois LA, Owen RB (2009) Trace fossils in exhumed surfaces around saline lakes: an example from Lake Bogoria, Kenya Rift Valley. Palaeogeogr Palaeoclimatol Palaeoecol 272:176–198

    Google Scholar 

  • Scott JJ, Smith ME (2015) Trace Fossils of the Eocene Green River Lake Basins, Wyoming, Utah, and Colorado. In: Smith ME, Carroll AR (eds) Stratigraphy and Paleolimnology of the Green River Formation, Western USA, Syntheses in Limnogeology 1:313–350

    Google Scholar 

  • Scott JJ, Renaut RW, Owen RB, Sarjeant WAS (2007) Biogenic activity, trace formation, and trace taphonomy in the marginal sediments of saline, alkaline Lake Bogoria, Kenya Rift Valley. In: Bromley RG, Buatois LA, Mángano MG, Genise JF, Melchor RN (eds) Sediment–Organism Interactions: A Multifaceted Ichnology. SEPM Spec Pub 88:311–332

    Google Scholar 

  • Scott JJ, Renaut RW, Owen RB (2008) Preservation and paleoenvironmental significance of a footprinted surface on the Sandai Plain, Lake Bogoria, Kenya Rift Valley. Ichnos 15:208–231

    CrossRef  Google Scholar 

  • Scott JJ, Buatois LA, Mángano MG (2012a) Lakes. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Elsevier, Amsterdam

    Google Scholar 

  • Scott JJ, Renaut RW, Owen RB (2012b) Impacts of flamingos on saline lake margin and shallow lacustrine sediments in the Kenya Rift Valley. Sediment Geol 277:32–51

    CrossRef  Google Scholar 

  • Scrivner PJ, Bottjer DJ (1986) Neogene avian and mammalian tracks from Death Valley National Monument, California: Their context, classification and preservation. Palaeogeogr Palaeoclimatol Palaeocol 57:285–331

    CrossRef  Google Scholar 

  • Seilacher A (2008) Biomats, biofilms, and bioglue as preservational agents for arthropod trackways. Palaeogeogr Palaeoclimatol Palaeocol 270:252–257

    CrossRef  Google Scholar 

  • Seiler WM, Chan MA (2008) A wet interdune dinosaur trampled surface in the Jurassic Navajo Sandstone, Coyote Buttes, Arizona: rare preservation of multiple track types and tail traces. Palaios 23:700–710

    CrossRef  Google Scholar 

  • Selden PA, Huys R, Stephenson MH, Heward AP, Taylor PN (2010) Crustaceans from bitumen clast in Carboniferous glacial diamictite extend fossil record of copepods. Nat Commun 1:50. doi:10.1038/ncomms1049

    CrossRef  Google Scholar 

  • Sepkoski JJ Jr, Miller AI (1985) Evolutionary faunas and the distribution of Paleozoic benthic communities in space and time. In: Valentine JW (ed) Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton, pp 153–190

    Google Scholar 

  • Sepkoski JJ Jr, Sheehan PM (1983) Diversification, faunal change, and community replacement during the Ordovician radiations. In: Tevesz MJS, McCall PL (eds) Biotic Interactions in Recent and Fossil Benthic Communities. Plenum, New York

    Google Scholar 

  • Shcherbakov DE (2008a) On Permian and Triassic insect faunas in relation to biogeography and the Permian–Triassic crisis. Paleontol J 42:15–31

    Google Scholar 

  • Shcherbakov DE (2008b) Insect recovery after the Permian/Triassic crisis. Alavesia 2:125–131

    Google Scholar 

  • Shcherbakov DE (2008c) Madygen, Triassic Lagerstätte number one, before and after Sharov. Alavesia 2:113–124

    Google Scholar 

  • Shear WA (1993) Myriapodous arthropods from the Viséan of East Kirkton, west Lothian, Scotland. T Roy Soc Edin Earth Sci 84:309–316

    CrossRef  Google Scholar 

  • Sheehan PM, Hansen TA (1986) Detritus feeding as a buffer to extinction at the end of the Cretaceous. Geology 14:868–870

    CrossRef  Google Scholar 

  • Shi ZS, Yang W, Guo CM, Xie ZY, Jin H, Zhu QY, Liu MC (2007) Ichnocoenosis of shore-shallow lacustrine Upper Triassic in Central and South Sichuan Basin. Acta Palaeontol Sinica 46:453–463 [in Chinese with English abstract]

    Google Scholar 

  • Sims PA, Mann DG, Medlin LK (2006) Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45:361–402

    CrossRef  Google Scholar 

  • Sinitshenkova ND (1999) The Mesozoic aquatic assemblages of Transbaikalia, Russia. Proceedings of the First Palaeoentomological Conference Moscow 1998. AMBA Projects International, Bratislava, pp. 149–154

    Google Scholar 

  • Sinitshenkova ND (2002) Ecological history of the aquatic insects. In: Rasnitsyn AP, Quick DLJ (eds) History of insects. Kluwer, Dordrecht, pp 388–417

    Google Scholar 

  • Sinitshenkova ND (2013) New mayflies (Insecta: Ephemerida = Ephemeroptera) from the Upper Permian locality of Isady, northern European Russia. Paleontol J 47:162–165

    CrossRef  Google Scholar 

  • Sinitshenkova ND, Zherikhin VV (1996) Mesozoic lacustrine biota: extinction and persistence of communities. Paleontol J 30:710–715

    Google Scholar 

  • Smith DM (2000) Beetle taphonomy in a recent ephemeral lake, southeastern Arizona. Palaios 15:152–160

    CrossRef  Google Scholar 

  • Smith DM (2008) A comparison of plant–insect associations in the middle Eocene Green River Formation and the upper Eocene Florissant Formation and their climatic implications. GSA Spec Pap 435:87–103

    Google Scholar 

  • Smith AB, Crimes TP (1983) Trace fossils formed by heart urchins: a study of Scolicia and related traces. Lethaia 16:79–92

    CrossRef  Google Scholar 

  • Smith PR, Harper AS, Wood MF (1982) Nonmarine trace fossils in the Mio-Pliocene Ridge Basin Group, southern California. In: Cromwell JC, Link MH (eds) Geologic History of Ridge Basin, Southern California. Society of Economic Paleontologists and Mineralogists Pacific Section, Tulsa, pp 1–122

    Google Scholar 

  • Smith JJ, Hasiotis ST, Kraus MJ, Woody DT (2008) Naktodemasis bowni: new ichnogenus and ichnospecies for adhesive meniscate burrows (AMB), paleoenvironmental implications, Paleogene Willwood Formation, Bighorn Basin, Wyoming. J Paleontol 82:267–278

    CrossRef  Google Scholar 

  • Smith ME, Carroll AR, Singer BS (2008) Synoptic reconstruction of a major ancient lake system: Eocene Green River Formation, western United States. Bull Geol Soc Am 120:54–84

    CrossRef  Google Scholar 

  • Snodgrass RE (1954) Insect metamorphosis. Smithson Misc Collns 122(9):1–124

    Google Scholar 

  • Squires RL, Advocate DM (1984) Meniscate burrows from Miocene lacustrine fluvial-deposits, Diligencia Formation, Orocopia Mountains, southern California. J Paleontol 58:593–597

    Google Scholar 

  • Stanley SM (1977) Trends, rates, and patterns of evolution in the Bivalvia. In: Hallam A (ed) Patterns of evolution, as illustrated by the fossil record. Elsevier, Amsterdam

    Google Scholar 

  • Stanley SM (2008) Predation defeats competition on the seafloor. Paleobiology 34:1–21

    CrossRef  Google Scholar 

  • Starek D, Pipík R, Hagarová I (2010) Meiofauna, trace metals, TOC, sedimentology, and oxygen availability in the LateMiocene sublittoral deposits of Lake Pannon. Facies 56:369–384

    CrossRef  Google Scholar 

  • Stokes WL (1978) Transported fossil biota of the Green River Formation, Utah. Palaeogeogr Palaeoclimatol Palaeocol 25:353–364

    CrossRef  Google Scholar 

  • Stone R, Vondra CF (2013) Sediment dispersal patterns of oolitic calcarenite in the Sundance Formation (Jurassic), of Wyoming. J Sediment Res 42:227–229

    Google Scholar 

  • Strother PK (2000) Cryptospores: the origin and early evolution of the terrestrial flora. In: Gastaldo RA, DiMichele WA (eds) Phanerozoic terrestrial ecosystems. Paleontol Soc Pap 6:3–20

    Google Scholar 

  • Sukatcheva ID (1982) Historical development of the caddisflies. Trudy Paleontol Inst 197:1–112 [in Russian]

    Google Scholar 

  • Sukatcheva ID (1991) The Late Cretaceous stage in the history of the caddisflies (Trichoptera). Acta Hydroentomol Latv 1:68–85 [in Russian with English summary]

    Google Scholar 

  • Sun G, Ji Q, Dilcher DL, Zheng KC, Nixon KC, Wang X (2002) Archaefructaceae, a new basal angiosperm family. Science 296:899–904

    CrossRef  CAS  Google Scholar 

  • Sun C, Li T, Na Y, Wu W, Li Y, Wang L, Zhang L (2014) Flabellariopteris, a new aquatic fern leaf from the Late Triassic of western Liaoning, China. Chin Sci Bull 59:2410–2418

    CrossRef  Google Scholar 

  • Sytchevskaya EK (1999) Freshwater fish fauna from the Triassic of Northern Asia. In: Arratia G, Schultze HP (eds) Mesozoic fishes 2—systematics and fossil record. Verlag Dr. Friedrich Pfeil, Munich, pp 445–468

    Google Scholar 

  • Szajna MJ, Hartline BW (2003) A new vertebrate footprint locality from the Late Triassic Passaic Formation near Birdsboro, Pennsylvania. In: Letourneau PM, Olsen PE (eds) The Great Rift Valleys of Pangaea in Eastern North America, vol 2, Sedimentology, stratigraphy, and paleontology. Columbia University Press, New York, pp 264–272

    Google Scholar 

  • Tanner LH, Lucas SG (2008) The Whitmore Point Member of the Moenave Formation: Early Jurassic Dryland Lakes on the Colorado Plateau, Southwestern USA. Volum Jurassica 6:11–21

    Google Scholar 

  • Theismeyer LR (1939) Varved slates in Faquier County, Virginia. VA Geol Surv Bull 51-D:1–118

    Google Scholar 

  • Thenius E (1989) Fossile Lebensspuren aquatischen Insekten in Knochen aus dem Jungtertiär Niederösterreichs. Anz Österr Akad Wiss Math-Naturwiss Kl 125:41–45

    Google Scholar 

  • Toots H (1975) Distribution of meniscate burrows in non-marine Tertiary sediments of western U.S. Rocky Mt Geol 14:9–10

    Google Scholar 

  • Turner BR (1978) Trace fossils from the Upper Triassic fluviatile Molteno Formation of the Karoo (Gondwana) Supergroup, Lesotho. J Paleontol 52:959–963

    Google Scholar 

  • Turner CE, Fishman NS (1991) Jurassic lake T’oo’dichi’: A large, alkaline, saline lake, Morrison Formation, eastern Colorado Plateau. Geol Soc Am Bull 103:538–558

    CrossRef  Google Scholar 

  • Twitchett RJ (2006) The palaeoclimatology, palaeoecology and palaeoenvironmental analysis of mass extinction events. Palaeogeogr Palaeoclimatol Palaeocol 252:133–144

    Google Scholar 

  • Uchman A (1995) Taxonomy and paleoecology of flysch trace fossils: the Marnoso-Arenacea Formation and associated facies (Miocene, Northern Apennines, Italy). Beringeria 15:1–115

    Google Scholar 

  • Uchman A, Álvaro JJ (2000) Non-marine invertebrate trace fossils from the Tertiary Calatayud-Teruel Basin, NE Spain. Rev Esp Paleontol 15:203–218

    Google Scholar 

  • Uchman A, Kumpulainen RA (2011) Trace fossils in Quaternary glacial varved clays near Uppsala, Sweden. Geol Fören Stockholm Förhand 133:135–140

    Google Scholar 

  • Uchman A, Nemec W, Ilgar A, Messina C (2007) Lacustrine trace fossils and environmental conditions in the Early Miocene Ermenek Basin, southern Turkey. Ann Soc Geol Pol 77:123–139

    Google Scholar 

  • Uchman A, Gaigalas A, Kazakauskas V (2008) Trace fossils from the Upper Pleistocene glaciolacustrine laminated sediments of Lithuania. Geologija 50:212–226

    CrossRef  Google Scholar 

  • Uchman A, Kazakauskas V, Gaigalas A (2009) Trace fossils from Late Pleistocene lacustrine varve sediments in eastern Lithuania. Palaeogeogr Palaeoclimatol Palaeocol 272:199–211

    CrossRef  Google Scholar 

  • Uchman A, Hu B, Wang Y, Song H (2011) The trace fossil Diplopodichnus from the Lower Jurassic lacustrine sediments of central China and the isopod Armadillidium vulgare (Pillbug) lebensspuren as its recent analogue. Ichnos 18:147–155

    CrossRef  Google Scholar 

  • Uhlir DM, Akers A, Vondra CF (2006) Tidal inlet sequence, Sundance Formation (Upper Jurassic), north-central Wyoming. Sedimentology 35:739–752

    CrossRef  Google Scholar 

  • Uliana MA, Biddle KT (1988) Mesozoic-Cenozoic paleogeographic and geodynamic evolution of Southern South America. Rev Bras Geoc 18:172–190

    Google Scholar 

  • Ulmer-Scholle DS (2005) Stromatolites in the Todilto Formation? In: Geology of the Chama Basin. New Mexico Geological Society 56th Field Conference Guidebook. pp 380–388

    Google Scholar 

  • Van Bocxlaer B, Verschuren D, Schettler G, Kröpelin S (2011) Modern and early Holocene mollusc fauna of the Ounianga lakes (northern Chad): implications for the palaeohydrology of the central Sahara. J Quat Sci 26:433–447

    CrossRef  Google Scholar 

  • Van Damme D, Pickford M (1999) The late Cenozoic Viviparidae (Mollusca, Gastropoda) of the Albertine Rift Valley (Uganda-Congo). Hydrobiologia 390:171–217

    CrossRef  Google Scholar 

  • Van Damme D, Pickford M (2003) The late Cenozoic Thiaridae (Mollusca, Gastropoda, Cerithiodea) of the Albertine Rift Valley (Uganda–Congo) and their bearing on the origin and evolution of the Tanganyikan thalassoid malacofauna. Hydrobiologia 498:1–83

    CrossRef  Google Scholar 

  • Vermeij GJ (1977) The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245–258

    CrossRef  Google Scholar 

  • Vermeij GJ (1987) Evolution and escalation: an ecological history of life. Princeton University Press, Princeton

    Google Scholar 

  • Vermeij GG, Lindberg DR (2000) Delayed herbivory and the assembly of marine benthic ecosystems. Paleobiology 26:404–415

    Google Scholar 

  • Vinogradov AV (1996) A new eurystomate bryozoan from Cretaceous deposits of Transbaikalia. Paleontol Zhur 1196(1):115–116 [in Russian]

    Google Scholar 

  • Vinson SB, Barbosa P (1987) Interrelationships of nutritional ecology of parasitoids. In: Slansky F Jr, Rodriguez JG (eds) Nutritional ecology of insects, mites, spiders, and related invertebrates. John Wiley, New York, pp 673–695

    Google Scholar 

  • Voigt S, Hoppe D (2010) Mass occurrence of penetrative trace fossils in Triassic lake deposits (Kyrgyzstan, Central Asia). Ichnos 17:1–11

    CrossRef  Google Scholar 

  • Voigt S, Haubold H, Meng S, Drause D, Buchantschenko J, Ruckwied K, Götz AE (2006) Die Fossil-Lagerstätte Madygen: Ein Beitrag zur Geologie und Paläontologie der Madygen-Formation (Mittel- bis Ober-Trias, SW-Kirgisistan, Zentralasien). Hall Jahr Geowiss 22:85–119

    Google Scholar 

  • Voigt S, Buchwitz M, Fischer J, Kogan I, Moisan P, Schneider JW, Spindler F, Brosig A, Preusse M, Scholze F, Linnemann U (2016) Triassic life in an inland lake basin of the warm-temperate biome—the Madygen Lagerstätte (Southwest Kyrgyzstan, Central Asia). In: Fraser NC, Sues H-D (eds) Terrestrial Conservation Lagerstätten—Windows into the evolution of life on land. Dunedin, Edinburgh

    Google Scholar 

  • Walter H (1985) Zur ichnologie des Pleistozans von Liebegast. Freib Forsch C 400:101–116

    Google Scholar 

  • Walter H, Suhr P (1998) Lebesspuren aus kaltzeitlichen Bändersedimenten des Quartärs. Abhandl Staatl Mus Mineral Geol Dresden 43–44:311–328

    Google Scholar 

  • Wang Z, Huang R, Wang S (1976) Mesozoic and Cenozoic Charophyta from Yunnan Province. Mesozoic Fossils of Yunnan 1:65–86 [In Chinese]

    Google Scholar 

  • Watanabe M (2006) Anhydrobiosis in invertebrates. Appl Entomol Zool 41:15–31

    CrossRef  CAS  Google Scholar 

  • Watanabe M, Kikawada T, Minagawa N, Yukuhiro F, Okuda T (2002) Mechanism allowing an insect to survive complete dehydration and extreme temperatures. J Exp Biol 205:2799–2802

    CAS  Google Scholar 

  • Webb J (1979) A reappraisal of the palaeoecology of conchostracans (Crustacea: Branchiopoda). Neues Jahr Geol Paläont Abh 158:259–275

    Google Scholar 

  • West K, Cohen AS (1996) Shell microstructure of gastropods from Lake Tanganyika, Africa: adaptation, convergent evolution, and escalation. Evolution 50:672–681

    CrossRef  Google Scholar 

  • Whalley PES, Jarzembowski EA (1985) Fossil insects from the lithographic limestone of Montsech (late Jurassic–early Cretaceous), Lérida Province, Spain. Bull Br Mus Nat Hist Geol 38:381–412

    Google Scholar 

  • Whateley MKG, Jordan GR (1989) Fan-delta-lacustrine sedimentation and coal development in the Tertiary Omlibin Basin, W. Sumatra, Indonesia. In: Whateley MKG, Pickering KT (eds) Deltas: Sites and Traps for Fossil Fuels. Geol Soc Am Spec Publ 41:317–332

    Google Scholar 

  • Whyte MA, Romano M, Elvidge DJ (2007) Reconstruction of Middle Jurassic dinosaur-dominated communities from the vertebrate ichnofauna of the Cleveland Basin of Yorkshire, UK. Ichnos 14:117–129

    CrossRef  Google Scholar 

  • Wichard W, Weitschat W (1996) Wasserinsekten im Bernstein. Eine paläobiologische Studie. Entomol Mitt Löbbecke Mus Aquazoo 4:1–122

    Google Scholar 

  • Wilf P, Labandeira CC, Johnson KR, Ellis B (2006) Decoupled plant and insect diversity after the end-Cretaceous extinction. Science 313:1112–1115

    CrossRef  CAS  Google Scholar 

  • Wilson MVH (1978) Paleogene insect faunas of western North America. Quaest Entomol 14:13–34

    Google Scholar 

  • Williams RJ (2010) Network 3D software Cambridge, UK Micro Soft Research

    Google Scholar 

  • Wing SL, Boucher LD (1998) Ecological aspects of the Cretaceous flowering plant radiation. Annu Rev Earth Planet Sci 26:379–421

    CrossRef  CAS  Google Scholar 

  • Wolfe AP, Edlund MB (2005) Taxonomy, phylogeny, and paleoecology of Eoseira wilsonii gen. et sp. nov., a middle Eocene diatom (Bacillariophyceae: Aularoseiraceae) from lake sediments at Horsefly, British Columbia, Canada. Can J Earth Sci 42:243–257

    CrossRef  Google Scholar 

  • Wootton RJ (1988) The historical ecology of aquatic insects: an overview. Palaeogeogr Palaeoclimatol Palaeocol 62:477–492

    CrossRef  Google Scholar 

  • Wu X (1985) Trace fossils and their significance in non-marine turbidite deposits of Mesozoic coal and oil bearing sequences from Yima-Jiyuan basin, western Henan, China. Acta Sedimentol Sin 3:23–31 [in Chinese with English abstract]

    Google Scholar 

  • Yang Y (1996) Trace fossils from the Miocene diatomites of Shanwang, Shandong, China. Geol Rev 42:187–190 [in Chinese with English abstract]

    Google Scholar 

  • Yang S, Shen Y (1999) Early Tertiary trace fossils from King George Island, West Antarctica. Acta Paleontol Sin 38:203–217

    Google Scholar 

  • Zhang L (1987) Significance of the Upper Cretaceous trace fossils from Laiyang, Shandong Province. Geological Information of Shandong Province 2:33–35 [in Chinese]

    Google Scholar 

  • Zherikhin VV (1978) Development and changes of the Cretaceous and Cenozoic faunal assemblages (Tracheata and Chelicerata). Trudy Paleontol Inst 175:1–198 [in Russian]

    Google Scholar 

  • Zherikhin VV, Kalugina NS (1985) Landscapes and communities. In: Rasnitsyn AP (ed) Jurassic Continental Biocoenoses of South Siberia and Adjacent Territories [in Russian]

    Google Scholar 

  • Zherikhin VV, Sinitshenkova ND (2002) Ecological history of the aquatic insects: Cainozoic. In: Rasnitsyn AP, Quick DLJ (eds) History of insects. Kluwer, Dordrecht, pp 417–426

    Google Scholar 

  • Zherikhin VV, Mostovski MB, Vršanský P, Blagoderov VA, Lukashevich ED (1999) The unique Lower Cretaceous locality Baissa and other contemporaneous fossil insect sites in North and West Transbaikalia. Proceedings of the First International Palaeoentomological Conference, Moscow, 1998. AMBA Projects International, Bratislava, pp 185–192

    Google Scholar 

  • Żyla D, Wegierek P, Owocki K, Niedźwiedzki G (2013) Insects and crustaceans from the latest Early–early Middle Triassic of Poland. Palaeogeogr Palaeoclimatol Palaeocol 371:136–144

    CrossRef  Google Scholar 

Download references

Acknowledgements

Tony Ekdale, Leif Tapanila, and Mark Wilson provided useful feedback on the Kenyan stromatolites. Richard Bromley and Ulla Asgaard showed to some of us (LAB and MGM) the wonderful Flemming Fjord trace-fossil collection. Nilo Azambuja Filho and Adali Spadini showed one of us (LAB) the lacustrine outcrops in the Sergipe-Alagoas Basin of Brazil. Robin Renaut and Bernie Owen guided LAB through the impressive lakes of the Kenya Rift Valley, resulting in a greater appreciation of the complexities of these systems. Robert Metz made available trace-fossil photos from the Newark Supergroup. Ángela Buscalioni and Francisco Poyato-Ariza provided information on the ecology of Las Hoyas. Ángela Buscalioni and Nic Minter reviewed the chapter, offering valuable suggestions to improve it. Thanks go to Jorge Santiago-Blay for photography of specimens in Fig. 11.7 and assistance with identifications. Jennifer Dunne and Richard Williams rendered the food web in Fig. 11.13, and Finnegan Marsh produced Figs. 11.6, 11.7, and 11.10. This is contribution 276 of the Evolution of Terrestrial Ecosystems consortium the National Museum of Natural History in Washington, D.C., USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Buatois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Buatois, L.A., Labandeira, C.C., Mángano, M.G., Cohen, A., Voigt, S. (2016). The Mesozoic Lacustrine Revolution. In: Mángano, M., Buatois, L. (eds) The Trace-Fossil Record of Major Evolutionary Events. Topics in Geobiology, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9597-5_4

Download citation