Skip to main content

The Mesozoic Marine Revolution

  • Chapter
  • First Online:
The Trace-Fossil Record of Major Evolutionary Events

Part of the book series: Topics in Geobiology ((TGBI,volume 40))

Abstract

The Mesozoic Marine Revolution (MMR) was a major evolutionary episode involving the large-scale restructuring of shallow-marine benthic communities and the rise to dominance of the Modern Evolutionary Fauna. Although the majority of studies published on the MMR have been based on the body-fossil record, the ichnologic record yields valuable insights into this evolutionary event, most notably regarding the degree of infaunalization, complexity of infaunal tiering structures, and predation intensity. The main groups of bioturbators involved in the MMR were crustaceans, bivalves, echinoids, and “worms,” whereas the most important bioeroders were sponges, gastropods, bivalves, echinoids, and “worms.”

The Triassic, encapsulated between two major mass extinctions, can be regarded as setting the stage for the MMR. The sparse ichnologic information available suggests that full recovery from the end-Permian mass extinction had taken place in equatorial carbonate settings by the Middle Triassic, although ichnofaunas show limited infaunalization and relatively simple tiering structures. However, a few key players, most notably some decapod crustaceans, were already dominant in carbonate settings. Jurassic ichnofaunas reveal a compositional turnover, signaling the rise to dominance of the Modern Evolutionary Fauna. This faunal turnover occurred by the Early Jurassic, as indicated by the taxonomic composition and increased diversity of bioturbation structures and the complexity of infaunal tiering. During the Cretaceous, a continuation of the trends established in the Jurassic was recorded. However, by the end of the Cretaceous, a modern-style benthic–pelagic coupling pattern was established, accompanied by an increase in global ichnodiversity. Rapid development of coccolithophores provided a new substrate (chalk) and an increasing flux of organic matter to the seafloor, enabling establishment of complex tiering structures, unknown in older deposits. The degree of macrobioerosion indicates an increasing participation of some players typical of modern communities. Paleogene bioturbation structures are similar to those of the late Mesozoic. Macrobioerosion styles also persisted across the Cretaceous–Paleogene boundary, albeit with an increased role for bioerosion by sponges and fishes later in the Paleogene. Predation pressures (drilling and durophagy) increased during the Eocene. Ichnofaunas in shallow-marine sediments record continued expansion of diversity during the Neogene, as well as more complex tiering structures. Predation pressure continued to rise, involving primarily marine mammals.

Although the MMR for the most part took place in shallow, fully marine settings, the trace-fossil record also provides evidence for its expression in the deep sea and marginal-marine, brackish-water settings. Irregular echinoids and decapod crustaceans apparently had migrated to the deep sea by the Late Jurassic, whereas most of the main players of the MMR in fully marine settings (e.g., decapod crustaceans, bivalves, worms) were also dominant in brackish-water settings since the beginning of this major evolutionary event. Trace-fossil data indicate that infaunalization predates an increase of predation pressures by approximately 50 Myr, suggesting a complex set of feedback mechanisms between predation and infaunalization rather than simple cause and effect between the two. Turnover in ichnofaunal composition and the increased infaunalization that took place during the MMR strongly supports the “bulldozing hypothesis” (the notion that biological disturbance increased through the Phanerozoic), indicating a dramatic rise in bioturbational sediment processing by elements of the Modern Evolutionary Fauna.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abel O (1935) Vorzeitliche Lebensspuren. Gustav Fischer, Jena, 644 p

    Google Scholar 

  • Abletz VV (1993) Trace fossils of Acrothoracica (Cirripedia) from the Eocene of the Krivoy Rog Basin. Paleontol J 27:73–80

    Google Scholar 

  • Abletz VV (1994) Borings of phoronids from the Eocene of the Ukraine. Paleontol J 28:155–160

    Google Scholar 

  • Ager DV, Walace P (1970) The distribution and significance of trace fossils in the Uppermost Jurassic rocks of the Boulonais, northern France. In: Crimes TP, Harper JC (eds) Trace Fossils. Geol J Spec Issue 3. Seel House Press, Liverpool

    Google Scholar 

  • Agirrezabala LM, de Gibert JM (2004) Paleodepth and paleoenvironment of Dactyloidites ottoi (Geinitz, 1849) from Lower Cretaceous deltaic deposits (Basque-Cantabrian Basin, west Pyrenees). Palaios 19:276–291

    Article  Google Scholar 

  • Alexander RR, Dietl GP (2003) The fossil record of shell-breaking predation on marine bivalves and gastropods. In: Kelley PH, Kowalewski M, Hansen TA (eds) Predator–prey interactions in the fossil record. Kluwer Academic-Plenum, New York

    Google Scholar 

  • Allmon WD, Nieh JC, Norris RD (1990) Drilling and peeling of turritelline gastropods since the Late Cretaceous. Palaeontology 33:595–611

    Google Scholar 

  • Arkell WJ (1939) U-shaped burrows in the Corallian Beds of Dorset. Geological Mag 76:455–460

    Article  Google Scholar 

  • Asgaard U, Bromley RG, Hanken N-M (1997) Recent firmground burrows produced by a upogebiid crustacean: palaeontological implications. Cour Forsch-Inst Senckenberg 210:23–28

    Google Scholar 

  • Aubry MP, Bord D, Beaufort L, Kahn A, Boyd S (2005) Trends in size changes in the coccolithophorids, calcareous nannoplankton, during the Mesozoic: A pilot study. Micropaleontology 51:309–318

    Article  Google Scholar 

  • Ausich WI, Bottjer DJ (1982) Tiering in suspension feeding communities on soft substrate throughout the Phanerozoic. Science 216:173–174

    Article  CAS  Google Scholar 

  • Ausich WI, Bottjer DJ (1985) Phanerozoic tiering in suspension feeding communities on soft strata: implications for diversity. In: Valentine JW (ed) Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton

    Google Scholar 

  • Ayranci K, Dashtgard SE (2013) Infaunal holothurian distributions and their traces in the Fraser River delta front and prodelta, British Columbia, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 392:232–246

    Article  Google Scholar 

  • Ayranci K, Dashtgard SE, MacEachern JA (2014) A quantitative assessment of the neoichnology and biology of a delta front and prodelta, and implications for delta ichnology. Palaeogeogr Palaeoclimatol Palaeoecol 409:114–134

    Article  Google Scholar 

  • Babić L, Zupanič J (1981) Various pore types in a Paleocene reef, Banja, Yugoslavia. In: Toomey DF (ed) European Fossil Reef Models. SEPM Spec P 30. SEPM, Tulsa

    Google Scholar 

  • Babić L, Zupanič J (2000) Borings in mobile clasts from Eocene conglomerates of northern Dalmatia (coastal Dinarides, Croatia). Facies 42:51–57

    Article  Google Scholar 

  • Badve RM (1987) Reassessment of stratigraphy of Bagh Beds, Barwah area, Madhya Pradesh, with description of trace fossils. J Geol Soc India 30:106–120

    Google Scholar 

  • Badve RM, Ghare MA (1978) Jurassic Ichnofauna of Kutch. Pt. I. Biovigyanam 4:125–140

    Google Scholar 

  • Baldwin CT, McCave IN (1999) Bioturbation in an active deep-sea area: implications for models of trace fossil tiering. Palaios 14:375–388

    Article  Google Scholar 

  • Bambach RK (1983) Ecospace utilization and guilds in marine communities through the Phanerozoic. In: Tevesz MJS, McCall PL (eds) Biotic interactions in recent and fossil benthic communities. Plenus, New York

    Google Scholar 

  • Bambach RK, Bush AM, Erwin DH (2007) Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50:1–22

    Article  Google Scholar 

  • Baniak GM, Gingras MK, Burns BA, Pemberton GS (2014) An example of a highly bioturbated, storm-influenced shoreface deposit: Upper Jurassic Ula Formation, Norwegian North Sea. Sedimentology 61:1261–1285

    Article  Google Scholar 

  • Barras CG, Twitchett RJ (2007) Response of the marine infauna to Triassic–Jurassic environmental change: ichnological data from southern England. Palaeogeogr Palaeoclimatol Palaeoecol 244:223–241

    Article  Google Scholar 

  • Beatty TW, Zonneveld JP, Henderson CM (2008) Anomalously diverse Early Triassic ichnofossil assemblages in northwest Pangea: a case for a shallow–marine habitable zone. Geology 36:771–774

    Article  Google Scholar 

  • Belaústegui Z, de Gibert JM (2009) Icnofábrica de Cylindrichnus en el Mioceno de la costa de Tarragona (Cataluña, España). Paleolusitana 1:97–104

    Google Scholar 

  • Belaústegui Z, de Gibert JM (2013) Bow-shaped, concentrically laminated polychaete burrows: A Cylindrichnus concentricus ichnofabric from the Miocene of Tarragona, NE Spain. Palaeogeogr Palaeoclimatol Palaeoecol 381–382:119–127

    Google Scholar 

  • Belaústegui Z, Domènech R (2014) Artichnus giberti isp. nov., a possible holothurian burrow from the Miocene of El Camp de Tarragona Basin (NE Spain). Spanish J Palaeontol 29:143–150

    Google Scholar 

  • Belaústegui Z, de Gibert JM, Domènech R, Muñiz F, Martinell J (2012) Clavate borings in a Miocene cetacean skeleton from Tarragona (NE Spain) and the fossil record of marine bone bioerosion. Palaeogeogr Palaeoclimatol Palaeoecol 323–325:68–74

    Article  Google Scholar 

  • Belaústegui Z, de Gibert JM, López-Blanco M, Bajo I (2013) Recurrent constructional pattern of the crustacean burrow Sinusichnus sinuosus from the Paleogene and Neogene of Spain. Acta Palaeontol Pol 59:461–474

    Google Scholar 

  • Belaústegui Z, Muñiz F, Domènech R, Martinell, J (2015a) Echinoderm ichnology: a state of the art. In Zamora S, Rábano I (eds) Progress in echinoderm palaeobiology. Cuadernos del Museo Geominero 19:1–4

    Google Scholar 

  • Belaústegui Z, Domènech R, Martinell, J (2015b) Trace fossils of the Middle Miocene of the El Camp de Tarragona Basin (NE Spain). In: McIlroy D (ed) Proceedings of Ichnia 2012. Geol Ass Canada Misc P 9

    Google Scholar 

  • Bell CM (2004) Asteroid and ophiuroid trace fossils from the Lower Cretaceous of Chile. Paleontology 47:51–66

    Article  Google Scholar 

  • Bellotti P, Valeri P (1978) L’influenza dell’ambiente sedimentario sull’assetto elicoidale delle strutture a Zoophycos. Boll Soc Geol Ital 97:675–685

    Google Scholar 

  • Belt ES, Diemer JA, Beutner EC (1997) Marine ichnogenera within Torrejonian facies (Paleocene) of the Fort Union Formation, southeastern Montana. Cont Geol Univ Wyoming 32:3–18

    Google Scholar 

  • Belt ES, Tibert NE, Curran HA, Diemer JA, Hartman JH, Kroeger TJ, Harwood DM (2005) Evidence for marine influence on a low-gradient coastal plain: ichnology and invertebrate paleontology of the lower Tongue River Member (Fort Union Formation, middle Paleocene), western Williston Basin, USA. Rocky Mt Geol 40:1–24

    Article  Google Scholar 

  • Berg LS (1940) Classification of fishes both Recent and fossil. Trudy Zoologicheskogo Instituta, Leningrad 5:87–517. Reprinted with English translation by the Thai National Documentation Centre, Bangkok.

    Google Scholar 

  • Berger WH, Ekdale AA, Bryant PP (1979) Selective preservation of burrows in deep-sea carbonates. Mar Geol 32:205–230

    Article  Google Scholar 

  • Bernardi M, Boschele S, Ferretti P, Avanzini M (2010) Echinoid burrow Bichordites monastiriensis from the Oligocene of NE Italy. Acta Palaeontol Pol 55:479–486

    Article  Google Scholar 

  • Bernecker M, Weidlich O (1996) The Danian (Paleocene) coral limestone of Fakse, Denmark: a model for ancient aphotic, azooxanthellate coral mounds. Facies 22:103–138

    Article  Google Scholar 

  • Bertling M (1992) Arachnostega n. ichnog.—burrowing traces in internal moulds of boring bivalves (Late Jurassic, northern Germany). Paläontol Zeitschr 66:177–185

    Article  Google Scholar 

  • Bertling M (1999) Taphonomy of trace fossils at omission surfaces (Middle Triassic, East Germany). Palaeogeogr Palaeoclimatol Palaeoecol 149:27–40

    Article  Google Scholar 

  • Bertling M, Insalaco E (1998) Late Jurassic coral/microbial reefs from the northern Paris Basin—facies, palaeoecology and palaeobiogeography. Palaeogeogr Palaeoclimatol Palaeoecol 139:139–175

    Article  Google Scholar 

  • Boessenecker RW, Fordyce RE (2014) Trace fossil evidence of predation upon bone-eating worms on a baleen whale skeleton from the Oligocene of New Zealand. Lethaia

    Google Scholar 

  • Bottjer DJ, Ausich WI (1986) Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology 12:400–420

    Article  Google Scholar 

  • Bottjer DJ, Jablonski D (1988) Paleoenvironmental patterns in the evolution of post-Paleozoic benthic marine invertebrates. Palaios 3:540–560

    Article  Google Scholar 

  • Bottjer DJ, Droser ML, Jablonski D (1988) Palaeoenvironmental trends in the history of trace fossils. Nature 333:252–255

    Article  Google Scholar 

  • Boudreau BP (1998) Mean mixed depth of sediments: The where-fore and the why. Limnol Oceanogr 43:524–526

    Article  Google Scholar 

  • Bown PR (2005) Calcareous nannoplankton evolution: a tale of two oceans. Micropaleontology 51:299–308

    Article  Google Scholar 

  • Brachaniec T, Niedźwiedzki R, Surmik D, Krzykawski T, Szopa K, Gorzelak P, Salamon MA (2015) Coprolites of marine vertebrate predators from the Lower Triassic of southern Poland. Palaeogeogr Palaeoclimatol Palaeoecol 435:118–126

    Article  Google Scholar 

  • Bressan GS, Palma RM (2009) Trace fossils from the Lower–Middle Jurassic Bardas Blancas Formation, Neuquén Basin, Mendoza Province, Argentina. Acta Geol Pol 59:201–220

    Google Scholar 

  • Bromley RG (1967) Some observations on burrows of thalassinidean Crustacea in chalk hardgrounds. Quart J Geol Soc Lond 123:157–182

    Article  Google Scholar 

  • Bromley RG (1975) Comparative analysis of fossil and recent echinoid bioerosion. Palaeontology 18:725–739

    Google Scholar 

  • Bromley RG (1978) Bioerosion of Bermuda reefs. Palaeogeogr Palaeoclimatol Palaeoecol 23:169–197

    Article  Google Scholar 

  • Bromley RG (1981) Concepts in ichnotaxonomy illustrated by small round holes in shells. Acta Geol Hisp 16:55–64

    Google Scholar 

  • Bromley RG (1990) Trace fossils. Biology and taphonomy. Unwin Hyman, London

    Google Scholar 

  • Bromley RG (1991) Zoophycos: Strip mine, refuse dump, cache or sewage farm? Lethaia 24:460–462

    Article  Google Scholar 

  • Bromley RG (1992) Bioerosion: Eating rock for fun and profit. In: Maples CG, West RW (eds) Trace fossils, short courses in paleontology, vol 5. Paleontological Society, Knoxville

    Google Scholar 

  • Bromley RG (1993) Predation habits of octopus past and present and a new ichnospecies, Oichnus ovalis. Bull Geol Soc Denmark 40:167–173

    Google Scholar 

  • Bromley RG (1996) Trace fossils. Biology, taphonomy and applications, 2nd edn. Chapman & Hall, London

    Book  Google Scholar 

  • Bromley RG (1999) Anomiid (bivalve) bioerosion on Pleistocene pectinid (bivalve) shells, Rhodes, Greece. Geol Mijnbouw 78:175–177

    Article  Google Scholar 

  • Bromley RG (2004) A stratigraphy of marine bioerosion. In: McIlroy D (ed) The application of Ichnology to palaeoenvironmental and stratigraphic analysis. Geol Soc Spec P 228:455–479

    Google Scholar 

  • Bromley RG (2005) Preliminary study of bioerosion in the deep-water coral Lophelia, Pleistocene, Rhodes, Greece. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 895–914

    Chapter  Google Scholar 

  • Bromley RG, Asgaard U (1972) Notes on Greenland trace fossils. III. A large radiating burrow-system in Jurassic micaceous sandstones of Jameson Land, east Greenland. Grølands Geol Underøgelse Rap 49:23–30

    Google Scholar 

  • Bromley RG, Asgaard U (1975) Sediment structures produced by a spatangoid echinoid: a problem of preservation. Bull Geol Soc Denmark 24:261–281

    Google Scholar 

  • Bromley RG, Asgaard U (1993a) Endolithic community replacement on a Pliocene rocky coast. Ichnos 2:93–116

    Article  Google Scholar 

  • Bromley RG, Asgaard U (1993b) Two bioerosion ichnofacies produced by early and late burial associated with sea level change. Geol Rundsch 82:276–280

    Article  Google Scholar 

  • Bromley RG, D’Alessandro A (1983) Bioerosion in the Pleistocene of Southern Italy: Ichnogenera Caulostrepsis and Maeandropolydora. Riv Ital Paleontol Stratigr 89:283–309

    Google Scholar 

  • Bromley RG, D’Alessandro A (1990) Comparative analysis of bioerosion in deep and shallow water, Pliocene to recent, Mediterranean Sea. Ichnos 1:43–49

    Article  Google Scholar 

  • Bromley RG, Ekdale AA (1984a) Chondrites: a trace fossil indicator of anoxia in sediments. Science 224:872–874

    Article  CAS  Google Scholar 

  • Bromley RG, Ekdale AA (1984b) Trace fossil preservation in flint in the European chalk. J Paleontol 58:298–311

    Google Scholar 

  • Bromley RG, Ekdale AA (1986) Composite ichnofabrics and tiering of burrows. Geol Mag 123:59–65

    Article  Google Scholar 

  • Bromley RG, Goldring R (1992) The palaeoburrows at the Cretaceous to Palaeocene firmground unconformity in southern England. Tert Res 13:95–102

    Google Scholar 

  • Bromley RG, Hanken NM (2003) Structure and function of large, lobed Zoophycos, Pliocene of Rhodes, Greece. Palaeogeogr Palaeoclimatol Palaeoecol 192:79–100

    Article  Google Scholar 

  • Bromley RG, Martinell J (1991) Centrichnus, new ichnogenus for centrically patterned attachment scars on skeletal substrates. Bull Geol Soc Denmark 38:243–252

    Google Scholar 

  • Bromley RG, Pemberton SG, Rahmani RA (1984) A Cretaceous woodground: the Teredolites ichnofacies. J Paleontol 58:488–498

    Google Scholar 

  • Bromley RG, Hanken NM, Asgaard U (1990) Shallow marine bioerosion: preliminary results of an experimental study. Bull Geol Soc Denmark 38:85–99

    Google Scholar 

  • Bromley RG, Jensen M, Asgaard U (1995) Spatangoid echinoids: deep-tier trace fossils and chemosymbiosis. Neues Jahrb Geol Paläontol, Abh 195:25–35

    Article  Google Scholar 

  • Bromley RG, Uchman A, Gregory MR, Martin AJ (2003) Hillichnus lobosensis igen. et isp. nov., a complex trace fossil produced by tellinacean bivalves, Paleocene, Monterey, California, USA. Palaeogeogr Palaeoclimatol Palaeoecol 192:157–186

    Article  Google Scholar 

  • Bromley RG, Wisshak M, Glaub I, Botquelen A (2007) Ichnotaxonomic review of dendriniform borings attributed to foraminiferans: Semidendrina igen. nov. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam

    Google Scholar 

  • Bromley RG, Kedzierski M, Kolodziej B, Uchman A (2009) Large chambered sponge borings on a Late Cretaceous abrasion platform at Cracow, Poland. Cretaceous Res 30:149–160

    Google Scholar 

  • Buatois LA, Encinas A (2011) Ichnology, sequence stratigraphy and depositional evolution of an Upper Cretaceous rocky shoreline in central Chile: Bioerosion structures in a transgressed metamorphic basement. Cretaceous Res 32:203–212

    Article  Google Scholar 

  • Buatois LA, Mángano MG (1992) La oxigenación como factor de control en la distribución de asociaciones de trazas fosiles, Formación Kotick Point, Cretácico de Antartida. Ameghiniana 29:69–84

    Google Scholar 

  • Buatois LA, Mángano MG (2011) Ichnology: Organism-substrate interactions in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Buatois LA, Mángano MG (2013) Ichnodiversity and ichnodisparity: significance and caveats. Lethaia 46:281–292

    Article  Google Scholar 

  • Buatois LA, Mángano MG, Mikuláš R, Maples CG (1998) The ichnogenus Curvolithus revisited. J Paleontol 72(4):758–769

    Article  Google Scholar 

  • Buatois LA, Mángano MG, Alissa A, Carr TR (2002) Sequence stratigraphy and sedimentologic significance of biogenic structures from a late Paleozoic marginal- to open-marine reservoir, Morrow Sandstone, subsurface of southwest Kansas, USA. Sediment Geol 152:99–132

    Article  Google Scholar 

  • Buatois LA, Bromley RG, Mángano MG, Bellosi E, Carmona NB (2003) Ichnology of shallow marine deposits in the Miocene Chenque Formation of Patagonia: complex ecologic structure and niche partitioning in Neogene ecosystems. Pub Esp Asoc Paleontol Argentina 9:85–95

    Google Scholar 

  • Buatois LA, Gingras MK, MacEachern J, Mángano MG, Zonneveld J-P, Pemberton SG, Netto RG, Martin AJ (2005) Colonization of brackish-water systems through time: evidence from the trace-fossil record. Palaios 20:321–347

    Article  Google Scholar 

  • Buatois LA, Uba CE, Mángano MG, Hulka C (2007) Deep bioturbation in continental environments: Evidence from Miocene fluvial deposits of Bolivia. In: Bromley RG, Buatois LA, Mángano MG, Genise JF, Melchor RN (eds) Sediment–organism interactions: A multifaceted Ichnology. SEPM Spec P 88:123–136

    Google Scholar 

  • Buatois LA, Macsotay O, Quiroz LI (2009) Sinusichnus, a trace fossil from Antarctica and Venezuela: expanding the dataset of crustacean burrows. Lethaia 42:511–518

    Article  Google Scholar 

  • Buatois LA, Saccavino LL, Zavala C (2011) Ichnologic signatures of hyperpycnal flow deposits in Cretaceous river-dominated deltas, Austral Basin, southern Argentina. In: Slatt RM, Zavala C (eds) Sediment transfer from shelf to deep water—revisiting the delivery system. AAPG Studies in Geology 61:153–170

    Google Scholar 

  • Buatois LA, Burns F, Ainsworth RB (2013) Evaluating the role of stress factors in trace-fossil distribution along mixed-influence deltaic systems of an embayed shoreline (Middle Jurassic, Sunrise Field of the Timor Sea, Australia and Timor-Leste). In: Keep M, Moss SJ (eds) The sedimentary basins of Western Australia IV. Proc Petrol Expl Soc of Australia Symposium, Perth, WA

    Google Scholar 

  • Buckman JO (1994) Archaeonassa Fenton and Fenton 1937 reviewed. Ichnos 3:185–192

    Article  Google Scholar 

  • Buckman JO (1997) An unusual new trace fossil from the Lower Carboniferous of Ireland: Intexalvichnus magnus. J Paleontol 71:316–324

    Article  Google Scholar 

  • Burns F, Buatois LA, Ainsworth RB (2013) Assessing controls on nearshore clastic deposition in the Plover and Elang Formations using ichnology: case studies from the Bonaparte Basin (Timor Sea, Australia and Timor-Leste). In: Keep M, Moss SJ (eds) The sedimentary basins of Western Australia IV. Proc Petrol Expl Soc of Australia Symposium, Perth, WA

    Google Scholar 

  • Bush AM, Bambach RK, Daley GM (2007) Changes in theoretical ecospace utilization in marine fossil assemblages between the mid-Paleozoic and late Cenozoic. Paleobiology 33:76–97

    Article  Google Scholar 

  • Cadée GC (2001) Sediment dynamics by bioturbating organisms. In: Reise K (ed) Ecological comparisons of sedimentary shores. Ecol Stud 151:128–148

    Google Scholar 

  • Cadée GC, de Wolf P (2013) Belichnus traces produced on shells of the bivalve Lutraria lutraria by gulls. Ichnos 20:15–18

    Article  Google Scholar 

  • Campbell KA, Nesbitt EA (2000) High resolution architecture and paleoecology of an active margin, storm-flood influenced estuary, Quinault Formation (Pliocene) Washington. Palaios 15:553–579

    Article  Google Scholar 

  • Campbell KA, Nesbitt EA, Bourgeois J (2006) Signatures of storms, oceanic floods and forearc tectonism in marine shelf strata of the Quinault Formation (Pliocene), Washington, USA. Sedimentology 53:945–969

    Article  Google Scholar 

  • Canale N, Ponce JJ, Carmona NB, Drittanti DI, Olivera DE, Martínez MA, Bournod CN (2015) Sedimentología e Icnología de deltas fluvio-dominados afectados por descargas hiperpícnicas de la Formación Lajas (Jurásico Medio), Cuenca Neuquina, Argentina. Andean Geol 42:114–138

    Google Scholar 

  • Cantalamessa G, Di Celma C, Ragaini L, Valleri G, Landini W (2007) Sedimentology and high-resolution sequence stratigraphy of the late middle to late Miocene Angostura Formation (western Borbón Basin, northwestern Ecuador). J Geol Soc London 164:653–665

    Article  Google Scholar 

  • Caracuel JE, Corbí H, Giannetti A, Monaco P, Soria JM, Tent-Manclús YA (2011) Paleoenvironmental changes during the Late Miocene (Messinian)–Pliocene transition (Bajo Segura Basin, southeastern Spain): sedimentological and ichnological evidence. Palaios 26:754–766

    Article  Google Scholar 

  • Carey J (1979) Sedimentary environments and trace fossils of the Permian Snapper Point Formation, Southern Sydney Basin. J Geol Soc Aust 25:433–458

    Article  Google Scholar 

  • Carmona NB, Buatois LA (2003) Estructuras biogénicas de crustáceos en el Mioceno de la cuenca del Golfo San Jorge: implicancias paleobiológicas y evolutivas. Pub Esp Asoc Paleont Argentina 9:97–108

    Google Scholar 

  • Carmona NB, Buatois LA, Mángano MG (2004) The trace fossil record of burrowing decapod crustaceans: evaluating evolutionary radiations and behavioral convergence. In: Webby B, Mángano MG, Buatois LA (eds) Trace fossils in evolutionary palaeoecology, Fossils Strata 51:141–153

    Google Scholar 

  • Carmona NB, Ponce JJ, Mángano MG, Buatois LA (2006) Variabilidad de la icnofacies de Glossifungites en el contacto entre las Formaciones Sarmiento (Eoceno-Oligoceno) y Chenque (Mioceno temprano) en el Golfo San Jorge, Chubut, Argentina. Ameghiniana 43:413–425

    Google Scholar 

  • Carmona NB, Mángano MG, Buatois LA, Ponce JJ (2007) Bivalve trace fossils in an early Miocene discontinuity surface in Patagonia, Argentina: Burrowing behavior and implications for ichnotaxonomy at the firmground–hardground divide. Palaeogeogr Palaeoclimatol Palaeoecol 255:329–341

    Article  Google Scholar 

  • Carmona NB, Buatois LA, Mángano MG, Bromley RG (2008) Ichnology of the Lower Miocene Chenque Formation, Patagonia, Argentina: Animal-substrate interactions and the Modern Evolutionary Fauna. Ameghiniana 45:93–122

    Google Scholar 

  • Carmona NB, Mángano MG, Buatois LA, Ponce JJ (2010) Taphonomy and paleoecology of the bivalve trace fossil Protovirgularia in deltaic heterolithic facies of the Miocene Chenque Formation, Patagonia, Argentina. J Paleontol 84:730–738

    Article  Google Scholar 

  • Carmona NB, Buatois LA, Mángano MG, Bromley RG, Ponce JJ, Bellosi E (2012) Ichnology of Cenozoic marine deposits from Patagonia (Southern Argentina): The role of the modern evolutionary fauna in Neogene infaunal ecosystems. In: Netto RG, Carmona NB, Tognoli FMW (eds) Ichnology of Latin America—selected papers. Sociedade Brasileira de Paleontologia, Monografias da Sociedade Brasileira de Palentologia Porto Alegre, Brasil Série Monografias da Sociedade Brasileira de Paleontologia, vol 2., pp 83–97

    Google Scholar 

  • Caron J-B, Conway Morris S, Cameron CB (2013) Tubicolous enteropneusts from the Cambrian period. Nature 495:503–506

    Article  CAS  Google Scholar 

  • Chamberlain CK (1971) Morphology and ethology of trace fossils from the Ouachita Mountains, southeast Oklahoma. J Paleo 45:212–246

    Google Scholar 

  • Chamberlain CK (2000) Prologue to the study of Zoophycos. Ichnology Newslett 22:13–22

    Google Scholar 

  • Chiplonkar GW, Badve RM (1970) Trace fossils from the Bagh beds. J Palaeontol Soc India 14:1–10

    Google Scholar 

  • Chiplonkar GW, Ghare MA (1975) Some additional trace fossils from the Bagh Beds. Bull Indian Geol Assoc 8:71–84

    Google Scholar 

  • Chrząstek A (2013) Trace fossils from the Lower Muschelkalk of Raciborowice Górne (North Sudetic Synclinorium, SW Poland) and their palaeoenvironmental interpretation. Acta Geol Pol 63:315–353

    Google Scholar 

  • Clifton HE, Thompson JK (1978) Macaronichnus segregatis—a feeding structure of shallow marine polychaetes. J Sediment Petrol 48:1293–1302

    Article  Google Scholar 

  • Colella A, D’Alessandro A (1988) Sand waves, Echinocardium traces and their bathyal depositional setting (Monte Torre Palaeostrait, Plio-Pleistocene, southern Italy). Sedimentology 35:219–237

    Article  Google Scholar 

  • Corner GD, Fjalstad A (1993) Spreite trace fossils (Teichichnus) in a raised Holocene fjord-delta, Breidvikeidet, Norway. Ichnos 2:155–164

    Article  Google Scholar 

  • Cornish FG (1986) The trace fossil Diplocraterion: evidence of animal-sediment interactions in Cambrian tidal deposits. Palaios 1:478–491

    Article  Google Scholar 

  • Crimes TP, Anderson MM (1985) Trace fossils from the Late Precambrian–Early Cambrian strata of southeastern Newfoundland (Canada): temporal and environmental implications. J Paleontol 59:310–343

    Google Scholar 

  • Crimes TP, Crossley JD (1991) A diverse ichnofauna from Silurian flysch of the Aberystwyth Grits Formation, Wales. Geol J 26:27–64

    Article  Google Scholar 

  • Cuny G, Benton MJ (1999) Early radiation of the neoselachian sharks in western Europe. Geobios 32:193–204

    Article  Google Scholar 

  • Curran HA (1976) A trace fossil brood structure of probable callianassid origin. J Paleontol 50:249–259

    Google Scholar 

  • Curran HA (1985) The trace fossil assemblage of a Cretaceous nearshore environment: Englishtown Formation of Delaware, USA. In: Curran HA (ed) Biogenic structures: Their use in interpreting depositional environments. SEPM Spec P 35:261–276

    Google Scholar 

  • Curran HA (2007) Ichnofacies, ichnocoenoses and ichnofabrics of Quaternary shallow-marine to dunal tropical carbonates: a model and implications. In: Miller W III (ed) Trace Fossils: Concepts, Problems, Prospects Amsterdam, 232–247

    Google Scholar 

  • Curran HA, Frey RW (1977) Pleistocene trace fossils from North Carolina (U.S.A.), and their Holocene analogues. In: Crimes TP, Harper JC (eds) Trace fossils 2. Geol J Spec Issue 9, Seel House Press, 139–162

    Google Scholar 

  • Curran HA, White B (1991) Trace fossils of shallow subtidal to dunal ichnofacies in Bahamian Quaternary carbonates. Palaios 6:498–510

    Article  Google Scholar 

  • Curran HA, White B (2001) Ichnology of Holocene carbonate eolianites of the Bahamas. In Abegg R, Harris M, Loope D (eds) Modern and Ancient Carbonate Eolianites: sedimentology, sequence stratigraphy, and diagenesis, SEPM Spec P 71:47–55

    Google Scholar 

  • D’Alessandro A, Bromley RG (1995) A new ichnospecies of Spongeliomorpha from the Pleistocene of Sicily. J Paleontol 69:393–398

    Article  Google Scholar 

  • D’Alessandro A, Fürsich FT (2005) Tursia—a new ichnogenus from Pleistocene shallow water settings in southern Italy. Ichnos 12:65–73

    Article  Google Scholar 

  • D’Alessandro A, Massari F (1997) Pliocene and Pleistocene depositional environments in the Pesculuse area Salento, Italy. Riv Ital Paleontol Stratigr 103:221–258

    Google Scholar 

  • Dam G (1990a) Taxonomy of trace fossils from the shallow marine Lower Jurassic Neill Klinter Formation, East Greenland. Bull Geol Soc Denmark 38:119–144

    Google Scholar 

  • Dam G (1990b) Paleoenvironmental significance of trace fossils from the shallow marine Lower Jurassic Neill Klinter Formation, East Greenland. Palaeogeogr Palaeoclimatol Palaeoecol 79:221–248

    Google Scholar 

  • Damborenea S, Manceñido MO (1996) Icnofósiles (Nucleocavia) preservados sobre moldes internos de conchillas del Jurásico Medio del oeste argentino. Asoc Paleontol Arg, Pub Esp 4:111–120

    Google Scholar 

  • David A (1997) Predation by muricid gastropods on Late-Oligocene (Egerian) molluscs collected from Wind Brickyard, Eger, Hungary. Malak Táj 16:5–12

    Google Scholar 

  • de Gibert JM (1996) A new decapod burrow system from the NW Mediterranean Pliocene. Rev Esp Paleontol 11:251–254

    Google Scholar 

  • de Gibert JM, Benner JS (2002) The trace fossil Gyrochorte: ethology and paleoecology. Rev Esp Paleontol 17:1–12

    Google Scholar 

  • de Gibert JM, Domènech R (2008) Trazas fósiles de nuculoideos (Protovirgularia) del Mioceno marino de la Cuenca del Vallès-Penedès. Rev Esp Paleontol 23:129–138

    Google Scholar 

  • de Gibert JM, Ekdale AA (2002) Ichnology of a restricted epicontinental sea, Arapien Shale, Middle Jurassic, Utah, USA. Palaeogeogr Palaeoclimatol Palaeoecol 183:275–286

    Article  Google Scholar 

  • de Gibert JM, Goldring R (2007) An ichnofabric approach to the depositional interpretation of the intensely burrowed Bateig Limestone, Miocene, SE Spain. Sediment Geol 194:1–16

    Article  Google Scholar 

  • de Gibert JM, Martinell J (1998) Ichnofabric analisis of the Pliocene marine sediments of the Var basin (Nice, SE France). Geobios 31:271–281

    Article  Google Scholar 

  • de Gibert JM, Martinell J, Doménech R (1995) The rossetted feeding trace fossil Dactyloidites ottoi (Geinitz) from the Miocene of Catalonia. Geobios 28:769–776

    Article  Google Scholar 

  • de Gibert JM, Martinell J, Domènech R (1998a) Entobia ichnofacies in fossil rocky shores, Lower Pliocene, Northwestern Mediterranean. Palaios 13:476–487

    Article  Google Scholar 

  • de Gibert JM, da Silva CM, Cachao M (1998b) Icnofábrica de Ophiomorpha/Conichnus en el Mioceno Inferior de Cristo Rei (Almada, Portugal). Implicancias paleoambientales. Rev Esp Paleontol 13:251–259

    Google Scholar 

  • de Gibert JM, Domenech R, Martinell J (2004) An ethological framework for animal bioerosion trace fossils upon mineral substrates with a proposal for a new class, fixichnia. Lethaia 37:429–437

    Article  Google Scholar 

  • de Gibert JM, Netto RG, Tognoli FMW, Grangeiro ME (2006) Commensal worm traces and possible juvenile thalassinidean burrows associated with Ophiomorpha nodosa, Pleistocene, southern Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 230:70–8

    Article  Google Scholar 

  • de Gibert JM, Domènech R, Martinell J (2007) Bioerosion in shell beds from the Pliocene Roussillon Basin, France: implications for the (macro) bioerosion ichnofacies model. Acta Palaeontol Pol 52:783–798

    Google Scholar 

  • de Gibert JM, Mas G, Ekdale AA (2012) Architectural complexity of marine crustacean burrows: unusual helical trace fossils from the Miocene of Mallorca, Spain. Lethaia 45:574–585

    Article  Google Scholar 

  • de Gibert JM, Muñiz F, Belaústegui Z, Hyžný M (2013) Fossil and modern fiddler crabs (Uca tangeri: ocypodidae) and their burrows from SW Spain: ichnologic and biogeographic implications. J Crustacean Biol 33:537–551

    Article  Google Scholar 

  • De Grave S, Pentcheff ND, Ahyong ST, Chan T-Y, Crandall KA, Dworschak PC, Felder DL, Feldmann RM, Fransen CHJM, Goulding LYD, Lemaitre R, Low MEY, Martin JW, Ng PKL, Schweitzer CE, Tan SH, Tshudy D, Wetzer R (2009) A classification of living and fossil genera of decapod crustaceans. Raffles B Zool 21:1–109

    Google Scholar 

  • Demírcan H (2012) Determination of a Late Miocene rocky palaeoshore by bioerosion trace fossils from the Bozcaada Island, Çanakkale, Turkey. Comptes Rendus Palevol 11:331–344

    Article  Google Scholar 

  • Demírcan H, Uchman A (2012) The miniature echinoid trace fossil Bichordites kuzunensis isp. nov. from early Oligocene prodelta sediments of the Mezardere Formation, Gökçeada Island, NW Turkey. Acta Geol Pol 62:205–215

    Google Scholar 

  • Desai BG, Saklani RD (2012) Significance of the trace fossil Balanoglossites Mägdefrau, 1932 from the Lower Cretaceous Guneri member (Bhuj Formation) of the Guneri dome, Kachchh, India. Swiss J Palaeont 131:255–263

    Article  Google Scholar 

  • Desai BG, Saklani RD (2014) Ichnofabric analysis of the Tithonian shallow marine sediments (Bhadasar Formation) Jaisalmer Basin. India J Earth Syst Sci 123:1413–1431

    Article  Google Scholar 

  • Desai BG, Patel SJ, Shukla R, Surve D (2008) Analysis of ichnoguilds and their significance in interpreting ichnological events: A study from Jhuran Formation (Upper Jurassic) Western Kachchh. J Geol Soc India 72:458–466

    Google Scholar 

  • Deville J (1996) Palaeontological study of the Neerrepen sands in the Francart Quarry (Tongeren, Belgium). Natuurwet Tijdschr 75:75–97

    Google Scholar 

  • Domènech R, de Gibert JM, Martinell J (2001) Ichnological features of a marine transgression: Middle Miocene rocky shores of Tarragona, Spain. Geobios 34:99–107

    Article  Google Scholar 

  • Donovan SK, Jagt JWM, Nieuwenhuis APM (2015) The boring Cunctichnus Fürsich, Palmer and Goodyear, 1994, from the type Maastrichtian (Upper Cretaceous, Northeast Belgium). Ichnos 22:19–21

    Article  Google Scholar 

  • Dornbos SQ (2008) Tiering history of early epifaunal suspension-feeding echinoderms. In: Ausich WI, Webster GD (eds) Echinoderm paleobiology. Indiana University Press, Bloomington, IN

    Google Scholar 

  • Doyle P, Bennett MR, Cocks FM (1998) Borings in a boulder substrate from the Miocene of southern Spain. Ichnos 5:277–286

    Article  Google Scholar 

  • Driese SG, Dott RH (1984) Model for sandstone–carbonate “cyclothems” based on upper member of Morgan Formation (Middle Pennsylvanian) of northern Utah and Colorado. AAPG Bull 68:574–597

    Google Scholar 

  • Droser ML, Bottjer DJ (1993) Trends and patterns of Phanerozoic ichnofabrics. Ann Rev Earth Planet Sci 21:205–225

    Article  Google Scholar 

  • Dworschak PC (1987) Feeding behavior of Upogebia pusilla and Callianassa tyrrhena (Crustacea, Decapoda, Thalassinidea). Inv Pesq 51:421–429

    Google Scholar 

  • Dworschak PC (2000) Global diversity in the Thalassinidea (Decapoda). J Crustacean Biol 20:238–245

    Article  Google Scholar 

  • Dworschak PC (2005) Global diversity in the Thalassinidea (Decapoda): an update (1998–2004). Nauplius 13:57–63

    Google Scholar 

  • Dworschak PC, de Rodrigues SA (1997) A modern analogue for the trace fossil Gyrolithes: burrows of the thalassinidean shrimp Axianassa australis. Lethaia 30:41–52

    Article  Google Scholar 

  • Dworschak PC, Felder DL, Tudge CC (2012) Infraorders Axiidea de Saint Laurent, 1979 and Gebiidea de Saint Laurent, 1979 (formely known collectively as Thalassinidea). The Crustacea 9:109–219

    Google Scholar 

  • Edinger EN, Risk MJ (1994) Oligocene-Miocene extinction and geographic restriction of Caribbean corals; roles of turbidity, temperature, and nutrients. Palaios 9:76–598

    Article  Google Scholar 

  • Ekdale AA (1977) Abyssal trace fossils in worldwide Deep Sea Drilling Project cores. In: Crimes TP, Harper JC (eds) Trace fossils 2. Geol. J Spec Issue, Seel House Press

    Google Scholar 

  • Ekdale AA (1992) Muckraking and mudslinging: the joys of deposits feeding. In: Maples CG, West RW (eds) Trace fossils, short courses in paleontology, vol 5. Paleontological Society, Knoxville

    Google Scholar 

  • Ekdale AA, Bromley RG (1984) Comparative ichnology of shelf-sea and deep-sea chalk. J Paleontol 58:323–332

    Google Scholar 

  • Ekdale AA, Bromley RG (1991) Analysis of composite ichnofabrics: an example in uppermost Cretaceous chalk of Denmark. Palaios 6:232–249

    Article  Google Scholar 

  • Ekdale AA, Bromley RG (2001a) A day and a night in the life of a cleft-foot clam: Protovirgularia-Lockeia-Lophoctenium. Lethaia 34:119–124

    Article  Google Scholar 

  • Ekdale AA, Bromley RG (2001b) Bioerosional innovation for living in carbonate hardgrounds in the Early Ordovician of Sweden. Lethaia 34:1–12

    Article  Google Scholar 

  • Ekdale AA, Lewis DW (1991) Trace fossils and paleoenvironmental control of ichnofacies in a late Quaternary gravel and loess fan delta complex, New Zealand. Palaeogeogr Palaeoclimatol, Palaeoecol 81:253–279

    Article  Google Scholar 

  • Etter W (1995) Benthic diversity patterns in oxygenation gradients: an example from the Middle Jurassic of Switzerland. Lethaia 28:259–270

    Article  Google Scholar 

  • Evans JN, McIlroy D (2016) Ichnology and palaeobiology of Phoebichnus trochoides from the Middle Jurassic of north‐east England. Papers in Palaeontology 2:139–154

    Google Scholar 

  • Farinati E, Zavala C (2002) Trace fossils on shelly substrate. An example from the Miocene of Patagonia, Argentina. Acta Geol Hisp 37:29–36

    Google Scholar 

  • Fauchald K (1984) Polychaete distribution patterns, or: can animals with Palaeozoic cousins show large-scale geographic patterns. In: Proceedings of the First International Polychaete Conference, Sydney, Australia, 1983

    Google Scholar 

  • Fedonkin MA (1981) Belomorskaja biota venda. [The Vendian White Sea biota]. Trudy Akademii Nauk SSSR 342:1–100

    Google Scholar 

  • Fedonkin MA (1983) Besskeletnaya fauna podol’skogo pridnestrov‘ya. [Non-skeletal fauna of Podolia (Diniestr River Valley)]. In: Velikanov VA, Aseeva MA, Fedonkin MA (eds) Vend Ukrainy: Naukova Dunka. Naukova Dumka, Kiev, pp 128–139

    Google Scholar 

  • Feldmann RM, Schweitzer CE (2006) Paleobiogeography of Southern Hemisphere decapod crustacean. J Paleontol 80:83–103

    Article  Google Scholar 

  • Fenton CL, Fenton MA (1937) Burrows and trails from Pennsylvanian rocks of Texas. Am Midl Nat 18:1079–1084

    Article  Google Scholar 

  • Finnegan S, McClain CM, Kosnik MA, Payne JL (2011) Escargots through time: an energetic comparison of marine gastropod assemblages before and after the Mesozoic Marine Revolution. Paleobiology 37:252–269

    Article  Google Scholar 

  • Förster R (1985) Evolutionary trends and ecology of Mesozoic decapod crustaceans. Trans Roy Soc Edinb-Earth 76:299–304

    Article  Google Scholar 

  • Freestone AL, Osman RW, Ruiz GM, Torchin ME (2011) Stronger predation in the tropics shapes species richness patterns in marine communities. Ecology 92:983–993

    Article  Google Scholar 

  • Frey RW (1970) Trace fossils of Fort Hays Limestone Member of Niobrara Chalk (Upper Cretaceous), west-central Kansas. Univ Kansas Paleontol Cont 53:1–41

    Google Scholar 

  • Frey RW (1972) Paleoecology and depositional environment of Fort Hays Limestone Member, Niobrara Chalk (Upper Cretaceous), west-central Kansas. Univ of Kansas Paleontol Cont 58:1–72

    Google Scholar 

  • Frey RW (1990) Trace fossils and hummocky cross-stratification, Upper Cretaceous of Utah. Palaios 5:203–218

    Article  Google Scholar 

  • Frey RW, Bromley RG (1985) Ichnology of American chalks: the Selma Group (Upper Cretaceous), western Alabama. Can J Earth Sci 22:801–828

    Article  Google Scholar 

  • Frey RW, Howard JD (1982) Trace fossils from the Upper Cretaceous of the Western Interior: potential criteria for facies models. Mount Geol 19:1–10

    Google Scholar 

  • Frey RW, Howard JD (1985) Trace fossils from the Panther Member, Star Point Formation (Upper Cretaceous), Coal Creek Canyon, Utah. J Paleontol 59:370–404

    Google Scholar 

  • Frey RW, Howard JD (1990) Trace fossils and depositional sequences in a clastic shelf setting, Upper Cretaceous of Utah. J Paleontol 64:803–820

    Article  Google Scholar 

  • Frey RW, Pemberton SG (1987) The Psilonichnus ichnocoenose, and its relationship to adjacent marine and nonmarine ichnocoenoses along the Georgia coast. Bull Can Petrol Geol 35:333–357

    Google Scholar 

  • Frey RW, Howard JD, Pryor WA (1978) Ophiomorpha: its morphologic, taxonomic and environmental significance. Palaeogeogr Palaeoclimatol, Palaeoecol 23:199–229

    Article  Google Scholar 

  • Frey RW, Curran HA, Pemberton SG (1984) Tracemaking activities of crabs and their environmental significance: the ichnogenus Psilonichnus. J Paleontol 58:333–350

    Google Scholar 

  • Frieling D (2007) Rosselia socialis in the Upper Marine Molasse of southwestern Germany. Facies 53:479–492

    Article  Google Scholar 

  • Fritz WH (1980) International Precambrian–Cambrian Boundary Working Group’s 1979 field study to Mackenzie Mountains, Northwest Territories, Canada. Geol Surv Canada Paper 10-1A:41–45

    Google Scholar 

  • Fu S (1991) Funktion, Verhalten und Einteilung fucoider und lophocteniider Lebensspuren. Cour Forsch-Inst Senckenberg 135:1–79

    Google Scholar 

  • Furlong CM, McRoberts CA (2014) Commensal borings from the Middle Devonian of Central New York: Ecologic and taxonomic review of Clionoides, Clionolithes, and Canaliparva n. ichnogen. J Paleontol 88:130–144

    Article  Google Scholar 

  • Fürsich FT (1972) Thalassinoides and the origin of nodular limestone in the Corallian beds (Upper Jurassic) of southern England. Neues Jahrb Geol Paläontol, Abh 3:136–156

    Google Scholar 

  • Fürsich FT (1973) A revision of the trace fossil Spongeliomorpha, Ophiomorpha and Thalassinoides. Neues Jahrb Geol Paläontol, Mh 1973:719–735

    Google Scholar 

  • Fürsich FT (1974) Corallian (Upper Jurassic) trace fossils from England and Normandy. Stuttgarter Beitr Naturk Serie B (Geol und Paläontol) 13:1–51

    Google Scholar 

  • Fürsich FT (1975) Trace fossils as environmental indicators in the Corallian of England and Normandy. Lethaia 8:151–172

    Article  Google Scholar 

  • Fürsich FT (1981) Invertebrate trace fossils from the Upper Jurassic of Portugal. Com Serv Geol de Portugal 67:153–168

    Google Scholar 

  • Fürsich FT (1998) Environmental distribution of trace fossils in the Jurassic of Kachchh (Western India). Facies 39:243–272

    Article  Google Scholar 

  • Fürsich FT, Bromley RG (1985) Behavioural interpretation of a rosetted spreite trace fossil: Dactyloidites ottoi (Geinitz). Lethaia 18:199–207

    Article  Google Scholar 

  • Fürsich FT, Jablonski D (1984) Late Triassic naticid drillholes: Carnivorous gastropods gain a major adaptation but fail to radiate. Science 224:78–80

    Article  Google Scholar 

  • Fürsich FT, Kennedy WJ, Palmer TJ (1981) Trace fossils at a regional discontinuity surface: the Austin/Taylor (Upper Cretaceous) contact in central Texas. J Paleontol 55:537–551

    Google Scholar 

  • Fürsich FT, Palmer TJ, Goodyear KL (1994) Growth and disintegration of bivalve dominated patch reefs in the Upper Jurassic of southern England. Palaeontology 37:131–171

    Google Scholar 

  • Gaemers PAM (1978) Biostratigraphy, palaeoecology and palaeogeography of the mainly marine Ager Formation (upper Paleocene-lower Eocene) in the Tremp basin, Central-South Pyrenees, Spain. Leid Geol Med 51:151–231

    Google Scholar 

  • García-Ramos JC, García Domingo A, Gonzalez Lastra JA, Hernaiz P, Ruiz P, Valenzuela M (1984) Significado ecológico y aplicaciones sedimentológicas de la traza fósil Tubotomaculum del Eoceno-Mioceno inferior de Andalucía. Pub Geol, Univ Aut de Barcelona 20:373–378

    Google Scholar 

  • García-Ramos JC, Piñuela L, Rodríguez-Tovar FJ (2011) Post-workshop field trip guide of the XI International Ichnofabric Workshop. MUJA, Colunga, Asturias

    Google Scholar 

  • García-Ramos JC, Mángano MG, Piñuela L, Buatois LA, Rodríguez-Tovar FJ (2014) The ichnogenus Tubotomaculum: An enigmatic pellet-filled structure from Upper Cretaceous to Miocene deep-marine deposits of southern Spain. J Paleontol 88:1189–1198

    Article  Google Scholar 

  • Geary DH, Allmon WD, Reaka-Kudla ML (1991) Stomatopod predation on fossil gastropods from the Plio-Pleistocene of Florida. J Paleontol 65:355–360

    Article  Google Scholar 

  • Getty PR, Hagadorn JW (2008) Reinterpretation of Climactichnites Logan 1860 to include subsurface burrows, and erection of Musculopodus for resting traces of the trailmaker. J Paleontol 82:1161–1172

    Article  Google Scholar 

  • Getty PR, Hagadorn JW (2009) Palaeobiology of the Climactichnites tracemaker. Palaeontology 52:753–778

    Article  Google Scholar 

  • Giannetti A, Monaco P (2004) Burrow decreasing upward parasequence (BDUP): a case study from the Lower Jurassic of the Trento carbonate platform (southern Alps), Italy. Riv Ital Paleontol S 110:77–85

    Google Scholar 

  • Gingras MK, Dashtgard SE, Pemberton SG (2006) Latitudinal (climatic) controls on neoichnological assemblages of modern marginal-marine depositional environments. AAPG 2006 Annual Convention (Houston), Abstract 38

    Google Scholar 

  • Gingras MK, Dashtgard SE, MacEachern JA, Pemberton SG (2008) Biology of shallow marine ichnology: a modern perspective. Aquat Biol 2:255–268

    Article  Google Scholar 

  • Glaessner MF (1969) Decapoda. In: Moore RC (ed) Treatise on invertebrate paleontology, Part R, Arthropoda 4, Vol 2. Geol Soc America and Univ Kansas Press, Lawrence, Kansas

    Google Scholar 

  • Glasby CJ, Hutchings PA, Fauchald K, Paxton H, Rouse GW, Russell CW, Wilson RS (2000) Class Polychaete. In: Beesley PL, Ross GJB, Glasby CJ (eds) Polychaetes and allies: the southern synthesis

    Google Scholar 

  • Glaub I, Vogel K (2004) The stratigraphic record of microborings. In: Webby BD, Mángano MG, Buatois LA (eds) Trace fossils in evolutionary palaeoecology. Fossils and Strata 51:126–135

    Google Scholar 

  • Goldring R (1962) The trace fossils of the Baggy Beds (Upper Devonian) of North Devon, England. Paläont Zeitschr 36:232–251

    Article  Google Scholar 

  • Goldring R, Pollard JE, Taylor AM (1991) Anconichnus horizontalis: a pervasive ichnofabric-forming trace fossil in post- Paleozoic offshore siliciclastic facies. Palaios 6:250–263

    Article  Google Scholar 

  • Goldring R, Gruszczynski M, Gatt PA (2002) A bow-form burrow and its sedimentological and palaeoecological significance. Palaios 17:622–630

    Article  Google Scholar 

  • Goldring R, Cadée GC, D’Alessandro A, Gibert JM de, Jenkins R, Pollard JE (2004) Climatic control of trace fossil distribution in the marine realm. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis, Geol Soc Spec P 228

    Google Scholar 

  • Goldring R, Pollard J, Radley J (2005) Trace fossils and pseudofossils from the Wealden strata (non-marine Lower Cretaceous) of southern England. Cretaceous Res 26:665–685

    Article  Google Scholar 

  • Goldring R, Cadée GC, Pollard JE (2007) Climatic control of marine trace fossi distribution. In: Miller W III (ed) Trace fossils: concepts, problems, prospects Amsterdam

    Google Scholar 

  • Golubic S, Radtke G, Campbell SE, Lee SJ, Vogel K, Wisshak M (2014) The complex fungal microboring trace Saccomorpha stereodiktyon isp. nov. reveals growth strategy of its maker. Ichnos 21:100–110

    Article  Google Scholar 

  • Graf G (1989) Benthic-pelagic coupling in a deep-sea benthic community. Nature 341:437–439

    Article  Google Scholar 

  • Gurav SG, Kulkarni KG, Paranjape AR, Borkar VD (2014) Palaeonenvironmental implications of Middle Jurassic trace fossils from the Jaisalmer Formation, India, with emphasis on the ichnogenus Asteriacites lumbricalis von Schlotheim, 1820. Ann Soc Geol Poloniae 84:249–257

    Google Scholar 

  • Haga T, Kase T (2011) Opertochasma somaensis n. sp. (Bivalvia: Pholadidae) from the Upper Jurassic in Japan: a perspective on pholadoidean early evolution. J Paleontol 85:78–488

    Article  Google Scholar 

  • Hallam A (1970) Gyrochorte and other trace fossils in the Forest Marble (Bathonian) of Dorset, England. In: Crimes TP, Harper JC (eds) Trace fossils. Geol J Spec Issue 3. Seel House Press, Liverpool

    Google Scholar 

  • Hanken N-M, Bromley RG, Thomsen E (2001) Trace fossils of the bivalve Panopea faujasi, Pliocene, Rhodes, Greece. Ichnos 8:117–130

    Article  Google Scholar 

  • Hanna RK, Al-Radwany MT (1993) Statistical study of pelecypod borings on top of the Pila Spi Formation (upper Eocene) at Baashiqa, northern Iraq. Neues Jahrb Geol Paläontol, Mh 1993:393–404

    Google Scholar 

  • Häntzschel W, Reineck HE (1968) Fazies Untersuchungen in Hettangium von Helmstedt (Niedersachsen). Mitt geol Staatsinst Hamburg 37:5–39

    Google Scholar 

  • Harper EM (2003) The Mesozoic Marine Revolution. In: Kelley PH, Kowalewski M, Hansen TA (eds) Predator—prey interactions in the fossil record. Topics in Geobiology 20:433–455

    Google Scholar 

  • Harper EM (2006) Dissecting post-Palaeozoic arms races. Palaeogeogr Palaeoclimatol Palaeoecol 232:322–343

    Article  Google Scholar 

  • Harper EM, Forsythe GTW, Palmer TJ (1998) Taphonomy and the Mesozoic marine revolution; preservation state masks the importance of boring predators. Palaios 13:352–360

    Article  Google Scholar 

  • Harper EM, Dulai A, Forsythe GTW, Fürsich FT, Kowalewski M, Palmer TJ (1999) A fossil record full of holes, the Phanerozoic history of drilling predation: discussion and reply. Geology 27:959–960

    Article  Google Scholar 

  • Hay WW (2004) Carbonate fluxes and calcareous nannoplankton. In: Thierstein HR, Young J (eds) Coccolithophores—From molecular processes to global impact. Springer, Berlin

    Google Scholar 

  • Hein FJ, Robb GA, Wolberg AC, Longstaffe FJ (1991) Facies descriptions and associations in ancient reworked (?transgressive) shelf sandstones: Cambrian and Cretaceous examples. Sedimentology 38:405–431

    Article  Google Scholar 

  • Heinberg C (1973) The internal structure of the trace fossils Gyrochorte and Curvolithus. Lethaia 6:227–238

    Article  Google Scholar 

  • Heinberg C (1974) A dynamic model for a meniscus filled tunnel (Ancorichnus n. ichnogen.) from the Jurassic Pecten sandstone of Milne Land, East Greenland. Rapp. Grønlands geol Unders 62:1–20

    Google Scholar 

  • Heinberg C, Birkelund T (1984) Trace-fossil assemblages and basin evolution of the Vardekløft Formation (Middle Jurassic, central East Greenland). J Paleontol 58:362–397

    Google Scholar 

  • Higgs ND, Little CTS, Glover AG, Dahlgren TG, Smith CR, Dominici S (2012) Evidence of Osedax worm borings in Pliocene (~3 Ma) whale bone from the Mediterranean. Historical Biol 24:269–277

    Google Scholar 

  • Hof CHJ (1998) Fossil Stomatopods (Crustacea: Malacostraca) and their phylogenetic impact. J Nat Hist 32:1567–1576

    Article  Google Scholar 

  • Hof CHJ, Briggs DEG (1997) Decay and mineralization of mantis shrimps (Stomatopoda: Crustacea)—a key to their fossil record. Palaios 12:420–438

    Article  Google Scholar 

  • Hölder H (1989) Spuren auf der Spur. Palichnologische und verwandte Notizen über Teredolites, Entobia, Nummipera nov. gen. und einiges andere. Münster Forsch Geol und Paläontol 69:13–30

    Google Scholar 

  • Hollis CJ, Handley L, Crouch EM, Morgans HEG, Baker JA, Creech J, Collins KS, Gibbs SJ, Huber M, Schouten S, Zachos SJ, Pancost RD (2009) Tropical sea temperatures in the high-latitude South Pacific during the Eocene. Geology 37:99–102

    Article  CAS  Google Scholar 

  • Hong E (1997) Evolution of Pliocene to Pleistocene sedimentary environments in an arc-continent collision zone: evidence from the analyses of lithofacies and ichnofacies in the southwestern foothills of Taiwan. J Asian Earth Sci 15:381–392

    Article  Google Scholar 

  • Hopkins MJ, Smith AB (2015) Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Proc Natl Acad Sci U S A 112:3758–3763

    Article  CAS  Google Scholar 

  • Howard JD, Frey RW (1975) Regional animal-sediment characteristics of Georgia estuaries. Senckenbergiana Maritima 7:33–103

    Google Scholar 

  • Howard JD, Frey RW (1984) Characteristic trace fossils in nearshore to offshore sequences, Upper Cretaceous of east-central Utah. Can J Earth Sci 21:200–219

    Article  Google Scholar 

  • Hua H, Pratt BR, Zhang L-Y (2003) Borings in Cloudina shells: complex predator–prey relationships in the terminal Proterozoic. Palaios 18:454–459

    Article  Google Scholar 

  • Huang DY, Chen JY, Vannier J, Saiz Salinas JI (2004) Early Cambrian sipunculan worms from southwest China. Proc Roy Soc Lond B Bio 271:1671–1676

    Article  Google Scholar 

  • Huang DY, Vannier J, Chen JY (2007) Anatomy and lifestyles of Early Cambrian priapulid worms exemplified by Corynetis and Anningvermis from the Maotianshan Shale (SW China). Lethaia 37:21–33

    Article  Google Scholar 

  • Huntley JW, Kowalewski M (2007) Strong coupling of predation intensity and diversity in the Phanerozoic fossil record. Proc Natl Acad Sci U S A 104:15006–15010

    Article  CAS  Google Scholar 

  • Ippolitov AP (2010) Serpulid (Annelida, Polychaeta) evolution and ecological diversification patterns during Middle-Late Jurassic. Earth Sci Front 17:207–208

    Google Scholar 

  • Izumi K (2015) Deposit feeding by the Pliocene deep-sea macrobenthos, synchronized with phytodetritus input: Micropaleontological and geochemical evidence recorded in the trace fossil Phymatoderma. Palaeogeogr Palaeoclimatol Palaeoecol 431:15–25

    Article  Google Scholar 

  • Jablonski D (2005) Evolutionary innovations in the fossil record: The intersection of ecology, development and macroevolution. J Exp Zool Part B 304B:504–519

    Article  Google Scholar 

  • Jablonski D, Bottjer DJ (1990) Onshore-offshore trends in marine invertebrate evolution. In: Ross RM, Allmon WD (eds) Causes of evolution: a paleontological perspective. University of Chicago Press, Chicago

    Google Scholar 

  • Jablonski D, Sepkoski JJ Jr, Bottjer DJ, Sheehan PM (1983) Onshore-offshore patterns in the evolution of shelf communities. Science 222:1123–1125

    Article  CAS  Google Scholar 

  • Jach R, Machaniec E, Uchman A (2011) The trace fossil Nummipera eocenica from the Tatra Mountains, Poland: morphology and palaeoenvironmental implications. Lethaia 45:342–355

    Article  Google Scholar 

  • Jagt JW, Neumann C, Donovan SK (2009) Petroxestes altera, a new bioerosional trace fossil from the upper Maastrichtian (Cretaceous) of northeast Belgium. Bull Inst Roy Sci Nat Belgique, Sciences de la Terre 79:137–145

    Google Scholar 

  • Jensen S (1997) Trace fossils from the Lower Cambrian Mickwitzia sandstone, south-central Sweden. Fossils Strata 42:1–111

    Google Scholar 

  • Jensen S, Grant SWF (1998) Trace fossils from the Divdalen Group, northern Sweden: implications for Early Cambrian biostratigraphy of Baltica. Norsk Geol Tidssk 78:305–317

    Google Scholar 

  • Jensen S, Buatois LA, Mángano MG (2013) Testing for palaeogeographical patterns in the distribution of Cambrian trace fossils. In: Harper DAT, Servais T (eds) Early Palaeozoic Biogeography and Palaeogeography. Geol Soc London Mem 38:45–58

    Google Scholar 

  • Jones B, Pemberton SG (1989) Anatomy of an unconformity bounded carbonate sequence: The Pleistocene Ironshore Formation, Salt Creek, Grand Cayman. Palaios 4:343–355

    Article  Google Scholar 

  • Joseph JK, Patel SJ, Bhatt NY (2012) Trace fossil assemblages in mixed siliciclastic-carbonate sediments of the Kaladongar Formation (Middle Jurassic), Patcham Island, Kachchh, Western India. J Geol Soc India 80:189–214

    Article  Google Scholar 

  • Kanazawa K (1995) How spatangoids produce their traces: relationship between burrowing mechanism and trace structure. Lethaia 28:211–219

    Article  Google Scholar 

  • Kase T, Johnston PA, Seilacher A, Boyce JB (1998) Alleged mosasaur bite marks on Late Cretaceous ammonites are limpet (patellogastropod) home scars. Geology 26:947–950

    Article  Google Scholar 

  • Katz ME, Fennel K, Falkowski PG (2007) Geochemical and biological consequences of phytoplankton evolution. In: Falkowski PG, Knoll AH (eds) Evolution of primary producers in the Sea. Elsevier, Academic, Burlington

    Google Scholar 

  • Kaźmierczak J, Pszczōłkowski A (1969) Burrows of Enteropneusta in Muschelkalk (Middle Triassic) of the Holy Cross Mountains, Poland. Acta Palaeontol Pol 14:299–318

    Google Scholar 

  • Keighley DG, Pickerill RK (1994) The ichnogenus Beaconites and its distinction from Ancorichnus and Taenidium. Palaeontology 37:305–337

    Google Scholar 

  • Kelley PH, Hansen TA (1993) Evolution of the naticid gastropod predator–prey system, an evaluation of the hypothesis of escalation. Palaios 8:358–375

    Article  Google Scholar 

  • Kelley PH, Hansen TA (1996) Naticid gastropod prey selectivity through time and the hypothesis of escalation. Palaios 11:437–445

    Article  Google Scholar 

  • Kelley PH, Hansen TA (2001) The Mesozoic marine revolution. In: Briggs DEG, Crowther PR (eds) Palaeobiology II. Blackwell Science, Oxford, UK

    Google Scholar 

  • Kelley PH, Hansen TA (2003) The fossil record of drilling predation on bivalves and gastropods. In: Kelley PH, Kowalewski M, Hansen TA (eds) Predator–prey Interactions in the Fossil Record. Kluwer Academic/Plenum Press, New York

    Chapter  Google Scholar 

  • Kelly SRA (1988) Cretaceous wood-boring bivalves from western Antarctica with a review of the Mesozoic Pholadidae. Palaeontology 31:341–372

    Google Scholar 

  • Kelly SRA, Bromley RG (1984) Ichnological nomenclature of clavate borings. Palaeontology 27:793–807

    Google Scholar 

  • Kennedy WJ (1967) Burrows and surface traces from the Lower Chalk of southern England. Br Museum (Nat Hist) Geol Bull 15:127–167

    Google Scholar 

  • Kennedy WJ (1970) Trace fossils in chalk environments. In: Crimes TP, Harper JC (eds) Trace Fossils. Geol J Spec Issue 3. Seel House Press, Liverpool

    Google Scholar 

  • Kennedy WJ (1975) Trace fossils in carbonate rocks. In: Frey RW (ed) The study of trace fossils – a synthesis of principles, problems, and procedures in ichnology. Springer, Berlin

    Google Scholar 

  • Kern JP, Grimmer JC, Lister KH (1974) A new fossil spionid tube, Pliocene and Pleistocene of California and Baja California. J Paleontol 48:978–982

    Google Scholar 

  • Kim SY, Heo WH (1997) Shell beds and trace fossils of the Seogwipo (early Pleistocene), Jeju Island, Korea. Ichnos 5:89–99

    Article  Google Scholar 

  • Kim JY, Kim KS, Pickerill RK (2002) Cretaceous nonmarine trace fossils from the Hasandong and Jinju Formations of the Namhae Area, Kyongsangnamdo, Southeast Korea. Ichnos 9:41–60

    Article  CAS  Google Scholar 

  • Kim JY, Keighley DG, Pickerill RK, Hwang W, Kim KS (2005) Trace fossil from marginal lacustrine deposits of the Cretaceous Jinju Formation, southern coast of Korea. Palaeogeogr Palaeoclimatol Palaeoecol 218:105–124

    Article  Google Scholar 

  • Klompmaker AA, Schweitzer CE, Feldmann RM, Kowalewski M (2013) The influence of reefs and the rise of Mesozoic marine crustaceans. Geology 41:1179–1182

    Article  Google Scholar 

  • Klompmaker AA, Schweitzer CE, Feldmann RM, Kowalewski M (2015) Environmental and scale-dependent evolutionary trends in the body size of crustaceans. Proc R Soc B 282:20150440

    Article  Google Scholar 

  • Knaust D (1998) Trace fossils and ichnofabrics on the Lower Muschelkalk carbonate ramp (Triassic) of Germany: tool for high-resolution sequence stratigraphy. Geol Rundsch 87:21–31

    Article  Google Scholar 

  • Knaust D (2002) Ichnogenus Pholeus Fiege, 1944, revisited. J Paleontol 76:882–891

    Article  Google Scholar 

  • Knaust D (2004) The oldest Mesozoic nearshore Zoophycos: Evidence from the German Triassic. Lethaia 37:297–306

    Article  Google Scholar 

  • Knaust D (2007) Invertebrate trace fossils and ichnodiversity in shallow marine carbonates of the German Middle Triassic (Muschelkalk). In: Bromley RG, Buatois LA, Mángano MG, Genise JF, Melchor RN (eds) Sediment–Organism Interactions: A Multifaceted Ichnology. SEPM Spec P 88:223–240

    Google Scholar 

  • Knaust D (2008) Complex behavioural pattern as an aid to identify the producer of Zoophycos from the Middle Permian of Oman. Lethaia 42:146–154

    Article  Google Scholar 

  • Knaust D (2010) Remarkably preserved benthic organisms and their traces from a Middle Triassic (Muschelkalk) mud flat. Lethaia 43:344–356

    Google Scholar 

  • Knaust D (2013) The ichnogenus Rhizocorallium: Classification, trace makers, palaeoenvironments and evolution. Earth-Sci Rev 126:1–47

    Article  CAS  Google Scholar 

  • Knaust D (2015) Siphonichnidae (new ichnofamily) attributed to the burrowing activity of bivalves: Ichnotaxonomy, behaviour and palaeoenvironmental implications. Earth-Sci Rev 150:497–519

    Article  Google Scholar 

  • Knaust D, Costamagna LG (2012) Ichnology and sedimentology of the Triassic carbonates of North-west Sardinia, Italy. Sedimentology 59:1190–1207

    Article  Google Scholar 

  • Knaust D, Dronov A (2013) Balanoglossites ichnofabrics from the Middle Ordovician Volkhov formation (St. Petersburg Region, Russia). Stratigr Geol Correl 21:265–279

    Article  Google Scholar 

  • Knaust D, Neumann, C (2016) Asteriacites von Schlotheim, 1820 – the oldest valid ichnogenus name – and other asterozoan-produced trace fossils. Earth-Sci Rev 157:111–120

    Google Scholar 

  • Knaust D, Curran HA, Dronov AV (2012) Shallow marine carbonates. In: Knaust D, Bromley RG (eds) Trace Fossils as indicators of sedimentary environments. Develop in Sedim 64:705–750

    Google Scholar 

  • Kobluk DR, Nemcsok S (1982) The macroboring ichnofossil Trypanites in the Middle Ordovician bryozoan Prasopora: population behaviour and reaction to environmental influences. Can J Earth Sci 19:679–688

    Article  Google Scholar 

  • Komatsu T, Saito R, Fursich FT (2001) Mode of occurrence and composition of bivalves of the Middle Jurassic Mitarai Formation, Tetori Group, Japan. Paleontol Res 5:121–129

    Google Scholar 

  • Kotake N (1991) Non-selective surface deposit feeding by the Zoophycos producers. Lethaia 24:379–385

    Article  Google Scholar 

  • Kotake N (1992) Deep-sea echiurans: possible producers of Zoophycos. Lethaia 25:311–316

    Article  Google Scholar 

  • Kotake N (2003) Ethologic and ecologic interpretation of complex stellate structures in Pleistocene deep-sea sediments (Otadai Formation), Boso Peninsula, central Japan). Palaeogeogr Palaeoclimatol Palaeoecol 192:143–155

    Article  Google Scholar 

  • Kotake N (2014) Changes in lifestyle and habitat of Zoophycos-producing animals related to evolution of phytoplankton during the Late Mesozoic: geological evidence for the ‘benthic-pelagic coupling model’. Lethaia 47:165–175

    Article  Google Scholar 

  • Kowalewski M, Dulai A, Fursich FT (1998) A fossil record full of holes: the Phanerozoic history of drilling predation. Geology 26:1091–1094

    Article  Google Scholar 

  • Kowalewski M, Dulai A, Fursich FT (1999) A fossil record full of holes: the Phanerozoic history of drilling predation: reply. Geology 27:959–960

    Article  Google Scholar 

  • Krumm DK (1999) Bivalve bioerosion in Oligocene corals from Puerto Rico and Jamaica. Bull Geol Soc Denmark 45:179–180

    Google Scholar 

  • Krumm DK, Jones DS (1993) New coral-bivalve association (Actinastrea-Lithophaga) from the Eocene of Florida. J Paleontol 67:945–951

    Article  Google Scholar 

  • Książkiewicz M (1977) Trace fossils in the Flysch of the Polish Carpathians. Palaeontol Polonica 36:1–208

    Google Scholar 

  • Lanés S, Mancenido M, Damborenea S (2007) Lapispira: a double helicoidal burrow from Jurassic marine nearshore environments. In: Bromley RG, Buatois LA, Mángano MG, Genise JF, Melchor RN (eds) Sediment–Organism interactions: a multifaceted ichnology, SEPM Spec P 88:59–77

    Google Scholar 

  • Leighton LR, Webb AE, Sawyer JA (2013) Ecological effects of the Paleozoic-Modern faunal transition: Comparing predation on Paleozoic brachiopods and molluscs. Geology 41:275–278

    Article  Google Scholar 

  • Leonowicz P (2008) Trace fossils from the Lower Jurassic Ciechocinek Formation, SW Poland. Vol Juras 6:89–98

    Google Scholar 

  • Leonowicz P (2012) Sedimentology and ichnology of Bathonian (Middle Jurassic) ore-bearing clays at Gnaszyn, Kraków-Silesia Homocline, Poland. Acta Geol Pol 62:281–296

    Google Scholar 

  • Lewis DW, Ekdale AA (1992) Composite ichnofabric of a mid-Tertiary unconformity on a pelagic limestone. Palaios 7:222–235

    Article  Google Scholar 

  • Liñán E (1984) Los icnofósiles de la Formación Torrearboles (Precámbrico?–Cámbrico inferior) en los alrededores de fuente de Cantos, Badajoz. Cuad Lab Xeol de Laxe 8:47–74

    Google Scholar 

  • Locklair RE, Savrda CE (1998) Ichnology of rhythmically bedded Demopolis Chalk (Upper Cretaceous, Alabama): implications for paleoenvironmental depositional cycle origins, and tracemaker behavior. Palaios 13:423–438

    Article  Google Scholar 

  • Lohrer AM, Thrush SF, Gibbs MM (2004) Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature 431:1092–1095

    Article  CAS  Google Scholar 

  • Lokho K, Singh BP (2013) Ichnofossils from the Miocene Middle Bhuban Formation, Mizoram, Northeast India and their paleoenvironmental significance. Acta Geol Sin-Engl 87:1460–1471

    Article  Google Scholar 

  • López-Cabrera MI, Olivero EB, Carmona NB, Ponce JJ (2008) Cenozoic trace fossils of the Cruziana, Zoophycos and Nereites ichnofacies from the Fuegian Andes, Argentina. Ameghiniana 45:377–392

    Google Scholar 

  • Löwemark L (2015) Testing ethological hypotheses of the trace fossil Zoophycos based on Quaternary material from the Greenland and Norwegian Seas. Palaeogeogr Palaeoclimatol Palaeoecol 425:1–13

    Article  Google Scholar 

  • Löwemark L, Grootes PM (2004) Large age differences between planktic foraminifers caused by abundance variations and Zoophycos bioturbation. Paleoceanography 19:1–9

    Article  Google Scholar 

  • Löwemark L, Hong E (2006) Schaubcylindrichnus formosus isp. nov. in Miocene Sandstones from Northeastern Taiwan. Ichnos 13:267–276

    Article  Google Scholar 

  • Löwemark L, Nara M (2013) Morphological variability of the trace fossil Schaubcylindrichnus coronus as a response to environmental forcing. Palaeontol Elec 16:1–14

    Google Scholar 

  • Löwemark L, Werner F (2001) Dating errors in high-resolution stratigraphy: a detailed X-ray radiograph and AMS-14C study of Zoophycos burrows. Mar Geol 177:191–198

    Article  Google Scholar 

  • MacEachern JA, Pemberton SG (1992) Ichnological aspects of Cretaceous shoreface successions and shoreface variability in the Western Interior Seaway of North America. In: Pemberton SG (ed) Applications of ichnology to petroleum exploration, a core workshop. SEPM Core W 17

    Google Scholar 

  • MacEachern JA, Pemberton SG (1994) Ichnological aspects of incised valley fill systems from the Viking Formation of the Western Canada Sedimentary Basin, Alberta, Canada. In: Boyd R, Zaitlin BA, Dalrymple R (eds) Incised Valley Systems: Origin and Sedimentary Sequences. SEPM Spec P 51:129–157

    Google Scholar 

  • MacEachern JA, Zaitlin BA, Pemberton SG (1999) Coarse-grained, shoreline-attached, marginal marine parasequences of the Viking Formation, Joffre Field, Alberta Canada. In: Bergman KM, Snedden JW (eds) Isolated Shallow Marine Sand Bodies: Sequence Stratigraphic and Sedimentologic Interpretation. SEPM Spec P 64:273–296

    Google Scholar 

  • MacEachern JA, Pemberton SG, Bann KL, Gingras MK (2007) Departures from the Archetypal Ichnofacies: Effective recognition of environmental stress in the rock record. In: MacEachern JA, Bann KL, Gingras MK, Pemberton SG (eds) Applied Ichnology SEPM Short Course Notes 52:65–93

    Google Scholar 

  • MacNaughton RB, Narbonne GM (1999) Evolution and ecology of Neoproterozoic-Lower Cambrian trace fossils, NW Canada. Palaios 14:97–115

    Article  Google Scholar 

  • MacNaughton RB, Zonneveld JP (2010) Trace–fossil assemblages in the Lower Triassic Toad Formation, La Biche River map area, southeastern Yukon. Bull Canad Petrol Geol 58:100–114

    Article  Google Scholar 

  • Maerz RH Jr, Kaesler RL, Hakes WG (1976) Trace fossils from the Rock Bluff Limestone (Pennsylvanian, Kansas). Univ of Kansas Paleontol Cont 80:1–6

    Google Scholar 

  • Mägdefrau K (1932) Über einige Bohrgänge aus dem unteren Muschelkalk von Jena. Paläontol Zeitschr 14:150–160

    Article  Google Scholar 

  • Malpas JA, Gawthorpe RL, Pollard JE, Sharp IR (2005) Ichnofabric analysis of the shallow marine Nukhul Formation (Miocene), Suez Rift, Egypt implications for depositional processes and sequence stratigraphic evaluation. Palaeogeogr Palaeoclimatol Palaeoecol 215:239–264

    Article  Google Scholar 

  • Mángano MG, Buatois LA (1991) Discontinuity surfaces in the Lower Cretaceous of the High Andes (Mendoza, Argentina): trace fossils and environmental implications. J S Am Earth Sci 4:215–229

    Article  Google Scholar 

  • Mángano MG, Buatois LA (1994) Trazas fósiles e icnofábricas en depósitos carbonáticos cretácicos, Las Cuevas, Alta Cordillera de Mendoza. Ameghiniana 31:55–66

    Google Scholar 

  • Mángano MG, Buatois LA (2003) Trace fossils. In: Benedetto JL (ed) Ordovician fossils of Argentina. Universidad Nacional de Cordoba. Secretaria de Ciencia y Tecnología

    Google Scholar 

  • Mángano MG, Buatois LA (2011) Timing of infaunalization in shallow-marine early Paleozoic communities in high-latitude Gondwanic settings: Discriminating evolutionary, environmental and paleogeographic controls. Paleontol Electron 14:1–21

    Google Scholar 

  • Mángano MG, Buatois LA (2014) Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: Evolutionary and geobiological feedbacks. Proc Roy Soc B 281:20140038

    Article  Google Scholar 

  • Mángano MG, Buatois LA, West RR, Maples CG (1998) Contrasting behavioral and feeding strategies recorded by tidal-bivalve trace fossils from the Upper Carboniferous of Eastern Kansas. Palaios 13:335–351

    Article  Google Scholar 

  • Mángano MG, Buatois LA, West RR, Maples CG (1999) The origin and paleoecologic significance of the trace fossil Asteriacites in the Pennsylvanian of Kansas and Missouri. Lethaia 32:17–30

    Article  Google Scholar 

  • Mángano MG, Buatois LA, Rindsberg AK (2002a) Carboniferous Psammichnites: systematic re-evaluation, taphonomy and autecology. Ichnos 9:1–22

    Article  Google Scholar 

  • Mángano MG, Buatois LA, West RR, Maples CG (2002b) Ichnology of a Pennsylvanian Equatorial tidal flat: The Stull Shale Member at Waverly, Eastern Kansas. Kansas Geol Surv Bull 245

    Google Scholar 

  • Martin MA, Pollard JE (1996) The role of trace fossil (ichnofabric) analysis in the development of depositional models for the Upper Jurassic Fulmar Formation of the Kittiwake Field (Quadrant 21 UKCS). In: Hurst A (ed) Geology of the Humber Group: Central Graben and Moray Firth, UKCS. Geol Soc SP 114

    Google Scholar 

  • Martinell J, Domènech R (1995) Bioerosive structures on the Pliocene rocky shores of Catalonia (Spain). Rev Esp Paleontol 10:37–44

    Google Scholar 

  • Martini IP, Cascella A, Rau A (1995) The Manciano Sandstone; a shoreface deposit of Miocene basins of the Northern Apennines, Italy. Sediment Geol 99:37–59

    Google Scholar 

  • Martino RL, Curran HA (1990) Sedimentology, ichnology, and paleoenvironments of the Upper Cretaceous Wenonah and Mt. Laurel Formations, New Jersey. J Sediment Petrol 60:125–144

    Google Scholar 

  • Mayoral E (1986) Icnofacies de Skolithos y Cruziana en el Neógeno Superior (Plioceno marino) del sector Huelva-Bonares (Valle del Río Guadalquivir, España). Rev Esp Paleontol 1:13–28

    Google Scholar 

  • Mayoral E (1987a) Acción bioerosiva de Mollusca (Gastropoda, Bivalvia) en el Plioceno inferior de la Cuenca del Bajo Guadalquivir. Rev Esp Paleontol 2:49–58

    Google Scholar 

  • Mayoral E (1987b) Stellichnus nov. icnogen., huellas de incrustación atribuídas a Paravinella nov. gen. (Bryozoa, Ctenostomata) de la formación Arenas de Huelva (Pllioceno inferior) en la Cuenca del Bajo Guadalquivir (España). Rev Esp Paleontol 2:33–40

    Google Scholar 

  • Mayoral E (1988) Pennatichnus nov. icnogen., Pinaceocladichnus nov. icnogen., e Iramena. Huellas de bioerosión debidas a Bryozoa perforantes (Ctenostomata, Plioceno inferior) en la Cuenca del Bajo Guadalquivir. Rev Esp Paleontol 3:13–22

    Google Scholar 

  • Mayoral E, Muñiz F (1993) Consideraciones paleoetológicas acerca de Gyrolithes. In: Jornadas de Paleontología, 9, 1993. Comunicaciones, Barcelona, SPE, p. 18–22

    Google Scholar 

  • Mayoral E, Muñiz F (2001) New ichnospecies of Cardioichnus from the Miocene of the Guadalquivir Basin, Huelva, Spain. Ichnos 8:69–76

    Article  Google Scholar 

  • Mayoral E, Reguant S (1995) Palaeoecology and taphonomy of bivalves, (mainly Glycymeris insubrica, Brocchi) and bryozoans from the Huelva Sands Fm. (Lower Pliocene, SW Spain). Rev Esp Paleontol, No Homenaje al Dr. Guillermo Colom, 31–47

    Google Scholar 

  • Mayoral E, Pál M, Muñiz F (1998) Lower Pliocene Decapod crustaceans from the Southwestern Iberian Peninsula (Guadalquivir basin, Sevilla, Spain). Geobios 31:505–510

    Article  Google Scholar 

  • Mayoral E, Ledesma-Vazquez J, Baarli BG, Santos A, Ramalhod R, Cachão M, da Silva CM, Johnson ME (2013) Ichnology in oceanic islands; case studies from the Cape Verde Archipelago. Palaeogeogr Palaeoclimatol Palaeoecol 381–382:47–66

    Article  Google Scholar 

  • McIlroy D (2004) Ichnofabrics and sedimentary facies of a tide-dominated delta: Jurassic Ile Formation of Kristin Field, Haltenbanken, Offshore Mid-Norway. In: McIlroy D (ed) The application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geol Soc London Spec P 228

    Google Scholar 

  • McIlroy D (2007) Ichnology of a macrotidal tide-dominated deltaic depositional system: Lajas Formation, Neuquén Province, Argentina. In: Bromley RG, Buatois LA, Mángano MG, Genise JF, Melchor RN (eds) Sediment–Organism Interactions: A Multifaceted Ichnology, SEPM Spec P 88

    Google Scholar 

  • McRoberts CA (2001) Triassic bivalves and the initial marine Mesozoic revolution: A role for predators? Geology 29:359–362

    Article  Google Scholar 

  • Melchor RN, Bromley RG, Bedatou E (2009) Spongeliomorpha in nonmarine settings: an ichnotaxonomic approach. Earth Environ Sci Trans Roy Soc Edinburgh 100:429–436

    Article  Google Scholar 

  • Merle D, Pacaud J-M (2002) The first record of Poirieria subcristata (d’Orbigny, 1850) (Muriidae: muricinae), in the early Cuisian of the Paris Basin (Celles-sur-Aisne, Aizy Formation), with comments on the sculptural evolution of some Palaeocene and Eocene, Poirieria and Paziella. Tert Res 21:19–27

    Google Scholar 

  • Metz R (2011) Pleistocene trace fossils in the Ironshore Formation, Little Cayman, British West Indies. Cent Eur J Geosci 3:71–76

    Google Scholar 

  • Michalík J (1977) Systematics and ecology of Zeilleria Bayle and other brachiopods in the uppermost Triassic of the West Carpathians. Geol Zbornik-Geol Carpathica 28:323–346

    Google Scholar 

  • Mikuláš R (1992a) The ichnogenus Asteriacites—Paleoenvironmental trends. Vêstnik Ceského geologického ústavu 67:423–433

    Google Scholar 

  • Mikuláš R (1992b) Early Cretaceous borings from Stramberk (Czechoslovakia). Casop Miner Geol Rod 37:297–312

    Google Scholar 

  • Mikulás R, Pek I (1995) Tertiary borings in Devonian limestone rockgrounds from Hranice (northern Moravia, Czech Republic). Vestnik Ceského geologického ústavu 70:19–26

    Google Scholar 

  • Monaco P (1994) Hummocky cross-stratifications and trace fossils in the Middle Toarcian of some sequences of Umbria–Marche Apennines. Geobios 17:679–688

    Article  Google Scholar 

  • Monaco P (1995) Relationships between trace-fossil communities and substrate characteristics in some Jurassic pelagic deposits in the Umbria-Marche Basin, central Italy. Geobios Mem Sp 18:299–311

    Article  Google Scholar 

  • Monaco P (2002) Tracce fossili di invertebrati narini e loro rapporti con il substrato: esempi dal Mesozoico e dal Terziario dell’Appennino Umbro e dell’area Voncentia. Studi e Ricerche—Associazione Amici del Museo—Museo Civicio “G. Zannato” Montecchio Maggiore (Vicenza):29–38

    Google Scholar 

  • Monaco P, Garassino A (2001) Burrows and body fossil of decapod crustaceans in the Calcari Grigi, Lower Jurassic, Trento platform (Italy). Geobios 34:291–301

    Article  Google Scholar 

  • Monaco P, Giannetti A (2002) Three-dimensional burrow systems and taphofacies in shallowing-upward parasequences, lower Jurassic carbonate platform (Calcari Grigi, Southern Alps, Italy). Facies 47:57–82

    Article  Google Scholar 

  • Monaco P, Caracuel JE, Castellani L (1996) Infaunal tiering, bioclasts erosion and decompaction as new tolos to quantify discontinuities in ammonitico rosso: examples from the Middle Toarcian and the Kimmeridgian. Palaeopelagos 6:202–210

    Google Scholar 

  • Monaco P, Rodríguez-Tovar FJ, Uchman A (2012) Ichnological analysis of lateral environmental heterogeneity within the Bonarelli Level (uppermost Cenomanian) in the classical localities near Gubbio, Central Apennines, Italy. Palaios 27:48–54

    Article  Google Scholar 

  • Mørk A, Bromley RG (2008) Ichnology of a marine regressive systems tract: the Middle Triassic of Svalbard. Polar Res 27:339–359

    Article  Google Scholar 

  • Mouzo FR, Farinati EA, Espósito GJ (1989) Tubos fósiles de callianássidos en la playa de Pehuen-Co, provincia de Buenos Aires. 1ra Jorn Geol Bonaer (Tandil), Actas, 263–274

    Google Scholar 

  • Müller AH (1977) Zur ichnologie der subherzynen Oberkreide (Campan). Zeitschr geol Wissensch, Berlin 5:881–897

    Google Scholar 

  • Müller PJ, Suess E (1979) Productivity, sedimentation rate and sedimentary organic matter in the oceans. I. Organic carbon preservation. Deep-Sea Res 26:1347–1362

    Article  Google Scholar 

  • Muñiz F, Mayoral E (2001a) El icnogénero Spongeliomorpha en el Neógeno superior de la Cuenca de Guadalquivir (área de Lepe-Ayamonte, Huelva, España). Rev Esp Paleontol 16:115–130

    Google Scholar 

  • Muñiz F, Mayoral E (2001b) Macanopsis plataniformis nov. ichnosp. from the Lower Cretaceous and Upper Miocene of the Iberian Peninsula. Geobios 34:91–98

    Article  Google Scholar 

  • Muñiz F, de Gibert JM, Esperante R (2010) First fossil evidence of bone-eating worms in whale carcasses. Palaios 25:269–273

    Article  Google Scholar 

  • Myint M (2001) Psilonichnus quietis isp. nov. from the Eocene Iwaki Formation, Shiramizu Group, Joban Coal Field, Japan. Ichnos 8:1–14

    Article  Google Scholar 

  • Myrow PM (1995) Thalassinoides and the enigma of Early Paleozoic open-framework burrow systems. Palaios 10:58–74

    Article  Google Scholar 

  • Nara M (1995) Rosselia socialis: a dwelling structure of a probable terebellid polychaete. Lethaia 28:171–178

    Article  Google Scholar 

  • Nara M (1997) High-resolution analytical method for event sedimentation using Rosselia socialis. Palaios 12:489–494

    Article  Google Scholar 

  • Nara M (2002) Crowded Rosselia socialis in Pleistocene inner shelf deposits: benthic paleoecology during rapid sea-level rise. Palaios 17:268–276

    Article  Google Scholar 

  • Nara M, Kondo Y (2012) The trace fossil Scalichnus phiale in Pleistocene shallow marine deposits of the Boso Peninsula, Japan. The Palaeontol Soc of Jpn 92:1–2

    Google Scholar 

  • Neenan JM, Klein N, Scheyer TM (2013) European origin for sauropterygian marine reptiles and the evolution of placodont crushing dentition. Nature Comm 4:1621

    Article  CAS  Google Scholar 

  • Nesbitt EA (2006) Fossil pantries: crustacean debris storage chamber in Late Cenozoic estuarine sands. GSA. Abstracts with Programs 38:435

    Google Scholar 

  • Nesbitt EA, Campbell KA (2002) A new Psilonichnus ichnospecies attributed to mud-shrimp Upogebia in estuarine settings. J Paleontol 76:892–901

    Google Scholar 

  • Nesbitt EA, Campbell KA (2006) The environmental significance of Psilonichnus. Palaios 21:187–196

    Article  Google Scholar 

  • Neto de Carvalho C, Rodrigues NPC (2007) Compound Asterosoma ludwigae Schlirf, 2000 from the Jurassic of the Lusitanian Basin (Portugal): conditional strategies in the behaviour of Crustacea. J Iberian Geol 33:295–310

    Google Scholar 

  • Neto de Carvalho C, Rodrigues NP, Viegas PA, Baucon A, Santos VF (2010) Patterns of occurrence and distribution of crustacean ichnofossils in the Lower Jurassic–Upper Cretaceous of Atlantic occidental margin basins, Portugal. Acta Geol Pol 60:19–28

    Google Scholar 

  • Netto RG (1994) A paleoicnologia como ferramenta de trabalho na seqüência sedimentar Rio Bonito/Palermo. Doctorate Thesis, Porto Alegre, Universidade Federal do rio Grande do Sul

    Google Scholar 

  • Netto RG (2000) Paleoicnologia do Rio Grande do Sul. In: Holz M, De Ros LF (eds) A paleontologia do Rio Grande do Sul., CIGO/UFRGS

    Google Scholar 

  • Netto RG (2007) Skolithos-dominated piperock in non-marine environments: An example from the Triassic Caturrita Formation, southern Brazil. In: Bromley RG, Buatois LA, Mángano MG, Genise JF, Melchor RN (eds) Sediment–Organism Interactions: A Multifaceted Ichnology, SEPM Spec P 88:109–121

    Google Scholar 

  • Netto RG, Grangeiro ME (2009) Neoichnology of the seaward side of Peixe Lagoon in Mostardas, southernmost Brazil: the Psilonichnus ichnocoenosis revisited. Rev Bras Paleontol 12:211–224

    Article  Google Scholar 

  • Netto RG, Buatois LA, Mángano MG, Balistieri P (2007) Gyrolithes as a multipurpose burrow: an ethologic approach. Rev Bras Paleontol 10:157–168

    Article  Google Scholar 

  • Nielsen KSS, Nielsen JK (2001) Bioerosion in Pliocene to Late Holocene tests of benthic and planktonic foraminiferans, with a revision of the ichnogenera Oichnus and Tremichnus. Ichnos 8:99–116

    Article  Google Scholar 

  • Nielsen JK, Hansen KS, Simonsen L (1996) Sedimentology and ichnology of the Robbedale Formation (Lower Cretaceous), Bornholm, Denmark. B Geol Soc Denmark 43:115–131

    Google Scholar 

  • O’Dea A, Jackson JBC, Fortunato H, Smith JT, D’Croz L, Johnson KG, Todd JA (2007) Environmental change preceded Caribbean extinction by 2 million years. Proc Natl Acad Sci U S A 104:5501–5506

    Article  CAS  Google Scholar 

  • Oji T, Ogaya C, Sato T (2003) Increase of shell-crushing predation recorded in fossil shell fragmentation. Paleobiology 29:520–526

    Article  Google Scholar 

  • Olivero D (2003) Early Jurassic to Late Cretaceous evolution of Zoophycos in the French Subalpine Basin (southeastern France). Palaeogeogr Palaeoclimatol Palaeoecol 192:59–78

    Article  Google Scholar 

  • Olivero D, Gaillard C (1996) Paleoecology of Jurassic Zoophycos from south-eastern France. Ichnos 4:249–260

    Article  Google Scholar 

  • Olivero D, Gaillard C (2007) A constructional model for Zoophycos. In: Miller W III (ed) Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam

    Google Scholar 

  • Olivero EB, López-Cabrera MI (2005) Patagonichnus: a new trace fossil from the Miocene of Patagonia. A probable fodinichnion of gregarious polychaetes. Ameghiniana 42:277–294

    Google Scholar 

  • Olivero EB, López-Cabrera MI (2013) Euflabella n. igen.: complex horizontal spreite burrows in Upper Cretaceous–Paleogene shallow-marine sandstones of Antarctica and Tierra del Fuego. J Paleontol 87:413–413

    Article  Google Scholar 

  • Olivero EB, López-Cabrera MI (2014) Coupled paleogeographic patterns in Late Cretaceous, shallow-marine body and trace fossils from Antarctica. 4th International Palaeontological Congress, Mendoza, Argentina, Abstract Volume, p. 226.

    Google Scholar 

  • Olivero EB, Buatois LA, Scasso RA (2004) Paradictyodora antarctica: a new complex vertical spreite trace fossil from the Upper Cretaceous–Paleogene of Antarctica and Tierra del Fuego, Argentina. J Paleontol 78:783–789

    Article  Google Scholar 

  • Olivero EB, Torres P, López MI, Buatois LA (2008) Variaciones faciales y arquitecturas complejas en depósitos marinos someros de la Formación Leticia, Eoceno, Andes Fueguinos. XII Reunión Argentina de Sedimentología Abstract Book

    Google Scholar 

  • Olóriz F, Rodriguez-Tovar FJ (2002) Trace-fossils and minor discontinuities in a marl limestone rhythmite, Lower–Middle Kimmeridgian, southern Spain. Geobios 35:581–593

    Article  Google Scholar 

  • Olszewski TD, Patzkowsky ME (2001) Measuring recurrence of marine biotic gradients: A case study from the Pennsylvanian-Permian midcontinent. Palaios 16:444–460

    Article  Google Scholar 

  • Osinga R, Kop AJ, Malschaert JFP, Van Duyl FC (1997) Effects of the sea urchin Echinocardium cordatum on bacterial production and carbon flow in experimental benthic systems under increasing organic loading. J Sea Res 37:109–121

    Article  Google Scholar 

  • Pagani MA, Manceñido MO, Damborenea SE, Ferrari SM (2012) The ichnogenus Lapispira from the Early Jurassic of Patagonia (Chubut, Argentina). Rev Paléobiologie 11:409–416

    Google Scholar 

  • Parma SG (2008) Echinodermata. In: Camacho HH, Longobucco ML (eds) Los invertebrados fósiles. 1st Edition. Fundación de Historia Natural Félix de Azara: Universidad Maimónides

    Google Scholar 

  • Patel SJ, Desai BG, Vaidya AD, Shukla R (2008) Middle Jurassic trace fossils from Habo Dome, Mainland Kachchh, Western India. J Geol Soc India 71:345–362

    Google Scholar 

  • Patel SJ, Joseph JK, Bhatt NY (2014) Ichnology of the Goradongar Formation, Goradongar hill range, Patcham Island, Kachchh, Western India. J Geol Soc India 84:129–154

    Article  CAS  Google Scholar 

  • Pazos PJ, Fernández DE (2010) Three-dimensionally integrated trace fossils from shallow-marine deposits in the Lower Cretaceous of the Neuquén Basin (Argentina): Hillichnus agrioensis isp. nov. Acta Geol Pol 60:105–118

    Google Scholar 

  • Pearson NJ, Mángano MG, Buatois LA, Casadío S, Raising MR (2013) Environmental variability of Macaronichnus ichnofabrics in Eocene tidal-embayment deposits of southern Patagonia, Argentina. Lethaia 46:341–354

    Article  Google Scholar 

  • Pemberton SG, Frey RW (1982) Trace fossil nomenclature and the Planolites-Palaeophycus dilemma. J Paleontol 56:843–881

    Google Scholar 

  • Pemberton SG, Frey RW (1985) The Glossifungites ichnofacies: Modern examples from the Georgia Coast, USA. In: Curran HA (ed) Biogenic structures: Their use in interpreting depositional environments. SEPM Spec P 35:237–259

    Google Scholar 

  • Pemberton SG, Jones B (1988) Ichnology of the pleistocene ironshore formation, Grand Cayman Island, British West Indies. J Paleontol 62:495–505

    Article  Google Scholar 

  • Pemberton SG, MacEachern JA (1997) The ichnological signature of storm deposits: the use of trace fossils in event stratigraphy. In: Brett CE (ed) Paleontological event horizons: ecological and evolutionary implications. Columbia University Press, New York

    Google Scholar 

  • Pemberton SG, Wightman DM (1992) Ichnological characteristics of brackish water deposits. In: Pemberton SG (ed) Applications of Ichnology to Petroleum Exploration: A Core Workshop. SEPM Core W 17

    Google Scholar 

  • Pemberton SG, Reinson GE, MacEachern JA (1992) Comparative ichnological analysis of late Albian estuarine valley-fill and shelf-shoreface deposits, Crystal Viking field, Alberta. In: Pemberton SG (ed) Applications of ichnology to petroleum exploration, a core workshop: SEPM Core W 17

    Google Scholar 

  • Pemberton SG, Spilla, M, Pulham AJ, Saunders T, MacEachern JA, Robbins D, Sinclair IK (2001) Ichnology and Sedimentology of shallow to marginal marine systems: Ben Nevis and Avalon Reservoirs, Jeanne d’Arc Basin. Geol Assoc of Canada Short Course 15

    Google Scholar 

  • Pérez-López A (1997) Estudio de la ichnofauna del Muschelkalk de la zona Subbetica y su relación con las facies sedimentarias. Rev Soc Geol España 10:393–403

    Google Scholar 

  • Perry CT, Bertling M (2000) Temporal and spatial patterns of coral reef macroboring since the Mesozoic. In: Insalaco E, Skelton P, Palmer T (eds) Carbonate platform systems: components and interactions. Geol Soc Spec P 178

    Google Scholar 

  • Pervesler P, Uchman A (2009) A new Y−shaped trace fossil attributed to upogebiid crustaceans from Early Pleistocene of Italy. Acta Palaeontol Pol 54:135–142

    Article  Google Scholar 

  • Pervesler P, Zuschin M (2004) A lucinoid bivalve trace fossil Saronichnus abeli igen. et isp. nov. from the Miocene molasses deposits of Lower Austria, and its environmental significance. Geol Carpath 55:111–115

    Google Scholar 

  • Pervesler P, Roetzel R, Uchman A (2011) Ichnology of shallow sublittoral siliciclastics of the Burgschleinitz Formation (Lower Miocene, Eggenburgian) in the Alpine-Carpathian Foredeep (NE Austria). Austrian J Earth Sci 104(1):81–96

    Google Scholar 

  • Pether J (1995) Belichnus new ichnogenus, a ballistic trace on mollusc shells from the Holocene of the Benguela region, South Africa. J Paleontol 69:171–181

    Article  Google Scholar 

  • Pickerill RK, Donovan SK (1998) Ichnology of the Pliocene Bowden shell bed, southeast Jamaica. Contrib Tert Quat Geol 35:161–175

    Google Scholar 

  • Pickerill RK, Keighley DG, Donovan SK (1996) Ichnology of the Pliocene Bowden Formation of Southeastern Jamaica. Caribbean J Sci 32:221–232

    Google Scholar 

  • Pickerill RK, Mitchell SF, Donovan SK, Keighley DG (1998) Sedimentology and palaeoenvironment of the Pliocene Bowden Formation, southeast Jamaica. Contrib Tert Quat Geol 35:9–29

    Google Scholar 

  • Pickerill RK, Donovan SK, Portell RW (2001) The bioerosional ichnofossil Petroxestes pera Wilson and Palmer from the middle Miocene of Carriacou, Lesser Antilles. Caribbean J Sci 37:130–131

    Google Scholar 

  • Pieńkowski G, Uchman A (2009) Ptychoplasma conica isp. n.—a new bivalve locomotion trace fossil from the Lower Jurassic (Hettangian) alluvial sediments of Sołtyków, Holy Cross Mountains, Poland. Geol Quart 53:397–406

    Google Scholar 

  • Pineda-Salgado G, Quiroz-Barroso SA, Sour-Tovar F (2015) Analysis of bioerosion in clasts from a Miocene rocky-shore, Concepción Formation, Veracruz, México. Palaeogeogr Palaeoclim Palaeoecol 439:50–62

    Article  Google Scholar 

  • Pirrie D, Feldmann RM, Buatois LA (2004) A New Decapod Trackway from the upper cretaceous, James Ross Island, Antarctica. Palaeontology 47:1–12

    Article  Google Scholar 

  • Plaziat J-C, Mahmoudi M (1988) Trace fossils attributed to burrowing echinoids: A revision including new ichnogenus and ichnospecies. Geobios 21:209–233

    Article  Google Scholar 

  • Plička M, Uhrová J (1990) New trace fossils from the Outer Carpathian flysch (Czechoslovakia). Acta Mus Morav, Sci Nat 75:53–59

    Google Scholar 

  • Pollard JE, Goldring R, Buck SG (1993) Ichnofabrics containing Ophiomorpha: significance in shallow-water facies interpretation. J Geol Soc London 150:149–164

    Article  Google Scholar 

  • Poschmann M (2015) The corkscrew-shaped trace fossil Helicodromites Berger, 1957, from Rhenish Lower Devonian shallow-marine facies (Upper Emsian; SW Germany). Paläontol Zeitschr 89:635–643

    Article  Google Scholar 

  • Powell JH (1992) Gyrochorte burrows from the Scarborough Formation (Middle Jurassic) of the Cleveland Basin, and their sedimentological setting. Proc Yorkshire Geol Soc 49:41–47

    Article  Google Scholar 

  • Quiroz LI, Buatois LA, Mángano MG, Jaramillo CA, Santiago N (2010) Is the trace fossil Macaronichnus an indicator of temperate to cold waters? Exploring the paradox of its occurrence in tropical coasts. Geology 38:651–654

    Article  CAS  Google Scholar 

  • Radley JD (2010) Grazing bioerosion in Jurassic seas: a neglected factor in the Mesozoic marine revolution? Hist Biol 22:387–393

    Article  Google Scholar 

  • Radwański A (1970) Dependence of rock-borers and burrowers on the environmental conditions within the Tortonian littoral zone of southern Poland. In: Crimes TP, Harper JC (eds) Trace Fossils. Geol J Spec Issue 3. Seel House Press, Liverpool

    Google Scholar 

  • Radwański A (1977) Present-day types of trace in the Neogene sequence; their problems of nomenclature and preservation. In: Crimes TP, Harper JC (eds) Trace Fossils 2. Geol J Spec Issue 9, Seel House Press

    Google Scholar 

  • Rice ME (1969) Possible boring structures of sipunculids. Am Zool 9:803–812

    Article  Google Scholar 

  • Rindsberg AK (1994) Ichnology of the Upper Mississippian Hartselle Sandstone of Alabama, with notes on other Carboniferous formations. Geol Survey Alabama Bull 158:1–107

    Google Scholar 

  • Rodrigues J, Gutschick RC (1970) Late Devonian-Early Mississippian ichnofossils from westem Montana and northern Utah. In: Crimes TP, Harper JC (eds) Trace fossils. Geol J Spec Issue 3. Seel House Pres, Liverpool

    Google Scholar 

  • Rodrigues NPC, Gil Cid MD, Arroyo F, Huineman M, Lara R, Torices A (2005) Arachnostega gastrochaenae Bertling, 1992 en fósiles del Dobrotiviense (Ordovícico Medio) de los Montes de Toledo (SO de España). Rev Esp Paleontol 20:57–64

    Google Scholar 

  • Rodríguez MF, Panza JL (2003) La icnofacies de Glossifungites en la Formación Salamanca, Paleoceno, paraje Campamento Villegas, Chubut, Argentina. Asoc Paleontol Arg Pub Esp 9

    Google Scholar 

  • Rodríguez-Tovar FJ, Uchman A, Martín-Algarra A (2009a) Oceanic anoxic event at the Cenomanian–Turonian boundary interval (OAE-2): Ichnological approach from the Betic Cordillera, southern Spain. Lethaia 42:407–417

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Uchman A, Martín-Algarra A, O’Dogherty L (2009b) Nutrient spatial variation during intrabasinal upwelling at the Cenomanian–Turonian oceanic anoxic event in the westernmost Tethys: An ichnological and facies approach. Sediment Geol 215:83–93

    Article  CAS  Google Scholar 

  • Rodríguez-Tovar FJ, Buatois LA, Piñuela L, Mángano MG, García-Ramos JC (2012) Palaeoenvironmental and functional interpretation of Rhizocorallium jenense spinosus (ichnosubsp. nov.) from the lower Jurassic of Asturias, northern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 339–341:114–120

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Stachacz M, Uchman A, Reolid M (2014) Lower/Middle Ordovician (Arenigian) shallow-marine trace fossils of the Pochico Formation, southern Spain: palaeoenvironmental and palaeogeographic implications at the Gondwanan and peri-Gondwanan realm. J Iber Geol 40:539–555

    Article  Google Scholar 

  • Roniewicz P (1970) Borings and burrows in the Eocene littoral deposits of the Tatra Mountains, Poland. In: Crimes TP, Harper JC (eds) Trace fossils. Geol J Spec Issue 3. Seel House Press, Liverpool

    Google Scholar 

  • Rosso A (2008) Leptichnus tortus isp. nov., a new cheilostome etching and comments on other bryozoan-produced trace fossils. Studi Trent Sci Nat Acta Geol 83:75–85

    Google Scholar 

  • Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate Zoology: a functional evolutionary approach, 7th edn. Thomson, USA

    Google Scholar 

  • Santos A, Mayoral E, Muñiz F, Boski T, Cachao M (2003a) Variaciones morfológicas en Maeandropolydora sulcans Voigt, 1965, del Néogeno Superior marino del extremo suroccidental de la península Ibérica. Asoc Paleontol Arg Pub Esp 9

    Google Scholar 

  • Santos A, Mayoral E, Muñiz F, Bajo I, Adriaenses O (2003a) Bioerosión en erizos irregulares (Clypeasteroidea) del Mioceno superior en el sector suroccidental de la cuenca del Guadalquivir (Provincia de Sevilla). Rev Esp Paleontol 18:131–141

    Google Scholar 

  • Santos A, Mayoral E, Muñiz F (2005) Bioerosion scars of acorn barnacles from the southwestern Iberian Peninsula, upper Neogene. Riv Ital Paleontol S 111:181–189

    Google Scholar 

  • Santos A, Mayoral E, Bromley RG (2011) Bioerosive structures from Miocene marine mobile-substrate communities in southern Spain, and description of a new sponge boring. Palaeontology 54:535–545

    Article  Google Scholar 

  • Santos A, Mayoral E, Dumont CP, da Silva CM, Ávila SP, Baarli BG, Cachão M, Johnson ME, Ramalho RS (2015) Role of environmental change in rock-boring echinoid trace fossils. Palaeogeogr Palaeoclimatol Palaeoecol 432:1–14

    Article  Google Scholar 

  • Saunders TDA, MacEachern JA, Pemberton SG (1994) Cadotte Member sandstone: Progradation in a boreal basin prone to winter storms. In: Pemberton SG, James DP, Wightman DM (eds) CSPG Mannville Core Conference. Can Soc Petrol Geol, Exploration Update

    Google Scholar 

  • Savrda CE (2012) Chalk and related deep-marine carbonates. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Develop in Sedim 64. Elsevier, Amsterdam

    Google Scholar 

  • Savrda CE (2014) Limited ichnologic fidelity and temporal resolution in pelagic sediments: Paleoenvironmental and paleoecologic implications. Palaios 29:210–217

    Article  Google Scholar 

  • Savrda CE, Bottjer DJ (1986) Trace fossil model for reconstruction of paleo-oxygenation in bottom waters. Geology 14:3–6

    Article  CAS  Google Scholar 

  • Savrda CE, Bottjer DJ (1987) Trace fossils as indicators of bottom-water redox conditions in ancient marine environments. In: Bottjer DJ (ed) New Concepts in the Use of Biogenic Sedimentary Structures for Paleoenvironmental Interpretation. Soc Sed Geol Pacific Section. Volume and Guidebook 52

    Google Scholar 

  • Savrda CE, Bottjer DJ (1989) Anatomy and implications of bioturbated beds in” black shale” sequences: Examples from the Jurassic Posidonienschiefer (southern Germany). Palaios 4:330–342

    Google Scholar 

  • Savrda CE, Bottjer DJ (1991) Oxygen-related biofacies in marine strata: An overview and update. In: Tyson RV, Pearson TH (eds) Modern and Ancient Continental Shelf Anoxia. Geol Soc Spec P 58:201–219

    Google Scholar 

  • Savrda CE, Ozalas K (1993) Preservation of mixed-layer ichnofabrics in oxygenation-event beds. Palaios 8:609–613

    Google Scholar 

  • Savrda CE, King DT Jr (1993) Log-ground and Teredolites largerstatte in a transgressive sequence, Upper Cretaceous (Lower Campanian) Mooreville Chalk, central Alabama. Ichnos 3:69–77

    Article  Google Scholar 

  • Schäfer W (1962) Aktuo-Paläontologie nach Studien in der Nordsee. Waldemar Kramer, Frankfurt am Main

    Google Scholar 

  • Schäfer W (1972) Ecology and palaeoecology of marine environments. University of Chicago Press, Chicago

    Google Scholar 

  • Schatz ER, Mángano MG, Aitken AE, Buatois LA (2013) Response of benthos to stress factors in Holocene Arctic fjord settings: Maktak, Coronation, and North Pangnirtung Fjords, Baffin Island, Canada. Paleogeogr Palaeoclimatol Palaeoecol 386:652–668

    Article  Google Scholar 

  • Schlirf M (2000) Upper Jurassic trace fossils from the Boulonnais (northern France). Geol et Palaeontol 34:145–213

    Google Scholar 

  • Schlirf M (2003) Palaeoecologic significance of Late Jurassic trace fossils from the Boulonnais, N France. Acta Geol Pol 53:123–142

    Google Scholar 

  • Schlirf M (2012) Heliophycus seilacheri n. isp. and Biformites insolitus Linck, 1949 (trace fossils) from the Late Triassic of the Germanic Basin: their taxonomy and palaeoecological relevance. Neues Jahrb Geol Paläontol, Abh 263:185–198

    Article  Google Scholar 

  • Schlirf M, Uchman A (2005) Revision of the ichnogenus Sabellarifex Richter, 1921 and its relationship to Skolithos Haldeman, 1840 and Polykladichnus Fursich, 1981. J Syst Palaeontol 3:115–131

    Article  Google Scholar 

  • Schmidt H (1992) Mikrobohrspuren ausgewählter Faziesbereiche der tethyalen und germanischen Trias (Beschreibung, Vergleich und bathymetrische Interpretation). Frankf Geowiss Arb 12:1–228

    Google Scholar 

  • Schneider CL (2008) The importance of echinoids in Late Paleozoic ecosystems. In: Ausich WI, Webster GD (eds) Echinoderm paleobiology. Indiana University Press, Bloomington

    Google Scholar 

  • Scholle PA, Arthur MA, Ekdale AA (1983) Pelagic environment. In: Scholle PA, Bebout DC, Moore CH (eds) Carbonate depositional environments. AAPG Mem 33

    Google Scholar 

  • Schuster F (1996) Paleoecology of Paleocene and Eocene corals from the Kharga and Farafra oases (western Desert, Egypt) and the depositional history of the Paleocene Abu Tartur carbonate platform, Kharga oasis. Tübinger Geowissenschaftliche Arbeiten 31

    Google Scholar 

  • Schwarz E, Buatois LA (2012) Substrate-controlled ichnofacies along a marine sequence boundary: The Intra-Valanginian Discontinuity in central Neuquén Basin (Argentina). Sediment Geol 277–278:72–87

    Article  Google Scholar 

  • Schweitzer CE (2001) Paleobiogeography of Cretaceous and Tertiary decapod crustaceans of the North Pacific Ocean. J Paleontol 75:808–826

    Article  Google Scholar 

  • Schweitzer CE, Feldmann RM (2010) The Decapoda (Crustacean) as predators on Mollusca through geologic time. Palaios 25:167–182

    Article  Google Scholar 

  • Schweitzer CE, Feldmann RM (2015) Faunal turnover and niche stability in marine Decapoda in the Phanerozoic. J Crust Biol 35:633–649

    Article  Google Scholar 

  • Seike K (2009) Influence of beach morphodynamics on the distribution of the opheliid polychaete Euzonus sp. and its feeding burrows on a sandy beach: paleoecological and paleoenvironmental implications for the trace fossil Macaronichnus segregatis. Palaios 24:799–808

    Article  Google Scholar 

  • Seike K, Curran HA (2014) Burrow morphology of the land crab Gecarcinus lateralis and the ghost crab Ocypode quadrata on San Salvador Island, The Bahamas: Comparisons and palaeoenvironmental implications. Spanish J Palaeontol 29:61–70

    Google Scholar 

  • Seilacher A (1953) Studien zur Palichnologie. II. Die fossilen Ruhespuren (Cubichnia). Neues Jahrb Geol Palaeontol, Abh 98:87–124

    Google Scholar 

  • Seilacher A (1955) Spuren und Fazies im Unterkambrium. In: Schindewolf OH, Seilacher A (eds) Beiträge zur Kenntnis des Kambriums in der Salt Range (Pakistan). Akad Wiss LitMainz, math-naturwiss Kl, Abh 10: 373–399

    Google Scholar 

  • Seilacher A (1969) Paleoecology of boring barnacles. Am Zool 9:705–719

    Article  Google Scholar 

  • Seilacher A (1977) Evolution of trace fossil communities. In: Hallam A (ed) Patterns of evolution as illustrated by the fossil record Develop in Palaeontol and Stratigr 5. Elsevier, Amsterdam

    Google Scholar 

  • Seilacher A (1983) Upper Paleozoic trace fossils from the Gilf Kebir-Abur Ras area in southwestern Egypt. J Afr Earth Sci 1:21–34

    Google Scholar 

  • Seilacher A (1986) Evolution of behavior as expressed in marine trace fossils. In: Kitchell JA, Nitecki MH (eds) Evolution of animal behavior: Paleontological and field approaches. Oxford University Press, New York

    Google Scholar 

  • Seilacher A (1990a) Aberrations in bivalve evolution related to photo- and chemosymbiosis. Hist Biol 3:289–311

    Article  Google Scholar 

  • Seilacher A (1990b) Paleozoic trace fossils. In: Said R (ed) The Geology of Egypt. A.A. Balkema, Rotterdam

    Google Scholar 

  • Seilacher A (1998) Rudists as bivalvian dinosaurs. In: Johnston PA Haggart JW (eds) Bivalves: an Eon of evolution. Paleobiological studies honoring Norman D. Newell. University of Calgary Press

    Google Scholar 

  • Seilacher A (2007) Trace fossil analysis. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Seilacher A, Seilacher E (1994) Bivalvian trace fossils: A lesson from Actuopaleontology. Cour Forsch-Inst Senckenberg 169:5–15

    Google Scholar 

  • Sengupta S, Nielsen JK (2009) Bioerosion in middle Eocene larger Foraminifera Nummulites obtusus (Sowerby) from Lakhpat, northwest Kutch, Gujarat, India. Indian J Geosci 63:81–86

    Google Scholar 

  • Sepkoski JJ Jr (1981) A factor analytic description of the marine fossil record. Paleobiology 7:36–53

    Article  Google Scholar 

  • Sepkoski JJ Jr (1991) A Model of onshore-offshore change in faunal diversity. Paleobiology 17:58–77

    Article  Google Scholar 

  • Sepkoski JJ Jr, Miller AI (1985) Evolutionary faunas and the distribution of Paleozoic benthic communities is space and time. In: Valentine JW (ed) Phanerozoic diversity patterns: profiles in macroevolution. Princeton University Press, Princeton

    Google Scholar 

  • Sepkoski JJ Jr, Sheehan PM (1983) Diversification, faunal change, and community replacement during the Ordovician radiations. In: Tevesz MJS, McCall LL (eds) Biotic interactions in recent and fossil benthic communities. Plenum, New York

    Google Scholar 

  • Serpagli E, Serventi P, Monegatti P (2008) The ichnofossil genus Paradictyodora Olivero, Buatois and Scasso (2004) from the Pliocene of the northern Apennines, Italy. Riv Ital Paleontol S 114:161–167

    Google Scholar 

  • Sheehan PM (2001) History of marine biodiversity. Geol J 36:231–249

    Article  Google Scholar 

  • Shelley DC, Lawton TF (2005) Sequence stratigraphy of tidally influenced deposits in a salt-withdrawal minibasin: Upper sandstone member of the Potrerillos Formation (Paleocene), La Popa basin, Mexico. AAPG Bull 89:1157–1179

    Article  Google Scholar 

  • Signor PW III, Brett CE (1984) The mid Paleozoic precursor to the Mesozoic marine revolution. Paleobiology 10:222–236

    Article  Google Scholar 

  • Šimo V, Tomašových A (2013) Trace-fossil assemblages with a new ichnogenus in “spotted” (Fleckenmergel-Fleckenkalk) deposits: a signature of oxygen-limited benthic communities. Geol Carpat 64:355–374

    Article  CAS  Google Scholar 

  • Singh RH, Rodríguez-Tovar FJ, Ibotombi S (2008) Trace fossils of the upper eocene–lower oligocene transition of the Manipur, Indo-Myanmar Ranges (Northeast India). Turkish J Earth Sci 17:821–834

    Google Scholar 

  • Singh MC, Kundal P, Kushwaha RAS (2010) Ichnology of Bhuban and Boka Bil Formations, oligocene-miocene deposits of Manipur Western Hill, Northeast India. J Geol Soc India 76:573–586

    Article  CAS  Google Scholar 

  • Smilek KR, Hembree DI (2012) Neoichnology of the holothurian Thyonella gemmata. Open Paleontol J 4:1–10

    Article  Google Scholar 

  • Smith AB (1984) Echinoid palaeobiology (Special Topics in Palaeontology, 1). Allen and Unwin, London

    Google Scholar 

  • Smith AB (2005) Growth and form in echinoids: The evolutionary interplay of plate accretion and plate addition. In: Briggs DEG (ed) Evolving form and function: Fossils and development. Proceedings of a Symposium Honoring Adolf Seilacher for his Contributions to Paleontology, in celebration of his 80th Birthday. New Haven: Peabody Museum of Natural History, Yale University

    Google Scholar 

  • Smith AB, Crimes TP (1983) Trace fossils formed by heart urchins. A study of Scolicia and related traces. Lethaia 16:76–92

    Article  Google Scholar 

  • Spalletti LA, Poiré D, Pirrie D, Matheos S, Doyle P (2001a) Respuesta sedimentológica a cambios en el nivel de base en una secuencia mixta clástica-carbonática del Cretácico de la cuenca Neuquina, Argentina. Rev Soc Geol Esp 14:57–74

    Google Scholar 

  • Spalletti LA, Poiré D, Schwarz E, Veiga G (2001b) Sedimentologic and sequence stratigraphic model of a Neocomian marine carbonate-siliciclastic ramp: Neuquén Basin, Argentina. J South Am Earth Sci 14:609–624

    Article  Google Scholar 

  • Sprinkle J, Kier PM (1987) Phylum Echinodermata. In: Boardman RS, Cheetham AH, Rowell AJ (eds) Fossil invertebrates. Blackwell Scientific, Palo Alto, CA

    Google Scholar 

  • Srivastava DK, Singh MP, Kulshrestha AK (2010) The trace fossil Dactyloidites Hall, 1886 from the Middle Jurassic Khadir Formation of Bela Island, Kachchh, India and its palaeoenvironmental significance. J Palaeontol Soc India 55:171–175

    Google Scholar 

  • Stafford E, Dietl G, Gingras G, Leighton L (2015) Caedichnus, a new ichnogenus representing predatory attack on the gastropod shell aperture. Ichnos 22:87–102

    Article  Google Scholar 

  • Stanistreet IG, Le Blanc SG, Cadle AB (1980) Trace fossils as sedimentological and palaeoenvironmental indices in the Ecca Group (Lower Permian) of the Taansvaal. T Geol Soc South Afr 83:333–344

    Google Scholar 

  • Stanley SM (1970) Relation of Shell Form to Life Habits of the Bivalvia (Mollusca). Geol Soc Am Mem 25:1–256

    Google Scholar 

  • Stanley SM (2014) Evolutionary radiation of shallow-water Lucinidae (Bivalvia with endosymbionts) as a result of the rise of seagrasses and mangroves. Geology 42:803–806

    Article  Google Scholar 

  • Stanley TM, Feldmann RM (1998) Significance of nearshore trace fossil assemblages of the Cambro-Ordovician Deadwood Formation and Aladdin Sandstone, South Dakota. Annals Carnegie Mus 67:1–51

    Google Scholar 

  • Stanley SM, Ries JB, Hardie LA (2005) Seawater chemistry, coccolithophore population growth, and the origin of Cretaceous chalk. Geology 33:593–596

    Article  CAS  Google Scholar 

  • Steneck RS (1983) Escalating herbivory and resulting adaptive trends in calcareous algae. Paleobiology 9:45–63

    Article  Google Scholar 

  • Sudan CS, Sahni AK, Sharma UK (2000) Trace fossils from the Jurassic sequence of Jaisalmer basin, Rajasthan. J Palaeontol Soc India 45:165–171

    Google Scholar 

  • Sutcliffe OE (1997) An ophiuroid trackway from the Lower Devonian Hunsrück Slate, Germany. Lethaia 30:33–39

    Article  Google Scholar 

  • Swen K, Fraaije RHB, van der Zwaan GJ (2001) Polymorphy and extinction of the Late Cretaceous burrowing shrimp Protocallianassa faujasi and first record of the genera Corallianassa and Calliax (Crustacea, Decapoda, Thalassinoidea) from the Cretaceous. Contrib Zool 70:85–98

    Google Scholar 

  • Tapanila L (2006) Devonian Entobia borings from Nevada, with a revision of Topsentopsis. J Paleo 80:760–767

    Article  Google Scholar 

  • Tapanila L (2008) The endolithic guild: an ecological framework for residential cavities in hard substrates. In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, Heidelberg

    Google Scholar 

  • Tapanila L, Cooper P (2002) Endolithic trace fossils in Ordovician-Silurian corals and stromatoporoids, Anticosti Island, eastern Canada. Acta Geol Hisp 37:15–20

    Google Scholar 

  • Tapanila L, Hutchings P (2012) Reefs and mounds. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Develop in Sedim 64

    Google Scholar 

  • Taylor AM, Gawthorpe RL (1993) Application of sequence stratigraphy and trace fossil analysis to reservoir description: examples from the Jurassic of the North Sea. In: Parker JR (ed) Petroleum Geology of Northwest Europe: Proc 4th Conf. Geological Society, London

    Google Scholar 

  • Taylor PD, Wilson MA (2003) Palaeoecology and evolution of marine hard substrate communities. Earth-Sci Rev 62:1–103

    Article  Google Scholar 

  • Taylor JD, Cleevely RJ, Morris NJ (1983) Predatory gastropods and their activities in the Blackdown Greensand (Albian) of England. Palaeontology 26:521–533

    Google Scholar 

  • Taylor PD, Wilson MA, Bromley RG (1999) A new ichnogenus for etchings made by cheilostome bryozoans into calcareous substrates. Palaeontology 42:595–604

    Article  Google Scholar 

  • Taylor PD, Wilson MA, Bromley RG (2013) Finichnus, a new name for the ichnogenus Leptichnus Taylor, Wilson and Bromley, 1999, preoccupied by Leptichnus Simroth, 1896 (Mollusca, Gastropoda). Palaeontology 56:456–456

    Article  Google Scholar 

  • Taylor TN, Krings M, Taylor EL (2015) Fossil fungi. Elsevier, Amsterdam

    Google Scholar 

  • Tchoumatchenco P, Uchman A (2001) The oldest deep-sea Ophiomorpha and Scolicia and associated trace fossils from the Upper Jurassic–Lower Cretaceous deep-water turbidite deposits of SW Bulgaria. Palaeogeogr Palaeoclimatol, Palaeoecol 169:85–99

    Article  Google Scholar 

  • Thayer CW (1979) Biological bulldozers and the evolution of marine benthic communities. Science 203:458–461

    Article  CAS  Google Scholar 

  • Thayer CW (1983) Sediment-mediated biological disturbance and the evolution of the marine benthos. In: Tevesz MJS, McCall PL (eds) Biotic interactions in recent and fossil benthic communities. Plenum, Zeitschr

    Google Scholar 

  • Thompson I (1979) Errant polychaetes (Annelida) from the Pennsylvanian Essex Fauna of Northern Illinois. Palaeontographica A 163:169–199

    Google Scholar 

  • Ting H-H, Huang C-Y, Wu L-C (1991) Paleoenvironments of the Late Neogene sequences along the Nantzuhsien River, Southern Taiwan. Petrol Geol of Taiwan 26:121–149

    Google Scholar 

  • Trueman ER (1966) Bivalve molluscs: fluid dynamics of burrowing. Science 152:523–525

    Article  CAS  Google Scholar 

  • Trueman ER (1975) The locomotion of soft-bodied Animals. Edward Arnold, London

    Google Scholar 

  • Twitchett RJ, Barras CG (2004) Trace fossils in the aftermath of mass extinction events. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geol Soc Spec P 228

    Google Scholar 

  • Uchman A (1995) Taxonomy and paleoecology of flysch trace fossils: The Marnoso-arenacea Formation and associated facies (Miocene, Northern Apennines, Italy). Beringeria 15:1–115

    Google Scholar 

  • Uchman A (1998) Taxonomy and ethology of flysch trace fossils: revision of the Marian Ksiazkiewicz collection and studies of complementary material. Ann Soc Geol Poloniae 68:105–218

    Google Scholar 

  • Uchman A (2003) Trends in diversity, frequency and complexity of graphoglyptid trace fossils: evolutionary and palaeoenvironmental aspects. Palaeogeogr Palaeoclimatol, Palaeoecol 192:123–142

    Article  Google Scholar 

  • Uchman A (2004) Phanerozoic history of deep-sea trace fossils. In: McIlroy D (ed) The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geol Soc Spec P 228

    Google Scholar 

  • Uchman A (2009) The Ophiomorpha rudis ichnosubfacies of the Nereites ichnofacies: characteristics and constraints. Palaeogeogr Palaeoclimatol, Palaeoecol 276:107–119

    Article  Google Scholar 

  • Uchman A, Gaździcki A (2006) New trace fossils from the La Meseta Formation (Eocene) of Seymour Island, Antarctica. Polish Polar Res 27:153–170

    Google Scholar 

  • Uchman A, Krenmayr HG (1995) Trace fossils from the Lower Miocene (Ottnangian) molasse deposits of Upper Austria. Paläontol Zeitschr 69(3/4):503–524

    Google Scholar 

  • Uchman A, Krenmayr HG (2004) Trace fossils, ichnofabrics and sedimentary facies in the shallow marine Lower Miocene molasse of Upper Austria. Jahrb Geol Bundesanst 144:233–251

    Google Scholar 

  • Uchman A, Pervesler P (2007) Palaeobiological and palaeonvironmental significance of the Pliocene trace fossil Dactyloidites peniculus. Acta Palaeontol Pol 52:799–808

    Google Scholar 

  • Uchman A, Mikuláš R, Housa V (2003) The trace fossil Chondrites in uppermost Jurassic-Lower Cretaceous deep cavity fills from the western Carpathians (Czech Republic). Geol Carpathica 54:181–187

    Google Scholar 

  • Uchman A, Bąk K, Rodríguez-Tovar FJ (2008) Ichnological record of deep-sea palaeoenvironmental changes around the Oceanic Anoxic Event 2 (Cenomanian–Turonian boundary): An example from the Barnasiówka section, Polish Outer Carpathians. Palaeogeogr Palaeoclimatol, Palaeoecol 262:61–71

    Article  Google Scholar 

  • Uchman A, Mikulas R, Rindsberg AK (2011) Mollusc trace fossils Ptychoplasma Fenton and Fenton, 1937 and Oravaichnium Plička and Uhrová, 1990: Their type material and ichnospecies. Geobios 44:387–397

    Article  Google Scholar 

  • Uchman A, Rodríguez-Tovar FJ, Machaniec E, Kędzierski M (2013) Ichnological characteristics of Late Cretaceous hemipelagic and pelagic sediments in a submarine high around the OAE-2 event: A case from the Rybie section, Polish Carpathians. Palaeogeogr Palaeoclimatol, Palaeoecol 370:222–231

    Article  Google Scholar 

  • Van Hinte JE, Wise SW et al (1987) Initial Reports of the Deep Sea Drilling Project, 95. U.S. Government Printing Office, Washington

    Google Scholar 

  • Vannier J, Calandra I, Gaillard C, Żylińska A (2010) Priapulid worms: pioneer horizontal burrowers at the Precambrian-Cambrian boundary. Geology 38:711–714

    Article  Google Scholar 

  • Verde M, Martinez S (2004) A new ichnogenus for crustacean trace fossils from the Upper Miocene Camacho Formation of Uruguay. Palaeontology 47:39–49

    Article  Google Scholar 

  • Vermeij GJ (1977) The Mesozoic Marine Revolution: Evidence from snails, predators and grazers. Paleobiology 3:245–258

    Article  Google Scholar 

  • Vermeij GJ (1978) Biogeography and adaptation: patterns of marine life. Harvard University Press, Cambridge

    Google Scholar 

  • Vermeij GJ (1982) Unsuccessful predation and evolution. Am Nat 120:701–720

    Article  Google Scholar 

  • Vermeij GJ (1987) Evolution and escalation: an ecological history of life. Princeton University Press, Princeton

    Google Scholar 

  • Vermeij GJ (2008) Escalation and its role in Jurassic biotic history. Palaeogeogr Palaeoclimatol, Palaeoecol 263:3–8

    Article  Google Scholar 

  • Vermeij GJ, Schindel DE, Zipser E (1981) Predation through geological time: evidence from gastropod shell repair. Science 214:1024–1026

    Article  CAS  Google Scholar 

  • Villegas-Martín J, de Gibert JM, Rojas-Consuegra R, Belaústegui Z (2012) Jurassic Teredolites from Cuba: New trace fossil evidence of early wood-boring behavior in bivalves. J S Am Earth Sci 38:123–128

    Article  Google Scholar 

  • Villegas-Martín J, Netto RG, Lavina ELC, Rojas-Consuegra R (2014) Ichnofabrics of the Capdevila Formation (early Eocene) in the Los Palacios Basin (western Cuba): Paleoenvironmental and paleoecological implications. J S Am Earth Sci 56:214–227

    Article  Google Scholar 

  • Villier L, Navarro N (2004) Biodiversity dynamics and their driving factors during the Cretaceous diversification of Spatangoida (Echinoidea, Echinodermata). Palaeogeogr Palaeoclimatol, Palaeoecol 214:265–282

    Article  Google Scholar 

  • Voigt E (1965) Über parasitische Polychaeten in Kreide-Austern sowie einige andere in Muschelschalen bohrende Würmer. Paläont Zeitschr 39:193–211

    Google Scholar 

  • Voigt E (1972) Über Talpina ramosa v. Hagenow 1840, Ein wahrscheinlich zu den Phoroniden gehöriger Bohrorganismus aus der Oberen Kreide, nebst Bemerkungen zu den fibrigen bisher beschriebenen kretazischen‚Talpina‘-Arten. Nachr Akad Wissensch Göttingen 2. Math-phys Kl 1972:93–126

    Google Scholar 

  • Voigt E (1977) On grazing traces produced by the radula of fossil and recent gastropods and chitons. In: Crimes TP, Harper JC (eds) Trace Fossils 2. Geol J Spec Issue 9

    Google Scholar 

  • Voigt E (1978) Phoronidenbaue (Talpina ramose v. Hagenow) aus der maastrichter Tuftkreide. Natuurhist Genootschap in Limburg 28:3–6

    Google Scholar 

  • Vossler SM, Pemberton SG (1988) Skolithos in the Upper Cretaceous Cardium Formation: an ichnofossil example of opportunistic ecology. Lethaia 21:351–362

    Article  Google Scholar 

  • Vossler SM, Pemberton SG (1989) Ichnology and paleoecology of offshore deposits in the Cardium Formation (Turonian, Alberta, Canada). Palaeogeogr Palaeoclimatol, Palaeoecol 74:217–239

    Article  Google Scholar 

  • Wagner PJ, Kosknik MA, Lidgard S (2006) Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. Science 314:1289–1292

    Article  CAS  Google Scholar 

  • Walker SE (1992) Criteria for recognizing marine hermit crabs in the fossil record using gastropod shells. J Paleontol 66:535–558

    Article  Google Scholar 

  • Walker SE (2007) Traces of gastropod predation on molluscan prey in tropical reef environments. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam

    Google Scholar 

  • Walker SE, Brett CE (2002) Post-paleozoic patterns in marine predation: was there a Mesozoic and Cenozoic marine predatory revolution. Paleontol Soc Papers 8:119–194

    Google Scholar 

  • Walker SE, Voight JR (1994) Paleoecologic and taphonomic potential of deepsea gastropods. Palaios 9:48–59

    Article  Google Scholar 

  • Walker SE, Holland SM, Gardiner L (2003) Coenobichnus currani (new ichnogenus and ichnospecies): Fossil trackway of a land hermit crab, early Holocene, San Salvador, Bahamas. J Paleontol 77:576–582

    Article  Google Scholar 

  • Weissbrod T, Barthel WK (1998) An Early Aptian ichnofossil assemblage zone in southern Israel, Sinai and southwestern Egypt. J Afr Earth Sci 26:151–165

    Article  Google Scholar 

  • Werner F, Wetzel A (1982) Interpretation of biogenic structures in oceanic sediments. Bull Inst Géol Bassin d’Aquitaine 31:275–288

    Google Scholar 

  • Wetzel A (1981) Ökologische und stratigraphische Bedeutung biogener Gefüge in quartären Sedimenten am NW-afrikanischen Kontinentalrand. “Meteor” Forsch-Ergebn C34:1–47

    Google Scholar 

  • Wetzel A (1987) Ichnofabrics in Eocene to Maestrichtian sediments from Deep Sea Drilling Project Site 605. In: Van Hinte J, Wise SW et al (eds) Init Rept Deep Sea Drilling Project 95. US Govt Print Off, Washington, pp 825–835

    Google Scholar 

  • Wetzel A (1991) Ecologic interpretation of deep-sea trace fossil communities. Palaeogeogr Palaeoclimatol, Palaeoecol 85:47–69

    Article  Google Scholar 

  • Wetzel A (2008) Recent bioturbation in the deep South China Sea: a uniformitarian ichnologic approach. Palaios 23:601–615

    Article  Google Scholar 

  • Wetzel A, Bromley RG (1994) Phycosiphon incertum revisited-Anconichnus horizontalis is its junior subjective synonym. J Paleontol 68:1396–1402

    Article  Google Scholar 

  • Wetzel A, Uchman A (2012) Hemipelagic and pelagic basin plains. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Develop in Sedim 64. Elsevier, Amsterdam, pp 673–701

    Chapter  Google Scholar 

  • Wetzel A, Werner F (1981) Morphology and ecological significance of Zoophycos in deep-sea sediments off NW Africa. Palaeogeogr Palaeoclimatol Palaeoecol 32:185–212

    Article  Google Scholar 

  • Wetzel A, Blechschmidt I, Uchman A, Matter A (2007) A highly diverse ichnofauna in Late Triassic deep-sea fan deposits of Oman. Palaios 22:567–576

    Article  Google Scholar 

  • Wetzel A, Werner F, Stow DAV (2008) Bioturbation and biogenic sedimentary structures in contourites. In: Rebesco M, Camerlenghi A (eds) Contourites. Contourites. Develop in Sedim 60. Elsevier, Amsterdam, p 183–202

    Google Scholar 

  • Wetzel A, Tjallingii R, Stattegger K (2010) Gyrolithes in Holocene estuarine incised-valley fill deposits, offshore southern Vietnam. Palaios 25:239–246

    Article  Google Scholar 

  • Wiesner MG, Kuhnt W, Party SS (1998) R/V Sonne Research Cruise SO-132 to the South China Sea. Institut für Biogeochemie und Meereschemie der Universität Hamburg, Hamburg, 19 p

    Google Scholar 

  • Wiesner MG, Stattegger K, Pohlmann T, Chen F, Heddaeus A, Heyckendorff K, Jechlitschek H, Lahajnar N, Liskow I, Li X, Liu Z, Lorenc S, Metzke M, Müller M, Peleo-Alampay A, Schönke M, Schwarzer K, Szczygielski A, Steen E, Unverricht D, Wang X, Welsch A, Wetzel A, Zhao Y (2012) Cruise Report RV Sonne 220—Land-Ocean–atmosphere Interactions in the Gulf of Tonkin. Institut für Geowissenschaften Universität Kiel, Kiel, 101 p

    Google Scholar 

  • Wignall PB (1991) Dysaerobic trace fossils and ichnofabrics in the Upper Jurassic Kimmeridge Clay of southern England. Palaios 6:264–270

    Article  Google Scholar 

  • Wilson MA (2007) Macroborings and the evolution of bioerosion. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam

    Google Scholar 

  • Wilson MA, Palmer TJ (1988) Nomenclature of a bivalve boring from the Upper Ordovician of the Midwestern United States. J Paleontol 62:306–308

    Article  Google Scholar 

  • Wilson MA, Palmer TJ (1998) The earliest Gastrochaenolites (Early Pennsylvanian, Arkansas, USA): An Upper Paleozoic bivalve boring? J Paleontol 72:769–772

    Article  Google Scholar 

  • Wilson MA, Rigby JK (2000) Asteriacites lumbricalis von Schlotheim 1820: ophiuroid trace fossils from the Lower Triassic Thaynes Formation, central Utah. Ichnos 7:43–49

    Article  CAS  Google Scholar 

  • Wilson MA, Feldman HR, Krivicich EB (2010) Bioerosion in an equatorial Middle Jurassic coral–sponge reef community (Callovian, Matmor Formation, southern Israel). Palaeogeogr Palaeoclimatol Palaeoecol 289:93–101

    Article  Google Scholar 

  • Wilson MA, Borszcz T, Zatoń M (2014) Bitten spines reveal unique evidence for fish predation on Middle Jurassic echinoids. Lethaia 48:4–9

    Article  Google Scholar 

  • Wisshak M (2012) Microbioerosion. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Develop in Sedim 64:213–243

    Google Scholar 

  • Wisshak M, Gektidis M, Freiwald A, Lundälv T (2005) Bioerosion along a bathymetrical gradient in a cold-temperate setting (Kosterfjord/SW Sweden): an experimental study. Facies 51:93–117

    Article  Google Scholar 

  • Wisshak M, Seuβ B, Nützel A (2006) Evolutionary implications of an exceptionally preserved Carboniferous microboring assemblage in the Buckhorn Asphalt lagerstätte (Oklahoma, USA). In: Wisshak M, Tapanila L (eds) Current developments in bioerosion. Springer, Berlin, Heidelberg

    Google Scholar 

  • Wisshak M, Kroh A, Bertling M, Knaust D, Nielsen JKN, Jagt JW, Neumann C, Nielsen KSN (2015) In defence of an iconic ichnogenus-Oichnus Bromley, 1981. Ann Soc Geol Poloniae 85:445–451

    Google Scholar 

  • Wu X-T (1982) Storm-generated depositional types and associated trace fossils in Lower Carboniferous shallow-marine carbonates of Three Cliffs Bay and Ogmore-by-Sea, South Wales. Palaeogeogr Palaeoclimatol Palaeoecol 39:187–202

    Article  Google Scholar 

  • Yochelson EL, Fedonkin MA (1997) The type specimens (Middle Cambrian) of the trace fossil Archaeonassa Fenton and Fenton. Can J Earth Sci 34:1210–1219

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  CAS  Google Scholar 

  • Zatoń M, Salamon M (2008) Durophagous predation on the Middle Jurassic molluscs, as evidenced from shell fragmentation. Palaeontology 51:63–70

    Article  Google Scholar 

  • Zhang G, Uchman A, Chodyń R, Bromley RG (2008) Trace fossil Artichnus pholeoides igen. nov. isp. nov. in Eocene turbidites, Polish Carpathians: Possible ascription to holothurians. Acta Geol Pol 58:75–86

    Google Scholar 

  • Zhou Z (1997) Cretaceous and Lower Tertiary trace fossils from the Gamba area of southern Tibet, China. Neues Jahrb Geol Paläontol, Abh 203:145–172

    Google Scholar 

  • Zonneveld J-P, Gingras MK (2013) The ichnotaxonomy of vertically oriented, bivalve-generated equilibrichnia. J Paleontol 87:243–253

    Article  Google Scholar 

  • Zonneveld J-P, Zaim Y, Rizal Y, Ciochon RL, Bettis EA III, Aswan GGF (2012) Ichnological constraints on the depositional environment of the Sawahlunto Formation, Kandi, northwest Ombilin Basin, west Sumatra, Indonesia. J Asian Earth Sci 45:106–113

    Article  Google Scholar 

Download references

Acknowledgments

We dedicate this chapter to our late colleague and friend Jordi de Gibert, who contributed significantly to our understanding of the evolutionary aspects of ichnology, particularly in connection with the origin of modern ecosystems. Many colleagues shared ichnologic examples from throughout the geologic column and all over the world that helped us greatly in developing our ideas on the trace-fossil record of the MMR and in illustrating representative ichnofaunas. These are Richard Bromley, Fiona Burns, Huriye Demírcan, Tony Ekdale, Jose Carlos García-Ramos, Murray Gingras, Stephen Hubbard, María Isabel López-Cabrera, James MacEachern, Francisco Medina, Eduardo Olivero, George Pemberton, Laura Piñuela, John Pollard, Juan Ponce, Francisco Rodríguez-Tovar, Tom Saunders, Ernesto Schwarz, Andy Taylor, and Alfred Uchman. Mark Wilson and Sally Walker greatly improved our manuscript with their reviews. Nic Minter gave us useful feedback on the modes of sediment interaction used in Table 9.1. The photographs used in Fig. 9.23 were provided by Ernesto Schwarz. Peter Pervesler and Nic Minter provided photographs of Saronichnus and Hillichnus , respectively. Juan Ponce helped us with preparation of the figures. Financial support for this study was provided by Natural Sciences and Engineering Research Council (NSERC) Discovery Grants 311727–08 awarded to Mángano. Netto is supported by the research grants 305208/2010-1 and 311473/2013-0 awarded by The Brazilian Scientific and Technological Developing Council (CNPq). Carmona’s research is funded by the Argentinean Research Council (PICT 2011–1373 and PICTO 2010–0199).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Buatois, L.A., Carmona, N.B., Curran, H.A., Netto, R.G., Mángano, M.G., Wetzel, A. (2016). The Mesozoic Marine Revolution. In: Mángano, M., Buatois, L. (eds) The Trace-Fossil Record of Major Evolutionary Events. Topics in Geobiology, vol 40. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9597-5_2

Download citation

Publish with us

Policies and ethics