Skip to main content

Computing the Lower and Upper Bound Prices for Multi-asset Bermudan Options via Parallel Monte Carlo Simulations

  • Chapter
  • First Online:
Transactions on Engineering Technologies

Abstract

We present our work on computing the lower and upper bound prices for multi-asset Bermudan options. For the lower bound price we follow the Longstaff-Schwartz least-square Monte Carlo method. For the upper bound price we follow the Andersen-Broadie duality-based nested simulation procedure. For case studies we computed the prices of Bermudan max-call options and Bermudan interest rate swaptions. The pricing procedures are parallelized through POSIX multi-threading. Times required by the procedures on ×86 multi-core processors are much shortened than those reported in previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the subscript i for t i . So \( {\mathbf{S}}_{i} \) is actually \( {\mathbf{S}}_{{t_{i} }} \).

  2. 2.

    These are not their indexes in the whole N R simulated paths.

References

  1. L. Andersen, J. Andreasen, Volatility skews and extensions of the Libor market model. Appl. Math. Finance 7, 1–32 (2000)

    Article  MATH  Google Scholar 

  2. L. Andersen, M. Broadie, Primal-dual simulation algorithm for pricing multidimensional American options. Manage. Sci. 50(9), 1222–1234 (2004)

    Article  Google Scholar 

  3. F. Black, M. Scholes, The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–659 (1973)

    Article  Google Scholar 

  4. A. Brace, D. Gatarek, M. Musiela, The market model of interest rate dynamics. Math. Finance 7(2), 127–155 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Broadie, M. Cao, Improved lower and upper bound algorithms for pricing American options by simulation. Quant. Finance 8(8), 845–861 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. J.F. Carriere, Valuation of the early-exercise price for options using simulations and nonparametric regression. Insur.: Math. Econ. 19(1), 19–30 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. J.C. Cox, S.A. Ross, M. Rubinstein, Option pricing: a simplified approach. J. Finance Econ. 7(3), 229–263 (1979)

    Article  MATH  Google Scholar 

  8. J. Crank, The Mathematics of Diffusion, 2nd edn. (Oxford University Press, Oxford, 1980)

    Google Scholar 

  9. Intel Corporation. Intel Math Kernel Library for Linux OS: User’s Guide, (2011). Document Number: 314774-018US

    Google Scholar 

  10. Intel Corporation. Intel Math Kernel Library Reference Manual, (2011). Document Number: 630813-044US

    Google Scholar 

  11. F. Jamshidian, LIBOR and swap market models and measures. Finance Stochast. 1(4), 293–330 (1997)

    Article  MATH  Google Scholar 

  12. D. Leisen, M. Reimer, Binomial models for option valuation-examining and improving convergence. Appl. Math. Finance 3, 319–346 (1996)

    Article  Google Scholar 

  13. F.A. Longstaff, E.S. Schwartz, Valuing American options by simulation: a simple least-squares approach. Rev. Financ. Stud. 14(1), 113–147 (2001)

    Article  Google Scholar 

  14. K.R. Miltersen, K. Sandmann, D. Sondermann, Closed form solutions for term structure derivatives with log-normal interest rates. J. Finance 52, 409–430 (1997)

    Article  Google Scholar 

  15. K.W. Morton, D.F. Mayers, Numerical Solution of Partial Differential Equations: An Introduction, 2nd edn. (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

  16. J.N. Tsitsiklis, B. Van Roy, Optimal stopping of Markov processes: Hilbert space theory, approximation algorithms, and an application to pricing high-dimensional financial derivatives. IEEE Trans. Autom. Control 44(10), 1840–1851 (1999)

    Article  MATH  Google Scholar 

  17. N. Zhang, K.L. Man, Accelerating financial code through parallelisation and source-level optimisation, in Proceedings of the International MultiConference of Engineers and Computer Scientists 2014, IMECS 2014, Hong Kong, 12–14 Mar 2014. Lecture Notes in Engineering and Computer Science, pp. 805–806

    Google Scholar 

Download references

Acknowledgments

Research is partially funded by ESFA (VP1-3.2-ŠMM-01-K-02-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka Lok Man .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, N., Man, K.L., Krilavičius, T. (2015). Computing the Lower and Upper Bound Prices for Multi-asset Bermudan Options via Parallel Monte Carlo Simulations. In: Yang, GC., Ao, SI., Huang, X., Castillo, O. (eds) Transactions on Engineering Technologies. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9588-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9588-3_14

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9587-6

  • Online ISBN: 978-94-017-9588-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics