Skip to main content

Selfish Genetic Elements and Sexual Selection

  • Chapter
  • First Online:
Current Perspectives on Sexual Selection

Part of the book series: History, Philosophy and Theory of the Life Sciences ((HPTL,volume 9))

Abstract

One aspect of sexual selection that Darwin was completely unaware of was the role of Selfish Genetic Elements (SGEs). SGEs are genes, organelles or microorganisms present within the genome or cell of an organism that spread through populations by subverting normal patterns of inheritance in ways that increase their representation in the next generation. SGEs are ubiquitous in living organisms, have a dramatic ability to manipulate host reproduction, including the frequent reduction in male fertility and sperm competitive ability, yet their impact on sexual selection remains little explored. Here we discuss the pervasiveness and power of SGEs as an agent of sexual selection and show they can have remarkably wide-ranging impacts on male and female reproduction and therefore in shaping mating systems, even when present at low frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alpers MP (2008) The epidemiology of kuru: monitoring the epidemic from its peak to its end. Philos Trans R Soc Lond B Biol Sci 363:3707–3713

    Google Scholar 

  • Alzohairy AM, Gyulai G, Jansen RK, Bahieldin A (2013) Transposable elements domesticated and neofunctionalized by eukaryotic genomes. Plasmid 69:1–15

    Google Scholar 

  • Anderson M (1994) Sexual selection. Princeton University Press, Princeton

    Google Scholar 

  • Ardlie KG, Silver LM (1998) Low frequency of t haplotypes in natural populations of house mice (Mus musculus domesticus). Evolution 52:1185–1196

    Google Scholar 

  • Arnqvist G, Rowe L (2005) Sexual Conflict. Princeton University Press, Princeton

    Google Scholar 

  • Artz K, Shin H-S, Bennet D (1982) Gene mapping within the T/t complex of the mouse. II. Anomalous position of the H-2 complex in t haplotypes. Cell 28:471–476

    Google Scholar 

  • Atwood KC, Schneider LK, Ryan FJ (1951) Periodic selection in Escherichia coli. Proc Natl Acad Sci U S A 37:146–155

    Google Scholar 

  • Baker RH, Denniff M, Futerman P, Fowler K, Pomiankowski A, Chapman T (2003) Accessory gland size influences time to sexual maturity and mating frequency in the stalk-eyed fly, Cyrtodiopsis dalmanni. Behav Ecol 14:607–611

    Google Scholar 

  • Bateman AJ (1948) Intra-sexual selection in Drosophila. Heredity 2:349–368

    Google Scholar 

  • Bonduriansky R, Chenoweth SF (2009) Intralocus sexual conflict. Trends Ecol Evol 24:280–288

    Google Scholar 

  • Buckling A, Maclean RC, Brockhurst MA, Colegrave N (2009) The beagle in a bottle. Nat Rev Genet 457:824–829

    Google Scholar 

  • Burt A, Trivers R. (2006) Genes in conflict: the biology of selfish genetic elements. Harvard University Press, Harvard

    Google Scholar 

  • Bryant SH, Beckenbach AT, Cobbs G (1982) “Sex-ratio” trait, sex composition, and relative abundance in Drosophila pseudoobscura. Evolution 36:27–34

    Google Scholar 

  • Champion de Crespigny FE, Wedell N (2006) Wolbachia infection reduces sperm competitive ability in an insect. Proc R Soc Lond Ser B 273:1455–1458

    Google Scholar 

  • Champion de Crespigny FE, Pitt T, Wedell N (2006) Increased male mating rate in Drosophila is associated with Wolbachia infection. J Evol Biol 19:1964–1972

    Google Scholar 

  • Charlat S, Reuter M, Dyson EA, Hornett EA, Duplouy AMR, Davies N, Roderick GK, Wedell N, Hurst GDD (2007) Male killing bacteria trigger a cycle of increasing male fatigue and female promiscuity. Curr Biol 17:273–277

    Google Scholar 

  • Charlesworth B, Borthwick H, Bartolome C, Pignatelli P (2004) Estimates of the genomic mutation rate for detrimental alleles in Drosophila melanogaster. Genetics 167:815–826

    Google Scholar 

  • Cordaux R, Bouchon D, Grève P (2011) The impact of endosymbionts on the evolution of host sex-determination mechanisms. Trends Genet 27:332–341

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • Darwin C (1871) The descent of man, and selection in relation to sex. John Murray, London

    Google Scholar 

  • David P, Bjorksten T, Fowler K, Pomiankowski A (2000) Condition-dependent signalling of genetic variation in stalk-eyed flies. Nature 406:186–188

    Google Scholar 

  • Dobzhansky T (1958) The genetics of natural populations. XXVII. The genetic changes in populations of Drosophila pseudoobscura in the American Southwest. Evolution 12:385–401

    Google Scholar 

  • Dobzhansky T, Epling C (1944) Contributions to the genetics, taxonomy, and ecology of Drosophila pseudoobscura and its relatives. Carnegie Institution of Washington, Washington, D.C

    Google Scholar 

  • Dyson EA, Hurst GDD (2004) Persistence of an extreme sex-ratio bias in a natural population. Proc Natl Acad Sci U S A 101:6520–6523

    Google Scholar 

  • Edward DA, Fricke C, Chapman T (2010) Adaptations to sexual selection and sexual conflict: insights from experimental evolution and artificial selection. Philos Trans R Soc Lond B Biol Sci 365:2541–2548

    Google Scholar 

  • Foerster K, Coulson T, Sheldon BC, Pemberton JM, Clutton-Brock T, Kruuk LEB (2007) Sexually antagonistic genetic variation for fitness in red deer. Nature 447:1107–1111

    Google Scholar 

  • Fry CL, Wilkinson GS (2004) Sperm survival in female stalk-eyed flies depends on seminal fluid and meiotic drive. Evolution 58:1622–1626

    Google Scholar 

  • Gajdusek DC, Zigas V (1957) Degenerative disease of the nervous system in New Guinea: the epidemic occurrence of “kuru” in the native population. N Engl J Med 257:974–978

    Google Scholar 

  • Gienapp P, Teplitsky C, Alho JS, Mills JA, Merilä J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178

    Google Scholar 

  • Goodacre SL, Martin OY (2012) Modification of insect and arachnid behaviours by vertically transmitted endosymbionts: infections as drivers of behavioural change and evolutionary novelty. Insects 3:246–261

    Google Scholar 

  • Haig D (2012) Retroviruses and the placenta. Curr Biol 22:R609–R613

    Google Scholar 

  • Haig D, Bergstrom C (1995) Multiple mating, sperm competition and meiotic drive. J Evol Biol 8:265–282

    Google Scholar 

  • Hamilton WD (1967) Extraordinary sex-ratios. Science 156:477–488

    Google Scholar 

  • Hartl DL, Hiraizumi Y, Crow JF (1967) Evidence for sperm dysfunction as the mechanism of segregation distortion in Drosophila melanogaster. Genetics 58:2240–2245

    Google Scholar 

  • Hedges LM, Brownlie JC, O'Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322:702

    Google Scholar 

  • Hull PM, Norris RD (2009) Evidence for abrupt speciation in a classic case of gradual evolution. Proc Natl Acad Sci U S A 106:21224–21229

    Google Scholar 

  • Hurst GDD, Werren JH (2001) The role of selfish genetic elements in eukaryotic evolution. Nat Rev Genet 2:597–606

    Google Scholar 

  • Jaenike J (2001) Sex chromosome meiotic drive. Annu Rev Ecol Syst 32:25–49

    Google Scholar 

  • Jiggins FM, Hurst GDD, Majerus MEN (2000) Sex-ratio-distorting Wolbachia causes sex-role reversal in its butterfly host. Proc Roy Soc Lond Ser B 267:69–73

    Google Scholar 

  • Johns P, Wolfenbarger L, Wilkinson G (2005) Genetic linkage between a sexually selected trait and X chromosome meiotic drive. Proc R Soc Lond Ser B 272:2097–2103

    Google Scholar 

  • Johnson RT (2005) Prion diseases. Lancet Neurol 4:635–642

    Google Scholar 

  • Karr TL, Yang W, Feder ME (1998) Overcoming cytoplasmic incompatibility in Drosophila. Proc R Soc Lond Ser B 265:391–395

    Google Scholar 

  • Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, Whitlock MC (2012) Experimental evolution. Trends Ecol Evol 27:547–560

    Google Scholar 

  • Keller L (1999) Levels of selection in evolution. Princeton University Press, Princeton

    Google Scholar 

  • Kidwell MG, Lisch DR (2000) Transposable elements and host genome evolution. Trends Ecol Evol 15:95–99

    Google Scholar 

  • Kokko H, Brooks R (2003) Sexy to die for? Sexual selection and the risk of extinction. Ann Zool Fenn 40:207–219

    Google Scholar 

  • Lande R (1980) Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution 34:292–305

    Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Google Scholar 

  • Lenington S (1991) The t-complex: a story of genes, behavior, and populations. Adv Study Behav 20:51–86

    Google Scholar 

  • Lenington S, Coopersmith C, Williams J (1992) Genetic basis of mating preferences in wild house mice. Am Zool 32:40–47

    Google Scholar 

  • Lenski RE (1988) Experimental studies of pleiotropy and epistasis in Escherichia coli. II. Compensation for maldaptive effects associated with resistance to virus T4. Evolution 42:433–440

    Google Scholar 

  • Lewis Z, Price TAR, Wedell N (2008) Review—sperm competition, immunity, selfish genes and cancer. Cell Mol Life Sci 65:3241–3254

    Google Scholar 

  • Lewis Z, Champion de Crespigny FE, Sait SM, Tregenza T, Wedell N (2011a) Wolbachia infection lowers fertile sperm transfer in a moth. Biol Lett 7:187–189

    Google Scholar 

  • Lewis Z, Wedell N, Hunt J (2011b) Evidence for strong intralocus sexual conflict in the Indian meal moth, Plodia interpunctella. Evolution 65:2085–2097

    Google Scholar 

  • Long TAF, Rice WR (2007) Adult locomotor activity mediates intralocus sexual conflict in a laboratory-adapted population of Drosophila melanogaster. Proc R Soc Lond Ser B 274:3105–3109

    Google Scholar 

  • Longdon B, Fabian DK, Hurst GDD, Jiggins FM (2012) Male-killing Wolbachia do not protect Drosophila bifasciata against viral infection. BMC Microbiol 12:S8 (doi:10.1186/1471-2180-12-S1-S8)

    Google Scholar 

  • Louchart A, Tourment N, Carrier J (2011) The earliest known pelican reveals 30 million years of evolutionary stasis in beak morphology. J Ornithol 152:15–20

    Google Scholar 

  • Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577

    Google Scholar 

  • Mainguy J, Cote SD, Festa-Bianchet M, Coltman DW (2009) Father-offspring phenotypic correlations suggest intralocus sexual conflict for a fitness-linked trait in a wild sexually dimorphic mammal. Proc R Soc Lond Ser B 276(1675):4067–4075

    Google Scholar 

  • Markov AV, Lazebny OE, Goryacheva II, Antipin ML, Kulikov AM (2009) Symbiotic bacteria affect mating choice in Drosophila melanogaster. Anim Behav 77:1011–1017

    Google Scholar 

  • McCart C, Buckling A, Ffrench-Constant RH (2005) DDT resistance in flies carries no cost. Curr Biol 15:R587–589

    Google Scholar 

  • Merilä J, Sheldon BC, Ellegren H (1997) Antagonistic natural selection revealed by molecular sex identification of nestling collard flycatchers. Mol Ecol 6:1167–1175

    Google Scholar 

  • Miller WJ, Ehrman L, Schneider D (2010) Infectious speciation revisited: impact of symbiont-depletion on female fitness and mating behavior of Drosophila paulistorum. PLoS Pathog 6:12

    Google Scholar 

  • Miller W, Hayes VM, Ratana A, Petersenb DC, Wittekindta NE, J. Miller B et al (2011) Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil). Proc Natl Acad Sci U S A 108:12348–12353

    Google Scholar 

  • Murgia C, Pritchard JK, Yeon Kim S, Fassati A, Weiss RA (2006) Clonal origin and evolution of a transmissible cancer. Cell 126:477–487

    Google Scholar 

  • Nichols RA, Butlin RK (1989) Does runaway sexual selection work in finite populations. J Evol Biol 2:299–313

    Google Scholar 

  • Normark BB (2004) Haplodiploidy as an outcome of coevolution between male killing cytoplasmic elements and their hosts. Evolution 58:790–798

    Google Scholar 

  • Novinski MA (1876) Zur Frage über die Impfung der krebsigen Geschwülste. Zentralblatt Medizin Wissenschaft 14:790–791

    Google Scholar 

  • Parker GA (1979) Sexual selection and sexual conflict. In: Blum M, Blum N (eds) Sexual selection and reproductive competition in insects. Academic, New York

    Google Scholar 

  • Parker GA, Partridge L (1998) Sexual conflict and speciation. Philos Trans R Soc Lond B Biol Sci 353:261–274

    Google Scholar 

  • Pischedda A, Chippindale AK (2006) Intralocus sexual conflict diminishes the benefits of sexual selection. PLoS Biol 4(11):e356

    Google Scholar 

  • Policansky D, Dempsey B (1978) Modifiers and “sex-ratio” in Drosophila pseudoobscura. Evolution 32:922–924

    Google Scholar 

  • Policansky D, Ellison J (1970) “Sex ratio” in Drosophila pseudoobscura: spermiogenic failure. Science 169:888–889

    Google Scholar 

  • Pomiankowski A, Hurst LD (1999) Driving sexual preference. Trends Ecol Evol 14:425–426

    Google Scholar 

  • Powell J (1997) Progress and prospects in evolutionary biology: the Drosophila model. Oxford University Press, Oxford

    Google Scholar 

  • Presgraves DC, Severance E, Wilkinson GS (1997) Sex chromosome meiotic drive in stalk-eyed flies. Genetics 147:1169–1180

    Google Scholar 

  • Price TAR, Wedell N (2008) Selfish genetic elements and sexual selection: their impact on male fertility. Genetica 132:295–307

    Google Scholar 

  • Price TAR, Bretman AJ, Avent TD, Snook RR, Hurst GDD, Wedell N (2008a) Sex ratio distorter reduces sperm competitive ability in an insect. Evolution 62:1644–1652

    Google Scholar 

  • Price TAR, Hodgson DJ, Lewis Z, Hurst GDD, Wedell N (2008b) Selfish genetic elements promote polyandry in a fly. Science 322:1241–1243

    Google Scholar 

  • Price TAR, Hurst GDD, Wedell N (2010a) Polyandry prevents extinction. Curr Biol 20:471–475

    Google Scholar 

  • Price TAR, Lewis Z, Smith DT, Hurst GDD, Wedell N (2010b) Sex ratio drive promotes sexual conflict and sexual coevolution in the fly Drosophila pseudoobscura. Evolution 64:1504–1509

    Google Scholar 

  • Price TAR, Lewis Z, Smith DT, Hurst GDD, Wedell N (2012) No evidence of mate discrimination against males carrying a sex ratio distorter in Drosophila pseudoobscura. Behav Ecol Sociobiol 66:561–568

    Google Scholar 

  • Ravi Ram K, Wolfner MF (2007) Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Integr Comp Biol 47:427–445

    Google Scholar 

  • Rebbeck CA, Thomas R, Breen M, Leroi AM, Burt A (2009) Origins and evolution of a transmissible cancer. Evolution 63:2340–2349

    Google Scholar 

  • Rogers DW, Denniff M, Chapman T, Fowler K, Pomiankowski A (2008) Male sexual ornament size is positively associated with reproductive morphology and enhanced fertility in the stalk-eyed fly Teleopsis dalmanni. BMC Evol Biol 8:236

    Google Scholar 

  • SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45

    Google Scholar 

  • Siddle HV, Kriess A, Eldridge MDB, Noonan E, Clarke CJ, Pyecroft S, Woods GM, B. K (2007) Transmission of a fatal clonal tumour by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proc Natl Acad Sci U S A 104:16221–16226

    Google Scholar 

  • Simmons LW (2001) Sperm competition and its evolutionary consequences in the insects. Princeton University Press, Princeton

    Google Scholar 

  • Smith DT, Hosken DJ, Rostant WG, Yeo M, Griffin RM, Bretman A, Price TAR, Ffrench-Constant RH, Wedell N (2011) DDT resistance, epistasis and male fitness in flies. J Evol Biol 24:1351–1362

    Google Scholar 

  • Snook RR, Cleland SY, Wolfner MF, Karr TL (2000) Offsetting effects of Wolbachia infection and heat shock on sperm production in Drosophila simulans: analyses of fecundity, fertility and accessory gland proteins. Genetics 155:167–178

    Google Scholar 

  • Stalker HD (1961) The genetic systems modifying meiotic drive in Drosophila paramelanica. Genetics 46:177–202

    Google Scholar 

  • Sturtevant AH, Dobzhansky T (1936) Geographical distribution and cytology of “sex ratio” in Drosophila pseudoobscura and related species. Genetics 21:473–490

    Google Scholar 

  • Swanson WJ, Vacquier VD (2002) Reproductive protein evolution. Annu Rev Ecol Syst 33:161–179

    Google Scholar 

  • Tao Y, Masly J, Araripe L, Ke Y, Hartl D (2007) A sex-ratio meiotic drive system in Drosophila simulans. I. An autosomal suppressor. PLoS Biol 5:2560–2575

    Google Scholar 

  • Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6:2753–2763

    Google Scholar 

  • Trivers RL (1972) Parental investment and sexual selection. In Campbell B (ed) Sexual selection and the descent of man, 1871–1971. Aldine, Chicago, pp 136–179

    Google Scholar 

  • Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore PD (2006) A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313:320–324

    Google Scholar 

  • Vala F, Egas M, Breeuwer JAJ, Sabelis MW (2004) Wolbachia affects oviposition and mating behaviour of its spider mite host. J Evol Biol 17:692–700

    Google Scholar 

  • Van Vugt JJFA, de Jong H, Stouthamer R (2009) The origin of a selfish B chromosome triggering paternal sex ratio in the parasitoid wasp Trichogramma kaykai. Proc R Soc Lond B 276:4149–4154

    Google Scholar 

  • Wedell N (2013) The dynamic relationship between polyandry and selfish genetic elements. Philos Trans R Soc Lond B Biol Sci 368:20120049

    Google Scholar 

  • Wedell N, Kvarnemo C, Lessells CM, Tregenza T (2006) Sexual conflict and life histories. Anim Behav 5:999–1011

    Google Scholar 

  • Wedell N, Wiklund C, Bergström J (2009) Coevolution of nonfertile sperm and female receptivity in a butterfly. Biol Lett 5:678–681

    Google Scholar 

  • Werren JH (2011) Selfish genetic elements, genetic conflict, and evolutionary innovation. Proc Natl Acad Sci U S A 108 (Suppl. 2):10863–10870

    Google Scholar 

  • Wilkinson GS, Presgraves DC, Crymes L (1998) Male eye span in stalk-eyed flies indicates genetic quality by meiotic drive suppression. Nature 391:276–278

    Google Scholar 

  • Williams J, Lenington S (1993) Environmental and genetic factors affecting preferences of female house mice (Mus domesticus) for males that differ in t-complex genotype. Behav Genet 23:51–58

    Google Scholar 

  • Wu C-I (1983) Virility deficiency and the sex-ratio trait in Drososphila pseudoobscura. I. Sperm displacement and sexual selection. Genetics 105:651–662

    Google Scholar 

  • Yasui Y (1998) The ‘genetic benefits’ of female multiple mating reconsidered. Trends Ecol Evol 13:246–250

    Google Scholar 

  • Zeh JA, Zeh DW (1996) The evolution of polyandry I: intra-genomic conflict and genetic incompatibility. Philos Trans R Soc Lond B Biol Sci 263:1711–1717

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Wedell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wedell, N., Price, T. (2015). Selfish Genetic Elements and Sexual Selection. In: Hoquet, T. (eds) Current Perspectives on Sexual Selection. History, Philosophy and Theory of the Life Sciences, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9585-2_8

Download citation

Publish with us

Policies and ethics