Understanding the Exohedral Functionalization of Endohedral Metallofullerenes

  • Marc Garcia-BorràsEmail author
  • Sílvia Osuna
  • Josep M. Luis
  • Marcel Swart
  • Miquel Solà
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 8)


The endohedral metallofullerenes (EMFs) and their exohedral functionalized derivatives present an increasing attention due to their potential applications in materials science and medicine. However, the current understanding of the reactivity of endohedral metallofullerenes is still very incomplete. In this chapter, we present a thorough study of the Diels-Alder (DA) reactivity of D 3h -C 78 , Sc3N@D 3h -C 78 , Y3N@D 3h -C 78 , Ti2C2@D 3h -C 78, Sc3N@D 5h -C 80 , Lu3N@D 5h -C 80 , Gd3N@D 5h -C 80 , Sc3N@I h -C 80 , Lu3N@I h -C 80 -C80, Gd3N@I h -C 80 , Y3N@I h -C 80 , La2@I h -C 80 , Y3@I h -C 80 , Sc3C2@I h -C 80 , Sc4C2@I h -C 80 , Sc3CH@I h -C 80 , Sc3NC@I h -C 80 , Sc4O2@I h -C 80 , Sc4O3@I h -C 80 , and La@C 2v -C 82. We have studied both the thermodynamic and the kinetic regioselectivity , taking into account when it was required the free rotation of the metallic cluster inside the fullerene. This systematic investigation was possible only because we use the Frozen Cage Model , which is a low-cost approach to determine the EMF exohedral regioselectivity. Our study has allowed the correction of two wrong experimental assignations of DA adducts, highlighting the key role of computational studies to achieve a deep understanding of exohedral reactivity of the EMFs. The incarceration of the metallic cluster reduces the reactivity of the EMFs respect to the hollow fullerenes. Our results also show that bond distances, pyramidalization angles , LUMOs shape, charge transfer , and cluster volume are the key factors that determine the DA regioselectivity of the fullerenes and EMFs. However, none of them can be used alone to predict which bond will be attacked. Finally, we focus our attention on the essential role of the dispersion interactions to reproduce the experimental results of the exohedral cycloaddition on EMFs.


Metal Cluster Reaction Energy Dispersion Correction Fullerene Cage Metallic Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful for financial support from the Spanish MICINN (projects CTQ2011-23156/BQU and CTQ2011-25086/BQU), the Catalan DIUE (projects 2014SGR931, 2009SGR637, 2009SGR528, and XRQTC), the FEDER fund for the grant UNGI08-4E-003. M.G.-B. thanks the Spanish MECD for a PhD fellowship (AP2010-2517) and S.O. thanks the European Community for a postdoctoral fellowship (PIOF-GA-2009-252856). Excellent service by Excellent service by the CESCA is acknowledged. The authors are also grateful to the computer resources and assistance provided by the BSC-CNS. M. Solà thanks the Catalan DIUE for the ICREA Academia 2009 Award.


  1. Aihara J-I (2001) Chem Phys Lett 343:465–469Google Scholar
  2. Akasaka T, Nagase S (2002) Endofullerenes: a new family of carbon clusters. Kluwer Academic, DordrechtGoogle Scholar
  3. Akasaka T, Nagase S, Kobayashi K, Wälchli M, Yamamoto K, Funasaka H, Kako M, Hoshino T, Erata T (1997) Angew Chem Int Ed Engl 36:1643–1645Google Scholar
  4. Aroua S, Garcia-Borràs M, Osuna S, Yamakoshi Y (2014) Chem Eur J 20:14032–14039Google Scholar
  5. Atkins P, De Paula J (2006) Physical chemistry. Oxford University Press, OxfordGoogle Scholar
  6. Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41–51Google Scholar
  7. Baerends EJ, Ziegler T, Autschbach J, Bashford D, Bérces A, Bickelhaupt FM, Bo C, Boerrigter PM, Cavallo L, Chong DP, Deng L, Dickson RM, Ellis DE, Faassen MV, Fan L, Fischer TH, Fonseca Guerra C, Ghysels A, Giammona A, van Gisbergen SJA, Götz AW, Groeneveld JA, Gritsenko OV, Grüning M, Gusarov S, Harris FE, van den Hoek P, Jacob CR, Jacobsen H, Jensen L, Kaminski JW, van Kessel G, Kootstra F, Kovalenko A, Krykunov MV, van Lenthe E, Mccormack DA, Michalak A, Mitoraj M, Neugebauer J, Nicu VP, Noodleman L, Osinga VP, Patchkovskii S, Philipsen PHT, Post D, Pye CC, Ravenek W, Rodriguez JI, Ros P, Schipper PRT, Schreckenbach G, Seldenthuis JS, Seth M, Snijders JG, Solà M, Swart M, Swerhone D, Te Velde G, Vernooijs P, Versluis L, Visscher L, Visser O, Wang F, Wesolowski TA, van Wezenbeek EM, Wiesenekker G, Wolff SK, Woo TK, Yakovlev AL (2010) ADF2010. ADF201001.ADF2010.01. SCM, AmsterdamGoogle Scholar
  8. Becke AD (1988) Phys Rev A 38:3098–3100Google Scholar
  9. Becke AD (1993) J Chem Phys 98:5648–5652Google Scholar
  10. Cai T, Slebodnick C, Xu L, Harich K, Glass TE, Chancellor C, Fettinger JC, Olmstead MM, Balch AL, Gibson HW, Dorn HC (2006a) J Am Chem Soc 128:6486–6492Google Scholar
  11. Cai T, Xu LS, Anderson MR, Ge ZX, Zuo TM, Wang XL, Olmstead MM, Balch AL, Gibson HW, Dorn HC (2006b). J Am Chem Soc 128:8581–8589Google Scholar
  12. Campanera JM, Bo C, Olmstead MM, Balch AL, Poblet JM (2002) J Phys Chem A 106:12356–12364Google Scholar
  13. Campanera JM, Bo C, Poblet JM (2005) Angew Chem Int Ed 44:7230–7233Google Scholar
  14. Campanera JM, Bo C, Poblet JM (2006) J Org Chem 71:46–54Google Scholar
  15. Cao B, Hasegawa M, Okada K, Tomiyama T, Okasaki T, Suenaga K, Shinohara H (2001) J Am Chem Soc 123:9679–9680Google Scholar
  16. Cardona CM, Kitaygorodskiy A, Echegoyen L (2005a) J Am Chem Soc 127:10448–10453Google Scholar
  17. Cardona CM, Kitaygorodskiy A, Ortiz A, Herranz MÁ, Echegoyen L (2005b) J Org Chem 70:5092–5097Google Scholar
  18. Cardona CM, Elliott B, Echegoyen L (2006) J Am Chem Soc 128:6480–6485Google Scholar
  19. Chai Y, Guo T, Jin C, Haufler RE, Chibante LPF, Fure J, Wang L, Alford JM, Smalley RE (1991) J Phys Chem 95:7564–7568Google Scholar
  20. Chaur MN, Melin F, Elliott B, Athans AJ, Walker K, Holloway BC, Echegoyen L (2007) J Am Chem Soc 129:14826–14829Google Scholar
  21. Chaur MN, Melin F, Ortiz AL, Echegoyen L (2009) Angew Chem Int Ed 48:7514–7538Google Scholar
  22. Chen N, Fan LZ, Tan K, Wu YQ, Shu CY, Lu X, Wang CR (2007) J Phys Chem C 111:11823–11828Google Scholar
  23. Dapprich S, Komáromi I, Byu KS, Morokuma K, Frisch MJ (1999). J Mol Struct (Theochem) 461–462:1–21Google Scholar
  24. Duchamp JC, Demortier A, Fletcher KR, Dorn D, Iezzi EB, Glass T, Dorn HC (2003) Chem Phys Lett 375:655–659Google Scholar
  25. Fatouros PP, Corwin FD, Chen ZJ, Broaddus WC, Tatum JL, Kettenmann B, Ge Z, Gibson HW, Russ JL, Leonard AP, Duchamp JC, Dorn HC (2006) Radiology 240:756–764Google Scholar
  26. Garcia-Borràs M, Osuna S, Luis JM, Swart M, Solà M (2012a) Chem Eur J 18:7141–7154Google Scholar
  27. Garcia-Borràs M, Romero-Rivera A, Osuna S, Luis JM, Swart M, Solà M (2012b) J Chem Theory Comput 8:1671–1683Google Scholar
  28. Garcia-Borràs M, Luis JM, Swart M, Solà M (2013a) Chem Eur J 19:4468–4479Google Scholar
  29. Garcia-Borràs M, Osuna S, Swart M, Luis JM, Solà M (2013b) Angew Chem Int Ed. 52:9275–9278Google Scholar
  30. Garcia-Borràs M, Osuna S, Swart M, Luis JM, Solà M (2013c) Chem Eur J. 19:14931–14940Google Scholar
  31. Goerigk L, Grimme S (2010) J Chem Theory Comput 6:107–126Google Scholar
  32. Grimme S (2004) J Comput Chem 25:1463–1473Google Scholar
  33. Grimme S (2006). J Comput Chem 27:1787–1799Google Scholar
  34. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104Google Scholar
  35. Guha S, Nakamoto K (2005) Coord Chem Rev 249:1111–1132Google Scholar
  36. Guldi DM, Feng L, Radhakrishnan SG, Nikawa H, Yamada M, Mizorogi N, Tsuchiya T, Akasaka T, Nagase S, Angeles Herranz M, Martin N (2010) J Am Chem Soc 132:9078–9086Google Scholar
  37. Haddon RC (1988) QCPE 508/QCMP 044. QCPE Bull 8Google Scholar
  38. Haddon RC (2001) J Phys Chem A 105:4164–4165Google Scholar
  39. Haddon RC, Chow SY (1998) J Am Chem Soc 120:10494–10496Google Scholar
  40. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222Google Scholar
  41. Heath JR, OBrien SC, Zhang Q, Liu Y, Curl RF, Kroto HW, Tittel FK, Smalley RE (1985) J Am Chem Soc 107:7779–7780Google Scholar
  42. Hehre WJ, Stewart RF, Pople JA (1969) J Chem Phys 51:2657–2664Google Scholar
  43. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261Google Scholar
  44. Hesselmann A, Korona T (2011) Phys Chem Chem Phys 13:732–743Google Scholar
  45. Iezzi EB, Duchamp JC, Harich K, Glass TE, Lee HM, Olmstead MM, Balch AL, Dorn HC (2002) J Am Chem Soc 124:524–525Google Scholar
  46. Iiduka Y, Ikenaga O, Sakuraba A, Wakahara T, Tsuchiya T, Maeda Y, Nakahodo T, Akasaka T, Kako M, Mizorogi N, Nagase S (2005a) J Am Chem Soc 127:9956–9957Google Scholar
  47. Iiduka Y, Wakahara T, Nakahodo T, Tsuchiya T, Sakuraba A, Maeda Y, Akasaka T, Yoza K, Horn E, Kato T, Liu MTH, Mizorogi N, Kobayashi K, Nagase S (2005b) J Am Chem Soc 127:12500–12501Google Scholar
  48. Ishitsuka MO, Sano S, Enoki H, Sato S, Nikawa H, Tsuchiya T, Slanina Z, Mizorogi N, Liu MTH, Akasaka T, Nagase S (2011) J Am Chem Soc 133:7128–7134Google Scholar
  49. Iwasaki K, Hino S, Yoshimura D, Cao B, Okasaki T, Shinohara H (2004) Chem Phys Lett 397:169–173Google Scholar
  50. Jaffiol R, Débarre A, Julien C, Nutarelli D, Tchénio P, Taninaka A, Cao B, Okasaki T, Shinohara H (2003) Phys Rev B 68:014105Google Scholar
  51. Kobayashi K, Nagase S, Yoshida M, Ōsawa E (1997) J Am Chem Soc 119:12693–12694Google Scholar
  52. Korona T, Hesselmann A, Dodziuk H (2009) J Chem Theory Comput 5:1585–1596Google Scholar
  53. Krause M, Ziegs F, Popov AA, Dunsch L (2007) Chem Phys Chem 8:537–540Google Scholar
  54. Kroto HW (1987) Nature 329:529–531Google Scholar
  55. Kroto HW, Heath JR, OBrien SC, Curl RF, Smalley RE (1985) Nature 318:162–163Google Scholar
  56. Kruse H, Grimme S (2009) J Phys Chem C 113:17006–17010Google Scholar
  57. Kurihara H, Iiduka Y, Rubin Y, Waelchli M, Mizorogi N, Slanina Z, Tsuchiya T, Nagase S, Akasaka T (2012) J Am Chem Soc 134:4092–4095Google Scholar
  58. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789Google Scholar
  59. Lee HM, Olmstead MM, Iezzi E, Duchamp JC, Dorn HC, Balch AL (2002) J Am Chem Soc 124:3494–3495Google Scholar
  60. Liu S, Sun S (2000) J Organomet Chem 599:74–86Google Scholar
  61. Lu X, Akasaka T, Nagase S (2011) Chem Commun 47:5942–5957Google Scholar
  62. Lu X, Feng L, Akasaka T, Nagase S (2012) Chem Soc Rev 41:7723–7760Google Scholar
  63. Lu X, Nikawa H, Nakahodo T, Tsuchiya T, Ishitsuka MO, Maeda Y, Akasaka T, Toki M, Sawa H, Slanina Z, Mizorogi N, Nagase S (2008) J Am Chem Soc 130:9129–9136Google Scholar
  64. Lukoyanova O, Cardona CM, Rivera J, Lugo-Morales LZ, Chancellor CJ, Olmstead MM, Rodriguez-Fortea A, Poblet JM, Balch AL, Echegoyen L (2007) J Am Chem Soc 129:10423–10430Google Scholar
  65. Maeda Y, Miyashita J, Hasegawa T, Wakahara T, Tsuchiya T, Nakahodo T, Akasaka T, Mizorogi N, Kobayashi K, Nagase S, Kato T, Ban N, Nakajima H, Watanabe Y (2005) J Am Chem Soc 127:12190–12191Google Scholar
  66. Maeda Y, Sato S, Inada K, Nikawa H, Yamada M, Mizorogi N, Hasegawa T, Tsuchiya T, Akasaka T, Kato T, Slanina Z, Nagase S (2010) Chem Eur J 16:2193–2197Google Scholar
  67. Mercado BQ, Olmstead MM, Beavers CM, Easterling ML, Stevenson S, Mackey MA, Coumbe CE, Phillips JD, Phillips JP, Poblet JM, Balch AL (2010) Chem Commun 46:279–281Google Scholar
  68. Miertuš S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129Google Scholar
  69. Murata M, Murata Y, Komatsu K (2008) Chem Commun 6083–6094Google Scholar
  70. Nishibori E, Narioka S, Takata M, Sakata M, Inoue T, Shinohara H (2006) ChemPhysChem 7:345–348Google Scholar
  71. Osuna S, Houk KN (2009) Chem Eur J 15:13219–13231Google Scholar
  72. Osuna S, Swart M, Campanera JM, Poblet JM, Solà M (2008) J Am Chem Soc 130:6206–6214Google Scholar
  73. Osuna S, Swart M, Solà M (2009a) J Am Chem Soc 131:129–139Google Scholar
  74. Osuna SL, Morera J, Cases M, Morokuma K, Solà M (2009b) J Phys Chem A 113:9721–9726Google Scholar
  75. Osuna S, Swart M, Solà M (2011a) Phys Chem Chem Phys 13:3585–3603Google Scholar
  76. Osuna S, Swart M, Solà M (2011b) J Phys Chem A 115:3491–3496Google Scholar
  77. Osuna S, Rodriguez-Fortea A, Poblet JM, Solà M, Swart M (2012a) Chem Commun 48:2486–2488Google Scholar
  78. Osuna S, Valencia R, Rodríguez-Fortea A, Swart M, Solà M, Poblet JM (2012b). Chem Eur J 18:8944–8956Google Scholar
  79. Pascual-Ahuir JL, Silla E, Tuñon I (1994) J Comput Chem 15:1127Google Scholar
  80. Perdew JP (1986) Phys Rev B 33:8822–8824Google Scholar
  81. Popov AA, Dunsch L (2008) J Am Chem Soc 130:17726–17742Google Scholar
  82. Popov AA, Zhang L, Dunsch L (2010) ACS Nano 4:795–802Google Scholar
  83. Rivera-Nazario DM, Pinzón JR, Stevenson S, Echegoyen LA (2013) J Phys Org Chem 26:194–205Google Scholar
  84. Rodríguez-Fortea A, Alegret N, Balch AL, Poblet JM (2010) Nat Chem 2:955–961Google Scholar
  85. Rodríguez-Fortea A, Campanera JM, Cardona CM, Echegoyen L, Poblet JM (2006) Angew Chem Int Ed Engl 45:8176–8180Google Scholar
  86. Rodríguez-Fortea A, Balch AL, Poblet JM (2011) Chem Soc Rev 40:3551–3563Google Scholar
  87. Shi Z-Q, Wu X, Wang C-R, Lu X, Shinohara H (2006) Angew Chem Int Ed Engl 45:2107–2111Google Scholar
  88. Slater JC (1974) Quantum theory of molecules and solids. McGraw-Hill, New YorkGoogle Scholar
  89. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627Google Scholar
  90. Stevenson S, Rice G, Glass T, Harich K, Cromer F, Jordan MR, Craft J, Hadju E, Bible R, Olmstead MM, Maitra K, Fisher AJ, Balch AL, Dorn HC (1999) Nature 401:55–57Google Scholar
  91. Stevenson S, Phillips JP, Reid JE, Olmstead MM, Rath SP, Balch AL (2004) Chem Commun 2814–2815Google Scholar
  92. Stevenson S, Mackey MA, Stuart MA, Phillips JP, Easterling ML, Chancellor CJ, Olmstead MM, Balch AL (2008) J Am Chem Soc 130:11844–11845Google Scholar
  93. Suzuki T, Maruyama Y, Kato T, Kikuchi K, Nakao Y, Achiba Y, Kobayashi K, Nagase S (1995) Angew Chem Int Ed Engl 34:1094–1096Google Scholar
  94. Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) J Phys Chem 100:19357–19363Google Scholar
  95. Swart M, Bickelhaupt FM (2006) Int J Quant Chem 106:2536–2544Google Scholar
  96. Swart M, Bickelhaupt FM (2008) J Comput Chem 29:724–734Google Scholar
  97. Swart M, Snijders JG (2003) Theor Chem Acc 110:34–41Google Scholar
  98. Takano Y, Obuchi S, Mizorogi N, García R, Herranz MÁ, Rudolf M, Guldi DM, Martín N, Nagase S, Akasaka T (2012) J Am Chem Soc 134:19401–19408Google Scholar
  99. Tan K, Lu X (2005) Chem Commun 4444–4446Google Scholar
  100. Tan K, Lu X (2006) J Phys Chem A 110:1171–1176Google Scholar
  101. Tan K, Lu X, Wang C-R (2006) J Phys Chem B 110:11098–11102Google Scholar
  102. Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967Google Scholar
  103. Tomasi J, Persico M (1994) Chem Rev 94:2027–2094Google Scholar
  104. Valencia R, Rodriguez-Fortea A, Poblet JM (2007) Chem Commun 4161–4163Google Scholar
  105. Valencia R, Rodríguez-Fortea A, Poblet JM (2008) J Phys Chem A 112:4550–4555Google Scholar
  106. Van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597–4610Google Scholar
  107. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211Google Scholar
  108. Vreven T, Byun KS, Komáromi I, Dapprich S, Montgomery Jr JA, Morokuma K, Frisch MJ (2006) J Chem Theory Comput 2:815–826Google Scholar
  109. Wang C-R, Inakuma M, Shinohara H (1999) Chem Phys Lett 300:379–384Google Scholar
  110. Wang C-R, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M, Shinohara H (2001) Angew Chem Int Ed Engl 40:397–399Google Scholar
  111. Wang T, Wu J, Xu W, Xiang J, Lu X, Li B, Jiang L, Shu C, Wang C (2010a) Angew Chem Int Ed 49:1786–1789Google Scholar
  112. Wang T-S, Feng L, Wu J-Y, Xu W, Xiang J-F, Tan K, Ma Y-H, Zheng J-P, Jiang L, Lu X, Shu C-Y, Wang C-R (2010b) J Am Chem Soc 132:16362–16364Google Scholar
  113. Wolff SK (2005) Int J Quantum Chem 104:645–659Google Scholar
  114. Yamada M, Akasaka T, Nagase S (2010) Acc Chem Res 43:92–102Google Scholar
  115. Yamada M, Wakahara T, Nakahodo T, Tsuchiya T, Maeda Y, Akasaka T, Yoza K, Horn E, Mizorogi N, Nagase S (2006) J Am Chem Soc 128:1402–1403Google Scholar
  116. Yamada M, Someya C, Wakahara T, Tsuchiya T, Maeda Y, Akasaka T, Yoza K, Horn E, Liu MTH, Mizorogi N, Nagase S (2008) J Am Chem Soc 130:1171–1176Google Scholar
  117. Yamada M, Okamura M, Sato S, Someya CI, Mizorogi N, Tsuchiya T, Akasaka T, Kato T, Nagase S (2009) Chem Eur J 15:10533–10542Google Scholar
  118. Yang SF, Popov AA, Dunsch L (2008) Angew Chem Int Ed 47:8196–8200Google Scholar
  119. Yang S, Liu F, Chen C, Jiao M, Wei T (2011) Chem Commun 47:11822–11839Google Scholar
  120. Yumura T, Sato Y, Suenaga K, Iijima S (2005) J Phys Chem B 109:20251–20255Google Scholar
  121. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167Google Scholar
  122. Zheng H, Zhao X, Wang W-W, Yang T, Nagase S (2012) J Chem Phys 137:014308Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Marc Garcia-Borràs
    • 1
    Email author
  • Sílvia Osuna
    • 1
  • Josep M. Luis
    • 1
  • Marcel Swart
    • 1
    • 2
  • Miquel Solà
    • 1
  1. 1.Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
  2. 2.Institució Catalana de Recerca I Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations