Skip to main content

Pseudomonas entomophila: A Versatile Bacterium with Entomopathogenic Properties

  • Chapter
  • First Online:
Book cover Pseudomonas

Abstract

Pseudomonas entomophila is unique among Pseudomonas species in being able to activate a systemic immune response in both Drosophila larvae and adults. It has been subsequently shown that oral infections with high doses of this bacterium are highly pathogenic to Drosophila and cause massive destruction of the Drosophila gut epithelium. Besides Drosophila, P. entomophila was able to kill other insects from at least three different orders, suggesting that it has a potentially wide host range and making it a promising model for the study of host pathogen interactions and for the development of bio-control agents against insect pests. In order to unravel the features contributing to P. entomophila’s pathogenic properties, its complete genome was sequenced and genetic screens were performed to identify virulence factors encoded by this bacterium. The aim of this chapter is to review the current knowledge we have on this bacterium with a particular focus on the pathogenesis it induces, its virulence effectors and their genetic regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amcheslavsky A, Jiang J, Ip YT (2009) Tissue damage-induced intestinal stem cell division in Drosophila. Cell Stem Cell 4:49–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Balasubramanian D, Kong KF, Jayawardena SR, Leal SM, Sautter RT, Mathee K (2011) Co-regulation of {beta}-lactam resistance, alginate production and quorum sensing in Pseudomonas aeruginosa. J Med Microbiol 60:147–156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bardoel BW, van Kessel KP, van Strijp JA, Milder FJ (2012) Inhibition of Pseudomonas aeruginosa virulence: characterization of the AprA-AprI interface and species selectivity. J Mol Biol 415:573–583

    Article  CAS  PubMed  Google Scholar 

  • Bassler BL (1999) How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol 2:582–587

    Article  CAS  PubMed  Google Scholar 

  • Berti AD, Greve NJ, Christensen QH, Thomas MG (2007) Identification of a biosynthetic gene cluster and the six associated lipopeptides involved in swarming motility of Pseudomonas syringae pv. tomato DC3000. J Bacteriol 189:6312–6323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bischofberger M, Gonzalez MR, van der Goot FG (2009) Membrane injury by pore-forming proteins. Curr Opin Cell Biol 21:589–595

    Article  CAS  PubMed  Google Scholar 

  • Bodilis J, Ghysels B, Osayande J, Matthijs S, Pirnay JP, Denayer S, De Vos D, Cornelis P (2009) Distribution and evolution of ferripyoverdine receptors in Pseudomonas aeruginosa. Environ Microbiol 11:2123–2135

    Article  PubMed  Google Scholar 

  • Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bravo A, Likitvivatanavong S, Gill SS, Soberon M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41:423–431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Broderick NA, Lemaitre B (2012) Gut-associated microbes of Drosophila melanogaster. Gut Microbes 3:307–321

    Article  PubMed Central  PubMed  Google Scholar 

  • Buchon N, Broderick NA, Chakrabarti S, Lemaitre B (2009a) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 23:2333–2344

    Google Scholar 

  • Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B (2009b) Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5:200–211

    Google Scholar 

  • Burger M, Woods RG, McCarthy C, Beacham IR (2000) Temperature regulation of protease in Pseudomonas fluorescens LS107d2 by an ECF sigma factor and a transmembrane activator. Microbiol 146 (Pt 12):3149–3155

    CAS  Google Scholar 

  • Carterson AJ, Morici LA, Jackson DW, Frisk A, Lizewski SE, Jupiter R, Simpson K, Kunz DA, Davis SH, Schurr JR et al (2004) The transcriptional regulator AlgR controls cyanide production in Pseudomonas aeruginosa. J Bacteriol 186:6837–6844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chakrabarti S, Liehl P, Buchon N, Lemaitre B (2012) Infection-induced host translational blockage inhibits immune responses and epithelial renewal in the Drosophila gut. Cell Host Microbe 12:60–70

    Article  CAS  PubMed  Google Scholar 

  • Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A (2011) Bacterial communities of diverse Drosophila species: ecological context of a host-microbe model system. PLoS Genet 7:e1002272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Charles JF, Nielson-LeRoux C, Delecluse A (1996) Bacillus sphaericus toxins: molecular biology and mode of action. Annu Rev Entomol 41:451–472

    Article  CAS  PubMed  Google Scholar 

  • Dabboussi F, Hamze M, Singer E, Geoffroy V, Meyer JM, Izard D (2002) Pseudomonas mosselii sp. nov., a novel species isolated from clinical specimens. Int J Syst Evolut Microbiol 52:363–376

    CAS  Google Scholar 

  • Daffre S, Kylsten P, Samakovlis C, Hultmark D (1994) The lysozyme locus in Drosophila melanogaster: an expanded gene family adapted for expression in the digestive tract. Mol Gen Genet: MGG 242:152–162

    Article  CAS  PubMed  Google Scholar 

  • Daniels R, Reynaert S, Hoekstra H, Verreth C, Janssens J, Braeken K, Fauvart M, Beullens S, Heusdens C, Lambrichts I et al (2006) Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli. Proc Natl Acad Sci U S A 103:14965–14970

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Darboux I, Nielsen-LeRoux C, Charles JF, Pauron D (2001) The receptor of Bacillus sphaericus binary toxin in Culex pipiens (Diptera: Culicidae) midgut: molecular cloning and expression. Insect Biochem Mol Biol 31:981–990

    Article  CAS  PubMed  Google Scholar 

  • de Bruijn I, de Kock MJ, Yang M, de Waard P, van Beek TA, Raaijmakers JM (2007) Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol 63:417–428

    Article  CAS  PubMed  Google Scholar 

  • Deretic V, Konyecsni WM (1989) Control of mucoidy in Pseudomonas aeruginosa: transcriptional regulation of algR and identification of the second regulatory gene, algQ. J Bacteriol 171:3680–3688

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deziel E, Lepine F, Milot S, Villemur R (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiol 149:2005–2013

    Article  CAS  Google Scholar 

  • Dubern JF, Coppoolse ER, Stiekema WJ, Bloemberg GV (2008) Genetic and functional characterization of the gene cluster directing the biosynthesis of putisolvin I and II in Pseudomonas putida strain PCL1445. Microbiology 154:2070–2083

    Article  CAS  PubMed  Google Scholar 

  • Dunwell JM, Khuri S, Gane PJ (2000) Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol Mol Biol Rev: MMBR 64:153–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dunwell JM, Purvis A, Khuri S (2004) Cupins: the most functionally diverse protein superfamily? Phytochemistry 65:7–17

    Article  CAS  PubMed  Google Scholar 

  • Duong F, Lazdunski A, Murgier M (1996) Protein secretion by heterologous bacterial ABC-transporters: the C-terminus secretion signal of the secreted protein confers high recognition specificity. Mol Microbiol 21:459–470

    Article  CAS  PubMed  Google Scholar 

  • Ferrandon D (2013) The complementary facets of epithelial host defenses in the genetic model organism Drosophila melanogaster: from resistance to resilience. Curr opin immunology 25:59–70

    Article  CAS  Google Scholar 

  • Gao R, Stock AM (2010) Molecular strategies for phosphorylation-mediated regulation of response regulator activity. Curr Opin Microbiol 13:160–167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez MR, Bischofberger M, Pernot L, van der Goot FG, Freche B (2008) Bacterial pore-forming toxins: the (w)hole story? Cell Mol Life Sci: CMLS 65:493–507

    Article  CAS  PubMed  Google Scholar 

  • Ha EM, Oh CT, Bae YS, Lee WJ (2005a) A direct role for dual oxidase in Drosophila gut immunity. Science 310:847–850

    Google Scholar 

  • Ha EM, Oh CT, Ryu JH, Bae YS, Kang SW, Jang IH, Brey PT, Lee WJ (2005b) An antioxidant system required for host protection against gut infection in Drosophila. Dev Cell 8:125–132

    Google Scholar 

  • Ha EM, Lee KA, Park SH, Kim SH, Nam HJ, Lee HY, Kang D, Lee WJ (2009a) Regulation of DUOX by the Galphaq-phospholipase Cbeta-Ca2+ pathway in Drosophila gut immunity. Dev Cell 16:386–397

    Google Scholar 

  • Ha EM, Lee KA, Seo YY, Kim SH, Lim JH, Oh BH, Kim J, Lee WJ (2009b) Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in drosophila gut. Nat Immunol 10:949–957

    Google Scholar 

  • Haas D (2005) Biocontrol genome deciphered. Nat Biotechnol 23:823–824

    Article  CAS  PubMed  Google Scholar 

  • Haussler S (2010) Multicellular signalling and growth of Pseudomonas aeruginosa. Int J Med Microbiol: IJMM 300:544–548

    Article  PubMed  Google Scholar 

  • Heeb S, Haas D (2001) Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant-Microbe Interact: MPMI 14:1351–1363

    Article  CAS  PubMed  Google Scholar 

  • Hinchliffe SJ, Hares MC, Dowling AJ, ffrench-Constant RH (2010) Insecticidal toxins from the Photorhabdus and Xenorhabdus Bacteria. Open Toxinol J 3:101–118

    Article  Google Scholar 

  • Hong YQ, Ghebrehiwet B (1992) Effect of Pseudomonas aeruginosa elastase and alkaline protease on serum complement and isolated components C1q and C3. Clin Immunol Immunopathol 62:133–138

    Article  CAS  PubMed  Google Scholar 

  • Hughes KT, Mathee K (1998) The anti-sigma factors. Annu Rev Microbiol 52:231–286

    Article  CAS  PubMed  Google Scholar 

  • Hurst MR, Glare TR, Jackson TA, Ronson CW (2000) Plasmid-located pathogenicity determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. J Bacteriol 182:5127–5138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hurst MR, Jones SM, Tan B, Jackson TA (2007) Induced expression of the Serratia entomophila Sep proteins shows activity towards the larvae of the New Zealand grass grub Costelytra zealandica. FEMS Microbiol Lett 275:160–167

    Article  PubMed  Google Scholar 

  • Iacovache I, van der Goot FG, Pernot L (2008) Pore formation: an ancient yet complex form of attack. Biochim Biophys Acta 1778:1611–1623

    Article  CAS  PubMed  Google Scholar 

  • Juneja P, Lazzaro BP (2009) Providencia sneebia sp. nov. and Providencia burhodogranariea sp. nov., isolated from wild Drosophila melanogaster. Int J Syst Evolut Microbiol 59:1108–1111

    Article  CAS  Google Scholar 

  • Kamala-Kannan S, Lee KJ, Park SM, Chae JC, Yun BS, Lee YH, Park YJ, Oh BT (2010) Characterization of ACC deaminase gene in Pseudomonas entomophila strain PS-PJH isolated from the rhizosphere soil. J Basic Microbiol 50:200–205

    CAS  PubMed  Google Scholar 

  • Kaneko T, Goldman WE, Mellroth P, Steiner H, Fukase K, Kusumoto S, Harley W, Fox A, Golenbock D, Silverman N (2004) Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway. Immunity 20:637–649

    Article  CAS  PubMed  Google Scholar 

  • Kearns DB, Losick R (2003) Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49:581–590

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi N, Nishino K, Yamaguchi A (2001) Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J Bacteriol 183:5639–5644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuraishi T, Binggeli O, Opota O, Buchon N, Lemaitre B (2011) Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc Natl Acad Sci U S A 108:15966–15971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lally ET, Hill RB, Kieba IR, Korostoff J (1999) The interaction between RTX toxins and target cells. Trends Microbiol 7:356–361

    Article  CAS  PubMed  Google Scholar 

  • Leduc D, Beaufort N, de Bentzmann S, Rousselle JC, Namane A, Chignard M, Pidard D (2007) The Pseudomonas aeruginosa LasB metalloproteinase regulates the human urokinase-type plasminogen activator receptor through domain-specific endoproteolysis. Infect Immun 75:3848–3858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee KA, Kim SH, Kim EK, Ha EM, You H, Kim B, Kim MJ, Kwon Y, Ryu JH, Lee WJ (2013) Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell 153:797–811

    Article  CAS  PubMed  Google Scholar 

  • Leulier F, Parquet C, Pili-Floury S, Ryu JH, Caroff M, Lee WJ, Mengin-Lecreulx D, Lemaitre B (2003) The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat Immunol 4:478–484

    Article  CAS  PubMed  Google Scholar 

  • Li W, Rokni-Zadeh H, De Vleeschouwer M, Ghequire MG, Sinnaeve D, Xie GL, Rozenski J, Madder A, Martins JC, De Mot R (2013) The antimicrobial compound xantholysin defines a new group of pseudomonas cyclic lipopeptides. PloS One 8:e62946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liehl P, Blight M, Vodovar N, Boccard F, Lemaitre B (2006) Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog 2:e56

    Article  PubMed Central  PubMed  Google Scholar 

  • Lizewski SE, Lundberg DS, Schurr MJ (2002) The transcriptional regulator AlgR is essential for Pseudomonas aeruginosa pathogenesis. Infect Immun 70:6083–6093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lizewski SE, Schurr JR, Jackson DW, Frisk A, Carterson AJ, Schurr MJ (2004) Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis. J Bacteriol 186:5672–5684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mascher T, Helmann JD, Unden G (2006) Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev: MMBR 70:910–938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matthijs S, Laus G, Meyer JM, Abbaspour-Tehrani K, Schafer M, Budzikiewicz H, Cornelis P (2009) Siderophore-mediated iron acquisition in the entomopathogenic bacterium Pseudomonas entomophila L48 and its close relative Pseudomonas putida KT2440. Biometals 22:951–964

    Article  CAS  PubMed  Google Scholar 

  • Missiakas D, Raina S (1998) The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol 28:1059–1066

    Article  CAS  PubMed  Google Scholar 

  • Mitrophanov AY, Groisman EA (2008) Signal integration in bacterial two-component regulatory systems. Genes Dev 22:2601–2611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyoshi S, Shinoda S (2000) Microbial metalloproteases and pathogenesis. Microbes Infect/Inst Pasteur 2:91–98

    Article  CAS  Google Scholar 

  • Morici LA, Carterson AJ, Wagner VE, Frisk A, Schurr JR, Honer zu Bentrup K, Hassett DJ, Iglewski BH, Sauer K, Schurr MJ (2007) Pseudomonas aeruginosa AlgR represses the Rhl quorum-sensing system in a biofilm-specific manner. J Bacteriol 189:7752–7764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mulet M, Gomila M, Lemaitre B, Lalucat J, Garcia-Valdes E (2012) Taxonomic characterisation of Pseudomonas strain L48 and formal proposal of Pseudomonas entomophila sp. nov. Syst Appl Microbiol 35:145–149

    Article  CAS  PubMed  Google Scholar 

  • Neidig N, Paul RJ, Scheu S, Jousset A (2011) Secondary metabolites of Pseudomonas fluorescens CHA0 drive complex non-trophic interactions with bacterivorous nematodes. Microb Ecol 61:853–859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222

    Article  CAS  PubMed  Google Scholar 

  • Nielsen-LeRoux C, Gaudriault S, Ramarao N, Lereclus D, Givaudan A (2012) How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Curr Opin Microbiol 15:220–231

    Article  PubMed  Google Scholar 

  • Ochsner UA, Johnson Z, Vasil ML (2000) Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. Microbiology 146(Pt 1):185–198

    CAS  PubMed  Google Scholar 

  • Opota O, Charles JF, Warot S, Pauron D, Darboux I (2008) Identification and characterization of the receptor for the Bacillus sphaericus binary toxin in the malaria vector mosquito, Anopheles gambiae. Comp Biochem Physiol Part B. Biochem Mol Biol 149:419–427

    Article  Google Scholar 

  • Opota O, Vallet-Gely I, Vincentelli R, Kellenberger C, Iacovache I, Gonzalez MR, Roussel A, van der Goot FG, Lemaitre B (2011) Monalysin, a novel ss-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLoS Pathog 7:e1002259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Overhage J, Lewenza S, Marr AK, Hancock RE (2007) Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn5-lux mutant library. J Bacteriol 189:2164–2169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parmely M, Gale A, Clabaugh M, Horvat R, Zhou WW (1990) Proteolytic inactivation of cytokines by Pseudomonas aeruginosa. Infect Immun 58:3009–3014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prince RW, Cox CD, Vasil ML (1993) Coordinate regulation of siderophore and exotoxin A production: molecular cloning and sequencing of the Pseudomonas aeruginosa fur gene. J Bacteriol 175:2589–2598

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raghavan V, Groisman EA (2010) Orphan and hybrid two-component system proteins in health and disease. Curr Opin Microbiol 13:226–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rahme LG, Ausubel FM, Cao H, Drenkard E, Goumnerov BC, Lau GW, Mahajan-Miklos S, Plotnikova J, Tan MW, Tsongalis J et al (2000) Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci U S A 97:8815–8821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodrigue A, Quentin Y, Lazdunski A, Mejean V, Foglino M (2000) Two-component systems in Pseudomonas aeruginosa: why so many? Trends Microbiol 8:498–504

    Article  CAS  PubMed  Google Scholar 

  • Ryall B, Mitchell H, Mossialos D, Williams HD (2009) Cyanogenesis by the entomopathogenic bacterium Pseudomonas entomophila. Lett Appl Microbiol 49:131–135

    Article  CAS  PubMed  Google Scholar 

  • Sarris PF, Scoulica EV (2011) Pseudomonas entomophila and Pseudomonas mendocina: potential models for studying the bacterial type VI secretion system. Infect, Genet Evol 11:1352–1360

    Article  CAS  Google Scholar 

  • Schaefer AL, Val DL, Hanzelka BL, Cronan JE Jr, Greenberg EP (1996) Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc Natl Acad Sci U S A 93:9505–9509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shahbaz-Mohammadi H, Omidinia E (2011) Screening and characterization of proline dehydrogenase flavoenzyme producing Pseudomonas entomophila. Iran J Microbiol 3:201–209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shanbhag S, Tripathi S (2009) Epithelial ultrastructure and cellular mechanisms of acid and base transport in the Drosophila midgut. J Exp Biol 212:1731–1744

    Article  CAS  PubMed  Google Scholar 

  • Soberon M, Fernandez LE, Perez C, Gill SS, Bravo A (2007) Mode of action of mosquitocidal Bacillus thuringiensis toxins. Toxicon 49:597–600

    Article  CAS  PubMed  Google Scholar 

  • Sonnleitner E, Schuster M, Sorger-Domenigg T, Greenberg EP, Blasi U (2006) Hfq-dependent alterations of the transcriptome profile and effects on quorum sensing in Pseudomonas aeruginosa. Mol Microbiol 59:1542–1558

    Article  CAS  PubMed  Google Scholar 

  • Stenbak CR, Ryu JH, Leulier F, Pili-Floury S, Parquet C, Herve M, Chaput C, Boneca IG, Lee WJ, Lemaitre B et al (2004) Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway. J Immunol 173:7339–7348

    Article  CAS  PubMed  Google Scholar 

  • Travis J, Potempa J, Maeda H (1995) Are bacterial proteinases pathogenic factors? Trends Microbiol 3:405–407

    Article  CAS  PubMed  Google Scholar 

  • Vallet-Gely I, Lemaitre B, Boccard F (2008) Bacterial strategies to overcome insect defences. Nat Rev. Microbiol 6:302–313

    Article  CAS  PubMed  Google Scholar 

  • Vallet-Gely I, Novikov A, Augusto L, Liehl P, Bolbach G, Pechy-Tarr M, Cosson P, Keel C, Caroff M, Lemaitre B (2010a) Association of hemolytic activity of Pseudomonas entomophila, a versatile soil bacterium, with cyclic lipopeptide production. Appl Environ Microbiol 76:910–921

    Google Scholar 

  • Vallet-Gely I, Opota O, Boniface A, Novikov A, Lemaitre B (2010b) A secondary metabolite acting as a signalling molecule controls Pseudomonas entomophila virulence. Cell Microbiol 12:1666–1679

    Google Scholar 

  • Vodovar N, Vinals M, Liehl P, Basset A, Degrouard J, Spellman P, Boccard F, Lemaitre B (2005) Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc Natl Acad Sci U S A 102:11414–11419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Barbe V, Acosta C, Cattolico L, Jubin C, Lajus A, Segurens B et al (2006) Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat Biotechnol 24:673–679

    Article  CAS  PubMed  Google Scholar 

  • Whitchurch CB, Alm RA, Mattick JS (1996) The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 93:9839–9843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whitchurch CB, Erova TE, Emery JA, Sargent JL, Harris JM, Semmler AB, Young MD, Mattick JS, Wozniak DJ (2002) Phosphorylation of the Pseudomonas aeruginosa response regulator AlgR is essential for type IV fimbria-mediated twitching motility. J Bacteriol 184:4544–4554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williams P, Camara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Okujo N, Sakakibara Y (1994) Isolation and structure elucidation of acinetobactin, a novel siderophore from Acinetobacter baumannii. Arch Microbiol 162:249–254

    CAS  PubMed  Google Scholar 

  • Yergeau E, Sanschagrin S, Beaumier D, Greer CW (2012) Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils. PloS One 7:e30058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu H, Mudd M, Boucher JC, Schurr MJ, Deretic V (1997) Identification of the algZ gene upstream of the response regulator algR and its participation in control of alginate production in Pseudomonas aeruginosa. J Bacteriol 179:187–193

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Lemaitre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dieppois, G., Opota, O., Lalucat, J., Lemaitre, B. (2015). Pseudomonas entomophila: A Versatile Bacterium with Entomopathogenic Properties. In: Ramos, JL., Goldberg, J., Filloux, A. (eds) Pseudomonas. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9555-5_2

Download citation

Publish with us

Policies and ethics