Skip to main content

Active Behaviors in Odor Sampling Constrain the Task for Cortical Processing

  • 1715 Accesses

Part of the Advances in Cognitive Neurodynamics book series (ICCN)

Abstract

Sensory perception is accomplished by means of active behaviors that help to extract information from the external environment. These behaviors become a part of the percept and also constrain the perceptual task. In olfactory perception, sniffing is the means by which individuals acquire olfactory stimuli from the environment. Rats sniff at 8–10 Hz during odor sampling, but each sniff has a different and stereotyped pattern that serves to find needed information. Higher flow sniffs are used to identify high sorption odors within mixtures, while lower flow sniffs are used to find lower sorption odors. Extended sniffing bouts (mean of 300–600 ms) are also stereotyped and tuned by the context in which rats identify odors. These sniffing bouts may be determined by the cognitive demands of the task or by particularities associated with training.

Keywords

  • Olfactory perception
  • Sniffing
  • Sorptiveness
  • Odor sampling
  • Odor discrimination

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-017-9548-7_70
  • Chapter length: 5 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-94-017-9548-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)

References

  1. Rojas-Líbano, D., and Kay, L. M. (2008). Olfactory system gamma oscillations: the physiological dissection of a cognitive neural system. Cogn. Neurodyn. 2, 179–194.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  2. Bozza, T., Vassalli, A., Fuss, S., Zhang, J.-J., Weiland, B., Pacifico, R., Feinstein, P., and Mombaerts, P. (2009). Mapping of class I and class II odorant receptors to glomerular domains by two distinct types of olfactory sensory neurons in the mouse. Neuron 61, 220–233.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  3. Johnson, B. A., and Leon, M. (2007). Chemotopic odorant coding in a mammalian olfactory system. J. Comp. Neurol. 503, 1–34.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  4. Mozell, M. M., and Jagodowicz, M. (1973). Chromatographic separation of odorants by the nose: retention times measured across in vivo olfactory mucosa. Science (80). 181, 1247–1249.

    CAS  PubMed  CrossRef  Google Scholar 

  5. Mozell, M. M., Kent, P. F., and Murphy, S. J. (1991). The effect of flow rate upon the magnitude of the olfactory response differs for different odorants. Chem Senses 16, 631–649.

    CrossRef  Google Scholar 

  6. Schoenfeld, T. A., and Cleland, T. A. (2006). Anatomical contributions to odorant sampling and representation in rodents: zoning in on sniffing behavior. Chem Senses 31, 131–144.

    PubMed  CrossRef  Google Scholar 

  7. Rojas-Líbano, D., and Kay, L. M. (2012). Interplay between sniffing and odorant sorptive properties in the rat. J. Neurosci. 32, 15577–15589.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  8. Cenier, T., McGann, J. P., Tsuno, Y., Verhagen, J. V, and Wachowiak, M. (2013). Testing the sorption hypothesis in olfaction: a limited role for sniff strength in shaping primary odor representations during behavior. J. Neurosci. 33, 79–92.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  9. Uchida, N., and Mainen, Z. F. (2003). Speed and accuracy of olfactory discrimination in the rat. Nat. Neurosci. 6, 1224–9.

    CAS  PubMed  CrossRef  Google Scholar 

  10. Abraham, N. M., Spors, H., Carleton, A., Margrie, T. W., Kuner, T., and Schaefer, A. T. (2004). Maintaining accuracy at the expense of speed: Stimulus similarity defines odor discrimination time in mice. Neuron 44, 865–876.

    CAS  PubMed  Google Scholar 

  11. Rinberg, D., Koulakov, A., and Gelperin, A. (2006). Speed-accuracy tradeoff in olfaction. Neuron 51, 351–358.

    CAS  PubMed  CrossRef  Google Scholar 

  12. Frederick, D. E. E., Rojas-Libano, D., Scott, M., and Kay, L. M. (2011). Rat behavior in go/no-go and two-alternative choice odor discrimination: differences and similarities. Behav. Neurosci. 125, 588–603.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  13. Kay, L. M., Beshel, J., and Martin, C. (2006). When good enough is best. Neuron 51, 277–278.

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie M. Kay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kay, L.M., Rojas-Líbano, D., Frederick, D. (2015). Active Behaviors in Odor Sampling Constrain the Task for Cortical Processing. In: Liljenström, H. (eds) Advances in Cognitive Neurodynamics (IV). Advances in Cognitive Neurodynamics. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9548-7_70

Download citation